【0001】[0001]
【産業上の利用分野】本発明は、入力の Iチャネルと Q
チャネルの2系統のディジタルデータを,各々のディジ
タルフィルタBTF を通し,その各 BTF出力を D/A変換器
でアナログ信号に変換し、フィルタで高調波成分を除去
し、レベル調整器で振幅を揃える等の必要な信号処理を
した後に、局部発振器の出力の一つの搬送波信号を互の
位相差が90度の二信号に分け位相補償した各搬送波信号
と夫々乗算し、其の二つの乗算出力を合成して、4相 P
SK波などの直交変調波を得る直交変調器に関する。This invention relates to input I channel and Q
The digital data of two channels is passed through each digital filter BTF, each BTF output is converted into an analog signal by the D / A converter, harmonic components are removed by the filter, and the amplitude is adjusted by the level adjuster. After performing the necessary signal processing, such as 1), one carrier signal of the output of the local oscillator is divided into two signals with a phase difference of 90 degrees and multiplied by each carrier signal that has been phase-compensated. Synthesize 4 phase P
The present invention relates to a quadrature modulator that obtains a quadrature modulated wave such as an SK wave.
【0002】[0002]
【従来の技術】図8に、上記のディジタルフィルタBTF
を用いて4相 PSK波信号を得る従来の直交変調器の構成
を示す。ここで、局部発振器30の出力の一つの搬送波信
号を、互の位相差が90度の二信号に分け Iチャネル側と
Qチャネル側の振幅変調用の各乗算器15,25 へ出力する
所謂90゜位相器300 として、90゜分配器31を良く使用す
るが、その部品のバラツキ等により、直交変調波出力の
Iチャネル側の出力と Qチャネル側の出力との間の位相
角の直角90゜が保証されない場合がある。そのため、従
来の90゜位相器300Aは、90゜分配器31と、其の二出力の
位相角の直角90゜からの位相外れθを補償する位相補償
器32とで構成されていた。2. Description of the Related Art FIG. 8 shows the above digital filter BTF.
The configuration of a conventional quadrature modulator that obtains a 4-phase PSK wave signal using is shown. Here, one carrier signal output from the local oscillator 30 is divided into two signals with a phase difference of 90 degrees from each other and is divided into the I channel side.
A 90 ° distributor 31 is often used as a so-called 90 ° phase shifter 300 that outputs to each of the multipliers 15 and 25 for amplitude modulation on the Q channel side.
The 90 ° phase angle between the I-channel side output and the Q-channel side output may not be guaranteed. Therefore, the conventional 90 ° phaser 300A is composed of a 90 ° distributor 31 and a phase compensator 32 for compensating for the phase deviation θ from the 90 ° right angle of the phase angle of the two outputs.
【0003】[0003]
【発明が解決しようとする課題】従来の直交変調器は、
上述の如く、局部発振器30の出力の搬送波を互の位相差
が90度の二信号に分け Iチャネル側と Qチャネル側の各
乗算器15,25 へ出力する所謂90゜位相器300Aが、90゜分
配器31と位相補償器32とで構成されていたので、直交変
調器の回路規模が大きくなるという問題があった。本発
明の目的は、 Iチャネル側と Qチャネル側とに各々ディ
ジタルフィルタBTF を用いるが、全体として回路規模が
小さな直交変調器の構成を提供することにある。The conventional quadrature modulator is
As described above, the so-called 90 ° phase shifter 300A that splits the carrier wave output from the local oscillator 30 into two signals with a phase difference of 90 degrees to each of the multipliers 15 and 25 on the I channel side and the Q channel side Since it is composed of the .degree. Distributor 31 and the phase compensator 32, there is a problem that the circuit scale of the quadrature modulator becomes large. An object of the present invention is to provide a quadrature modulator configuration which uses a digital filter BTF on each of the I channel side and the Q channel side, but has a small circuit scale as a whole.
【0004】[0004]
【課題を解決するための手段】この目的達成のための本
発明の基本的な構成は、図1の原理図に示すように、 (1) 90゜位相器300Aの中の位相補償器32の使用を止め90
゜分配器31のみとする。 (2) その90゜分配器31の二つの出力I,Qの位相角が所定
の直角90゜から角度θだけ位相外れしている場合は、I
ch側のD/A 変換器12の入力I ′を、Q ch側のディジタル
フィルタBTF2の出力Q に tanθを乗算器1 にて乗じた出
力Q tan θと Ich側のディジタルフィルタBTF1の出力I
とを加算器2 で加えた値I ′=I + Q tanθとし、Q ch側
のD/A 変換器22の入力Q ′を、搬送波信号Q ch側のディ
ジタルフィルタBTF2の出力Q に 1/cosθを乗算器3 にて
乗じた値Q ′= Q/cos θとするように構成する。The basic structure of the present invention for achieving this object is as follows: (1) The phase compensator 32 of the 90 ° phaser 300A Stop using 90
° Distributor 31 only. (2) If the phase angles of the two outputs I and Q of the 90 ° distributor 31 are out of phase with each other from the predetermined 90 ° 90 °, I
Output I tan of the D / A converter 12 on the ch side, output Q tan θ of the output Q of the digital filter BTF2 on the Q ch side multiplied by tan θ in the multiplier1 and output of the digital filter BTF1 on the I ch side I
And the value added by the adder 2 are I ′ = I + Q tan θ, and the input Q ′ of the D / A converter 22 on the Q ch side is 1 / to the output Q of the digital filter BTF2 on the carrier signal Q ch side. The value obtained by multiplying cos θ by the multiplier 3 is Q ′ = Q / cos θ.
【0005】[0005]
【作用】本発明では、局部発振器30の出力の搬送波を二
分する90゜位相器300 が、90゜分配器31のみで構成され
ていて、該90゜分配器31の二つの出力I,Qの位相角が、
所定の直角90゜を保って位相外れを生じていない場合の
直交変調器の出力の空間信号点位置(0,0),(0,1),(1,0),
(1,1)では、図2の (a)の場合の如く、其の I成分と Q
成分とは直交する。そして90゜分配器31の二つの出力I,
Qの位相角が、直角90゜から角度θだけ位相外れしてい
る、図2の (b)の場合は、I ch側のD/A 変換器12の入力
I ′を乗算器1 と加算器2 とでI ′= I + Q tan θと
し、Q ch側のD/A 変換器22の入力Q ′を乗算器3 で Q′
= Q/cos θとするように演算処理することで、図2の
(b)の位相外れの有る場合も、同図の (a)の位相外れの
無い場合と同様の空間信号点の位置を実現することが出
来る。In the present invention, the 90 ° phaser 300 which divides the carrier wave of the output of the local oscillator 30 into two is constituted by only the 90 ° distributor 31, and the two outputs I and Q of the 90 ° distributor 31 are The phase angle is
Spatial signal point position (0,0), (0,1), (1,0), of the output of the quadrature modulator when the phase is not out of phase by keeping the specified 90 °
In (1,1), as in the case of (a) in Fig. 2, its I component and Q
Orthogonal to the components. And the two outputs I of the 90 ° distributor 31,
In the case of (b) in Fig. 2, the phase angle of Q is out of phase from the 90 ° right angle by the angle θ. Input of the D / A converter 12 on the I ch side
I ′ is set to I ′ = I + Q tan θ by multiplier 1 and adder 2, and the input Q ′ of D / A converter 22 on the Q ch side is multiplied by Q ′ by multiplier 3
= Q / cos θ
Even in the case where there is the phase shift of (b), the position of the spatial signal point similar to that in the case where there is no phase shift of (a) in the figure can be realized.
【0006】[0006]
【実施例】図1の原理図はそのまま、本発明の請求項1
に対応する実施例の直交変調器である4相PSK 変調器の
構成を示す。図2の (b)の場合の、90゜分配器31の二出
力I,Q が所定の直角90゜から角度θだけ位相外れしてい
る場合は、I ch側のD/A 変換器12の入力I ′を、乗算器
1と加算器2とにより、I ′= I + Q tan θとし、Q ch
側のD/A 変換器22の入力Q ′を、乗算器3により、Q ′
= Q/cos θとするように演算処理することによって、直
交変調器である4相PSK 変調器が実現される。 tanθや
1/cosθの値は、図示しない例えばスイッチによりθの
変化に対し可変で設定できる様にする。ディジタルフィ
ルタBTF 11,21 の各BTF の出力I,Qを例えば8bit とす
れば、このBTF出力を入力して D/A変換する時の量子化
雑音を小さくする為には、D/A 変換器12,22 の入力の
I′,Q′の振幅値がフルスケール値1として入力する様
に演算処理されなければならない。ところが図1の構成
では、乗算器1にて、Qch 側のBTF 出力Q に tanθを乗
算し、加算器2にて、該乗算器1の出力Qtanθと Ich側
のBTF 出力I とを加算した値(I+ Qtanθ) であるD/A変
換器12の入力 I′と、Qch 側BTF の出力Q に乗算器3に
て 1/cosθを乗算した値 Q/cosθであるD/A 変換器22の
入力 Q′とは何れも、図3の位相誤差θの 0〜±10[de
g] に対する 1/cosθと 1+tanθの値の表1から明らか
な如く、其の最大値1.0154, 1.1763が、フルスケール値
1をオーバーフローしてしまう。そのため請求項2とし
て、図3の表1 の例では、各BTR 11,21 の出力I,Qの値
を、(1/cosθ)の最大値1.0154と(1+tanθ)の最大値1.17
63との比である1.0154/1.1763=0.8632倍する構成とし
て、その I′,Q′の最大値が値1となる様に、規格化す
る必要がある。また、図1の構成の D/A変換器12,22 の
入力で所要の I′,Q′を得る為の演算は、次の様に変形
することが出来る。即ち、I ′= I + Q tan θ→ Icos
θ + Qsinθ、 Q′= Q/cos θ → Q に変形される。
この場合の請求項3に対応する構成は図4に示される。
なお、入力データ Ich,Qchを処理するディジタルフィル
タBTF 11,21 と乗算器11,21は、通常の場合、図5に示
す如く、入力の Ich ( Qch) の直列データを入力し並列
データxkを出力するシフトレジスタと該並列データx
kを入力しn bitの位相誤差θと其のθの極性±とを指
定して各タップ係数akを乗じ加算した出力Σakxk
を出力するメモリROM とで構成される。位相誤差θを、
0 から1deg づつ、±15 degまで補正したければ、24=1
6 なので、n bitは 4 bitとなる。従って、図4の各 B
TF 11,21と cosθ,sinθの乗算器11,21とを含む点線部
分は、各 ROMI, ROMQにて入力データIch,Qchを処理す
ることが可能となり、外付回路は不要となる。また、図
6に示す如く、局部発振器30の出力の搬送波信号の周波
数が、所謂シンセサイザにより可変できる構成の直交変
調器では、90゜分配器31の出力の位相誤差θが前記局部
発振器30の出力の搬送波信号の周波数により変化してし
まう。そこで請求項4の構成として、図6に示す如く、
シンセサイザ30の出力周波数の設定用データ(A) を利用
し、予め、90゜分配器31の各周波数毎の位相誤差θを求
めておき、ROM 1 には tanθを書き込み, ROM 2 には 1
/cosθを書き込んで置く。そしてシンセサイザ30の出力
周波数を設定する毎に前記設定用データ(A) により、RO
M 1, ROM 2から必要な tanθ, 1/cosθの値を読み出す
ようにする。また、この図6の請求項4の構成を簡素化
する為に、請求項5として、前記図4の各BTF と乗算器
の代りのシフトレジスタとROMI,ROMQの組合せと同様
に、図7の構成図の如く、シンセサイザの周波数設定デ
ータ(A) により、入力の直列データIch,Qchを直/ 並変
換するシフトレジスタと該シフトレジスタからの並列n
bitのデータxkを入力し,各タップ係数akを乗じ、
n個分だけ加算した出力Σakxkを出力するような R
OMI, ROMQを備える。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The principle diagram of FIG.
Of the 4-phase PSK modulator which is the quadrature modulator of the embodiment corresponding to
The configuration is shown. In the case of FIG. 2 (b), the 90 ° distributor 31 has two outlets.
The forces I and Q are out of phase from the given 90 ° right angle by the angle θ.
The input I ′ of the D / A converter 12 on the I ch side,
By 1 and adder 2, I '= I + Q tan θ, and Q ch
The input Q ′ of the D / A converter 22 on the side is fed to Q ′ by the multiplier 3.
= Q / cos θ
A 4-phase PSK modulator, which is an intermodulator, is realized. tan θ and
The value of 1 / cos θ is
It should be possible to set variably for changes. Digital file
The output I and Q of each BTF of the RTF BTF 11,21 is set to 8bit, for example.
If this is the case, the quantization when this BTF output is input and D / A converted
In order to reduce the noise, the input of D / A converters 12 and 22
Input the amplitude value of I ', Q'as full scale value 1.
Must be processed to. However, the configuration of Figure 1
Then, in multiplier 1, multiply the BTF output Q on the Qch side by tan θ.
And adder 2 outputs Qtanθ from multiplier 1 and Ich side
BTF output I and the value of D / A which is (I + Qtan θ)
The input I ′ of the converter 12 and the output Q of the BTF on the Qch side are input to the multiplier 3.
Value Q / cos θ multiplied by 1 / cos θ
Input Q'is 0 to ± 10 [de] of the phase error θ in Fig. 3.
Table 1 of 1 / cos θ and 1 + tan θ values for g]
Thus, the maximum values 1.0154 and 1.1763 are full scale values.
1 will overflow. Therefore, claim 2
In the example of Table 1 in Fig. 3, the output I and Q values of each BTR 11,21
The maximum value of (1 / cos θ) is 1.0154 and the maximum value of (1 + tan θ) is 1.17.
The ratio to 63 is 1.0154 / 1.1763 = 0.8632 times
Standardize so that the maximum value of I ', Q'is 1
Need to In addition, the D / A converters 12 and 22 configured as shown in FIG.
The operation to obtain the required I ′, Q ′ at the input is modified as follows.
You can do it. That is, I ′ = I + Q tan θ → Icos
It is transformed into θ + Qsinθ, Q ′ = Q / cos θ → Q.
The structure corresponding to claim 3 in this case is shown in FIG.
In addition, the digital fill that processes the input data Ich, Qch
BTF 11,21 and multiplier 11, 21Is normally shown in Figure 5.
As described above, input the serial data of Ich (Qch) and input in parallel.
Data xkShift register for outputting the parallel data x
kInput the n-bit phase error θ and the polarity of θ ±.
Set each tap coefficient akOutput Σa multiplied bykxk
And a memory ROM that outputs The phase error θ is
If you want to correct from 0 to 1 deg, ± 15 deg, 2Four= 1
Since it is 6, n bit is 4 bit. Therefore, each B in FIG.
Multiplier 1 of TF 11,21 and cos θ, sin θ1, 21Dotted part including and
Minutes for each ROMI, ROMQProcess input data Ich, Qch
Therefore, an external circuit becomes unnecessary. Also, the figure
As shown in 6, the frequency of the carrier signal output from the local oscillator 30.
Orthogonal transformation with a number that can be changed by a so-called synthesizer
In the modulator, the phase error θ of the output of the 90 ° distributor 31 is
It changes depending on the frequency of the carrier signal output from the oscillator 30.
I will Therefore, as the configuration of claim 4, as shown in FIG.
Uses output frequency setting data (A) of synthesizer 30
Then, the phase error θ of each frequency of the 90 ° distributor 31 is calculated in advance.
In advance, write tan θ to ROM 1 and 1 to ROM 2.
Write / cos θ. And the output of the synthesizer 30
Each time the frequency is set, the RO
Read required tan θ, 1 / cos θ values from M 1 and ROM 2
To do so. Further, the structure of claim 4 of FIG. 6 is simplified.
In order to do so, as claim 5, each BTF and multiplier of FIG.
Shift register and ROM instead ofI,ROMQSimilar to
As shown in the configuration diagram of Fig. 7, the frequency setting data of the synthesizer is
Data (A) allows input serial data Ich, Qch to be directly / parallel-transformed.
Shift register to be exchanged and parallel n from the shift register
bit data xkIs input, and each tap coefficient akMultiply by
Output Σa obtained by adding only nkxkTo output R
OMI, ROMQEquipped with.
【0007】[0007]
【発明の効果】以上説明した如く、本発明によれば、直
交変調器用の局部発振器の出力の搬送波信号に対する90
゜位相器のなかのアナログの位相補償回路が不要となる
ので、直交変調器の動作の安定性が高まる。また、ディ
ジタルフィルタと乗算器の代りに ROM等を使用すること
で直交変調器の回路規模が縮小される効果が得られる。As described above, according to the present invention, the output of the local oscillator for the quadrature modulator is equal to 90.
Since the analog phase compensation circuit in the phase shifter is not required, the operation stability of the quadrature modulator is improved. Moreover, the effect of reducing the circuit scale of the quadrature modulator can be obtained by using a ROM or the like instead of the digital filter and the multiplier.
【図1】 本発明の請求項1の直交変調器の基本構成を
示す原理図FIG. 1 is a principle diagram showing a basic configuration of a quadrature modulator according to claim 1 of the present invention.
【図2】 本発明の直交変調器の動作を説明する為の直
交変調出力の空間信号点位置を表す説明図FIG. 2 is an explanatory diagram showing a spatial signal point position of a quadrature modulation output for explaining the operation of the quadrature modulator of the present invention.
【図3】 本発明の請求項2の直交変調器の動作を説明
する為の位相誤差θに対する 1/cosθと1+tan θの値
の表を示す説明図FIG. 3 is an explanatory diagram showing a table of values of 1 / cos θ and 1 + tan θ with respect to a phase error θ for explaining the operation of the quadrature modulator according to claim 2 of the present invention.
【図4】 本発明の請求項3の直交変調器の構成図FIG. 4 is a block diagram of a quadrature modulator according to claim 3 of the present invention.
【図5】 本発明の請求項4の直交変調器の構成を説明
する為の BPFと乗算器に代わるシフトレジスタと ROMの
使用方法の説明図FIG. 5 is an explanatory diagram of a method of using a shift register and a ROM instead of the BPF and the multiplier for explaining the configuration of the quadrature modulator according to claim 4 of the present invention.
【図6】 本発明の請求項4の直交変調器の構成図FIG. 6 is a block diagram of a quadrature modulator according to claim 4 of the present invention.
【図7】 本発明の請求項5の直交変調器の構成を説明
する為の BPFと乗算器に代わるシフトレジスタと ROMの
アドレス方法の説明図FIG. 7 is an explanatory diagram of an addressing method of a shift register and a ROM instead of a BPF and a multiplier for explaining a configuration of a quadrature modulator according to claim 5 of the present invention.
【図8】 従来の直交変調器の4相 PSK変調器の構成図FIG. 8 is a block diagram of a conventional 4-phase PSK modulator of a quadrature modulator.
1,3は乗算器、2 は加算器、θは位相誤差、11,21は乗算
器、31は加算器、11, 21はディジタルフィルタBTF 、1
2,22 は D/A変換器、13,23 はロールオフ濾波器、14,24
はオフセット振幅調整器、15,25 は変調用の乗算器、3
0は局部発振器、31は90゜分配器、32は位相補償器、300
は90゜位相器、40は合成器HYB である。1, 3 is a multiplier, 2 is an adder, θ is a phase error, 11, 21 is a multiplier, 31 is an adder, 11 and 21 are digital filters BTF, 1
2,22 is D / A converter, 13,23 is roll-off filter, 14,24
Is the offset amplitude adjuster, 15 and 25 are multipliers for modulation, 3
0 is a local oscillator, 31 is a 90 ° distributor, 32 is a phase compensator, 300
Is a 90 ° phaser and 40 is a combiner HYB.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2310293AJPH06237276A (en) | 1993-02-12 | 1993-02-12 | Quadrature modulator |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2310293AJPH06237276A (en) | 1993-02-12 | 1993-02-12 | Quadrature modulator |
| Publication Number | Publication Date |
|---|---|
| JPH06237276Atrue JPH06237276A (en) | 1994-08-23 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2310293AWithdrawnJPH06237276A (en) | 1993-02-12 | 1993-02-12 | Quadrature modulator |
| Country | Link |
|---|---|
| JP (1) | JPH06237276A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6836650B2 (en) | 1998-10-21 | 2004-12-28 | Parkervision, Inc. | Methods and systems for down-converting electromagnetic signals, and applications thereof |
| US6873836B1 (en) | 1999-03-03 | 2005-03-29 | Parkervision, Inc. | Universal platform module and methods and apparatuses relating thereto enabled by universal frequency translation technology |
| US6879817B1 (en) | 1999-04-16 | 2005-04-12 | Parkervision, Inc. | DC offset, re-radiation, and I/Q solutions using universal frequency translation technology |
| US6963734B2 (en) | 1999-12-22 | 2005-11-08 | Parkervision, Inc. | Differential frequency down-conversion using techniques of universal frequency translation technology |
| US6975848B2 (en) | 2002-06-04 | 2005-12-13 | Parkervision, Inc. | Method and apparatus for DC offset removal in a radio frequency communication channel |
| US7006805B1 (en) | 1999-01-22 | 2006-02-28 | Parker Vision, Inc. | Aliasing communication system with multi-mode and multi-band functionality and embodiments thereof, such as the family radio service |
| US7010559B2 (en) | 2000-11-14 | 2006-03-07 | Parkervision, Inc. | Method and apparatus for a parallel correlator and applications thereof |
| US7010286B2 (en) | 2000-04-14 | 2006-03-07 | Parkervision, Inc. | Apparatus, system, and method for down-converting and up-converting electromagnetic signals |
| US7016663B2 (en) | 1998-10-21 | 2006-03-21 | Parkervision, Inc. | Applications of universal frequency translation |
| US7027786B1 (en) | 1998-10-21 | 2006-04-11 | Parkervision, Inc. | Carrier and clock recovery using universal frequency translation |
| US7039372B1 (en) | 1998-10-21 | 2006-05-02 | Parkervision, Inc. | Method and system for frequency up-conversion with modulation embodiments |
| US7050508B2 (en) | 1998-10-21 | 2006-05-23 | Parkervision, Inc. | Method and system for frequency up-conversion with a variety of transmitter configurations |
| US7054296B1 (en) | 1999-08-04 | 2006-05-30 | Parkervision, Inc. | Wireless local area network (WLAN) technology and applications including techniques of universal frequency translation |
| US7072390B1 (en) | 1999-08-04 | 2006-07-04 | Parkervision, Inc. | Wireless local area network (WLAN) using universal frequency translation technology including multi-phase embodiments |
| US7072427B2 (en) | 2001-11-09 | 2006-07-04 | Parkervision, Inc. | Method and apparatus for reducing DC offsets in a communication system |
| US7076011B2 (en) | 1998-10-21 | 2006-07-11 | Parkervision, Inc. | Integrated frequency translation and selectivity |
| US7082171B1 (en) | 1999-11-24 | 2006-07-25 | Parkervision, Inc. | Phase shifting applications of universal frequency translation |
| US7085335B2 (en) | 2001-11-09 | 2006-08-01 | Parkervision, Inc. | Method and apparatus for reducing DC offsets in a communication system |
| US7110435B1 (en) | 1999-03-15 | 2006-09-19 | Parkervision, Inc. | Spread spectrum applications of universal frequency translation |
| US7236754B2 (en) | 1999-08-23 | 2007-06-26 | Parkervision, Inc. | Method and system for frequency up-conversion |
| US7292835B2 (en) | 2000-01-28 | 2007-11-06 | Parkervision, Inc. | Wireless and wired cable modem applications of universal frequency translation technology |
| US7295826B1 (en) | 1998-10-21 | 2007-11-13 | Parkervision, Inc. | Integrated frequency translation and selectivity with gain control functionality, and applications thereof |
| US7308242B2 (en) | 1998-10-21 | 2007-12-11 | Parkervision, Inc. | Method and system for down-converting and up-converting an electromagnetic signal, and transforms for same |
| US7321640B2 (en) | 2002-06-07 | 2008-01-22 | Parkervision, Inc. | Active polyphase inverter filter for quadrature signal generation |
| US7379883B2 (en) | 2002-07-18 | 2008-05-27 | Parkervision, Inc. | Networking methods and systems |
| US7454453B2 (en) | 2000-11-14 | 2008-11-18 | Parkervision, Inc. | Methods, systems, and computer program products for parallel correlation and applications thereof |
| US7460584B2 (en) | 2002-07-18 | 2008-12-02 | Parkervision, Inc. | Networking methods and systems |
| US7515896B1 (en) | 1998-10-21 | 2009-04-07 | Parkervision, Inc. | Method and system for down-converting an electromagnetic signal, and transforms for same, and aperture relationships |
| US7554508B2 (en) | 2000-06-09 | 2009-06-30 | Parker Vision, Inc. | Phased array antenna applications on universal frequency translation |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7076011B2 (en) | 1998-10-21 | 2006-07-11 | Parkervision, Inc. | Integrated frequency translation and selectivity |
| US7295826B1 (en) | 1998-10-21 | 2007-11-13 | Parkervision, Inc. | Integrated frequency translation and selectivity with gain control functionality, and applications thereof |
| US7376410B2 (en) | 1998-10-21 | 2008-05-20 | Parkervision, Inc. | Methods and systems for down-converting a signal using a complementary transistor structure |
| US7389100B2 (en) | 1998-10-21 | 2008-06-17 | Parkervision, Inc. | Method and circuit for down-converting a signal |
| US7620378B2 (en) | 1998-10-21 | 2009-11-17 | Parkervision, Inc. | Method and system for frequency up-conversion with modulation embodiments |
| US7529522B2 (en) | 1998-10-21 | 2009-05-05 | Parkervision, Inc. | Apparatus and method for communicating an input signal in polar representation |
| US7194246B2 (en) | 1998-10-21 | 2007-03-20 | Parkervision, Inc. | Methods and systems for down-converting a signal using a complementary transistor structure |
| US7321735B1 (en) | 1998-10-21 | 2008-01-22 | Parkervision, Inc. | Optical down-converter using universal frequency translation technology |
| US7016663B2 (en) | 1998-10-21 | 2006-03-21 | Parkervision, Inc. | Applications of universal frequency translation |
| US7308242B2 (en) | 1998-10-21 | 2007-12-11 | Parkervision, Inc. | Method and system for down-converting and up-converting an electromagnetic signal, and transforms for same |
| US6836650B2 (en) | 1998-10-21 | 2004-12-28 | Parkervision, Inc. | Methods and systems for down-converting electromagnetic signals, and applications thereof |
| US7050508B2 (en) | 1998-10-21 | 2006-05-23 | Parkervision, Inc. | Method and system for frequency up-conversion with a variety of transmitter configurations |
| US7027786B1 (en) | 1998-10-21 | 2006-04-11 | Parkervision, Inc. | Carrier and clock recovery using universal frequency translation |
| US7515896B1 (en) | 1998-10-21 | 2009-04-07 | Parkervision, Inc. | Method and system for down-converting an electromagnetic signal, and transforms for same, and aperture relationships |
| US7245886B2 (en) | 1998-10-21 | 2007-07-17 | Parkervision, Inc. | Method and system for frequency up-conversion with modulation embodiments |
| US7218907B2 (en) | 1998-10-21 | 2007-05-15 | Parkervision, Inc. | Method and circuit for down-converting a signal |
| US7039372B1 (en) | 1998-10-21 | 2006-05-02 | Parkervision, Inc. | Method and system for frequency up-conversion with modulation embodiments |
| US7006805B1 (en) | 1999-01-22 | 2006-02-28 | Parker Vision, Inc. | Aliasing communication system with multi-mode and multi-band functionality and embodiments thereof, such as the family radio service |
| US7483686B2 (en) | 1999-03-03 | 2009-01-27 | Parkervision, Inc. | Universal platform module and methods and apparatuses relating thereto enabled by universal frequency translation technology |
| US6873836B1 (en) | 1999-03-03 | 2005-03-29 | Parkervision, Inc. | Universal platform module and methods and apparatuses relating thereto enabled by universal frequency translation technology |
| US7110435B1 (en) | 1999-03-15 | 2006-09-19 | Parkervision, Inc. | Spread spectrum applications of universal frequency translation |
| US7599421B2 (en) | 1999-03-15 | 2009-10-06 | Parkervision, Inc. | Spread spectrum applications of universal frequency translation |
| US7224749B2 (en) | 1999-04-16 | 2007-05-29 | Parkervision, Inc. | Method and apparatus for reducing re-radiation using techniques of universal frequency translation technology |
| US7190941B2 (en) | 1999-04-16 | 2007-03-13 | Parkervision, Inc. | Method and apparatus for reducing DC offsets in communication systems using universal frequency translation technology |
| US7539474B2 (en) | 1999-04-16 | 2009-05-26 | Parkervision, Inc. | DC offset, re-radiation, and I/Q solutions using universal frequency translation technology |
| US7272164B2 (en) | 1999-04-16 | 2007-09-18 | Parkervision, Inc. | Reducing DC offsets using spectral spreading |
| US6879817B1 (en) | 1999-04-16 | 2005-04-12 | Parkervision, Inc. | DC offset, re-radiation, and I/Q solutions using universal frequency translation technology |
| US7072390B1 (en) | 1999-08-04 | 2006-07-04 | Parkervision, Inc. | Wireless local area network (WLAN) using universal frequency translation technology including multi-phase embodiments |
| US7054296B1 (en) | 1999-08-04 | 2006-05-30 | Parkervision, Inc. | Wireless local area network (WLAN) technology and applications including techniques of universal frequency translation |
| US7236754B2 (en) | 1999-08-23 | 2007-06-26 | Parkervision, Inc. | Method and system for frequency up-conversion |
| US7546096B2 (en) | 1999-08-23 | 2009-06-09 | Parkervision, Inc. | Frequency up-conversion using a harmonic generation and extraction module |
| US7379515B2 (en) | 1999-11-24 | 2008-05-27 | Parkervision, Inc. | Phased array antenna applications of universal frequency translation |
| US7082171B1 (en) | 1999-11-24 | 2006-07-25 | Parkervision, Inc. | Phase shifting applications of universal frequency translation |
| US6963734B2 (en) | 1999-12-22 | 2005-11-08 | Parkervision, Inc. | Differential frequency down-conversion using techniques of universal frequency translation technology |
| US7292835B2 (en) | 2000-01-28 | 2007-11-06 | Parkervision, Inc. | Wireless and wired cable modem applications of universal frequency translation technology |
| US7218899B2 (en) | 2000-04-14 | 2007-05-15 | Parkervision, Inc. | Apparatus, system, and method for up-converting electromagnetic signals |
| US7496342B2 (en) | 2000-04-14 | 2009-02-24 | Parkervision, Inc. | Down-converting electromagnetic signals, including controlled discharge of capacitors |
| US7386292B2 (en) | 2000-04-14 | 2008-06-10 | Parkervision, Inc. | Apparatus, system, and method for down-converting and up-converting electromagnetic signals |
| US7010286B2 (en) | 2000-04-14 | 2006-03-07 | Parkervision, Inc. | Apparatus, system, and method for down-converting and up-converting electromagnetic signals |
| US7107028B2 (en) | 2000-04-14 | 2006-09-12 | Parkervision, Inc. | Apparatus, system, and method for up converting electromagnetic signals |
| US7554508B2 (en) | 2000-06-09 | 2009-06-30 | Parker Vision, Inc. | Phased array antenna applications on universal frequency translation |
| US7233969B2 (en) | 2000-11-14 | 2007-06-19 | Parkervision, Inc. | Method and apparatus for a parallel correlator and applications thereof |
| US7454453B2 (en) | 2000-11-14 | 2008-11-18 | Parkervision, Inc. | Methods, systems, and computer program products for parallel correlation and applications thereof |
| US7433910B2 (en) | 2000-11-14 | 2008-10-07 | Parkervision, Inc. | Method and apparatus for the parallel correlator and applications thereof |
| US7010559B2 (en) | 2000-11-14 | 2006-03-07 | Parkervision, Inc. | Method and apparatus for a parallel correlator and applications thereof |
| US7085335B2 (en) | 2001-11-09 | 2006-08-01 | Parkervision, Inc. | Method and apparatus for reducing DC offsets in a communication system |
| US7072427B2 (en) | 2001-11-09 | 2006-07-04 | Parkervision, Inc. | Method and apparatus for reducing DC offsets in a communication system |
| US6975848B2 (en) | 2002-06-04 | 2005-12-13 | Parkervision, Inc. | Method and apparatus for DC offset removal in a radio frequency communication channel |
| US7321640B2 (en) | 2002-06-07 | 2008-01-22 | Parkervision, Inc. | Active polyphase inverter filter for quadrature signal generation |
| US7379883B2 (en) | 2002-07-18 | 2008-05-27 | Parkervision, Inc. | Networking methods and systems |
| US7460584B2 (en) | 2002-07-18 | 2008-12-02 | Parkervision, Inc. | Networking methods and systems |
| Publication | Publication Date | Title |
|---|---|---|
| JPH06237276A (en) | Quadrature modulator | |
| US4926443A (en) | Correction circuit for a digital quadrature-signal pair | |
| US6441694B1 (en) | Method and apparatus for generating digitally modulated signals | |
| US5268647A (en) | Method and arrangement of coherently demodulating PSK signals using a feedback loop including a filter bank | |
| US5920595A (en) | Inter-cross wave compensation method and apparatus performing frequency conversion on signed not detected by a demodulating unit | |
| JPH05130156A (en) | Orthogonal modulator | |
| US6308057B1 (en) | Radio receiver having compensation for direct current offset | |
| JPH0468841A (en) | Delayed detection circuit | |
| JPS60103855A (en) | Data receiving device | |
| JPH05252212A (en) | Digital radio modulator | |
| US5521559A (en) | Signal oscillator, FM modulation circuit using the same, and FM modulation method | |
| JPS60183862A (en) | Digital signal processing circuit | |
| JP3336860B2 (en) | Modulation accuracy adjustment device | |
| US5373247A (en) | Automatic frequency control method and circuit for correcting an error between a received carrier frequency and a local frequency | |
| JPS5890856A (en) | Sampling phase locked circuit | |
| JPH11234047A (en) | Frequency conversion method and device | |
| JPH04275746A (en) | Orthogonal modulator | |
| JP3191895B2 (en) | SSB modulator | |
| US5157344A (en) | Digital quadrature phase detector for angle modulated signals | |
| JPH06237277A (en) | Psk carrier signal regenerating device | |
| JP2707797B2 (en) | Quadrature modulator | |
| JP3220877B2 (en) | π / 4 shift QPSK modulator | |
| JPH02254839A (en) | Digital phase modulator | |
| JPH05207080A (en) | Modulator | |
| US6891445B2 (en) | Phase modulator |
| Date | Code | Title | Description |
|---|---|---|---|
| A300 | Withdrawal of application because of no request for examination | Free format text:JAPANESE INTERMEDIATE CODE: A300 Effective date:20000509 |