【0001】[0001]
【産業上の利用分野】本発明は、下水、工場排水などの
有機性汚水を、省エネルギー的に高度に浄化するのみな
らず、窒素、リンをも生物学的に除去し、かつ簡単な管
理によって維持し得る技術を提供するものである。BACKGROUND OF THE INVENTION The present invention not only purifies organic sewage such as sewage and factory effluent highly in an energy-saving manner, but also biologically removes nitrogen and phosphorus, and by simple management. It provides a sustainable technology.
【0002】[0002]
【従来の技術】回転円板法、チューブ接触酸化法、好気
性生物濾床法などの固定生物膜法は、活性汚泥法では起
こる固液分離トラブルがないので、近年普及が進んでい
る。しかし、活性汚泥法では容易に行える生物学的脱リ
ン法がこれら従来の固定生物膜法では実施不可能であっ
た。例えば、固定生物膜法においては、活性汚泥法で生
物学的脱リン法を実施する場合のように、嫌気槽と好気
槽を組み込んでそこに有機性汚水を循環させたとしても
水だけが循環し、硝化脱窒素は起こるとしても脱リンは
行われない。その理由として、固定生物膜法では微生物
自身は接触材や担体に付着しているために汚水を循環さ
せたとしても微生物の循環が行われないため、好気条件
でリンを過剰摂取した微生物が嫌気条件でリンを放出す
ることによる生物学的脱リンは起こり得ないからと指摘
されてきた。しかし、固定生物膜法を用いて、生物学的
窒素、リン同時除去の技術が開発できれば、その意義は
極めて大きい。本発明は、この認識に立って鋭意研究し
て完成したものである。2. Description of the Related Art Fixed biofilm methods such as a rotating disk method, a tube contact oxidation method, and an aerobic biological filter bed method have been popularized in recent years because they do not have the trouble of solid-liquid separation which occurs in the activated sludge method. However, the biological dephosphorization method that can be easily performed by the activated sludge method cannot be performed by these conventional fixed biofilm methods. For example, in the fixed biofilm method, even when an anaerobic tank and an aerobic tank are installed and organic sewage is circulated therein, as in the case of carrying out the biological dephosphorization method by the activated sludge method, only water is produced. Circulates and does not dephosphorize, even if nitrifying and denitrifying. The reason for this is that in the fixed biofilm method, the microorganisms themselves do not circulate even if the wastewater is circulated because they are attached to the contact material or the carrier. It has been pointed out that biological dephosphorylation by releasing phosphorus under anaerobic conditions cannot occur. However, if a technique for simultaneous removal of biological nitrogen and phosphorus could be developed using the fixed biofilm method, its significance would be extremely significant. The present invention has been completed through earnest research based on this recognition.
【0003】[0003]
【発明が解決しようとする課題】本発明の課題は、固定
生物膜法において、生物学的窒素、リンの同時除去を実
現することができる新技術を確立することを目的として
いる。The object of the present invention is to establish a new technique capable of realizing simultaneous removal of biological nitrogen and phosphorus in the fixed biofilm method.
【0004】[0004]
【課題を解決するための手段】上記課題は、本発明の立
体的網目構造をもつ粒状物よりなる浸漬固定床に有機性
汚水を導入すると共に、間欠的あるいは周期的に該固定
床へ散気する気体中の酸素量を減少させるか無くするお
よび/または散気量自体を減少させるか散気を停止し
て、該固定床内の環境を交互に好気的あるいは嫌気的条
件に置くことを特徴とする有機性汚水の生物学的脱リン
硝化脱窒素処理方法を提供することによって達成され
る。Means for Solving the Problems The above-mentioned problems are solved by introducing organic sewage into a fixed immersion bed made of particles having a three-dimensional network structure according to the present invention, and intermittently or periodically aeration the fixed bed. Reducing or eliminating the amount of oxygen in the gas and / or reducing the amount of aeration itself or stopping the aeration to place the environment within the fixed bed in alternating aerobic or anaerobic conditions. This is achieved by providing a method for biological dephosphorization, nitrification and denitrification treatment of a characteristic organic wastewater.
【0005】本発明の有機性汚水の生物学的脱リン硝化
脱窒素処理方法のもつ新規な技術概念は次の通りであ
る。 立体的網目構造をもつ粒状物からなるろ材を充填し
て浸漬固定床を形成し、ろ材の表面および内部に高濃度
に微生物群を保持させる。保持させる微生物としては、
例えば脱リン菌、硝化菌、脱窒素菌などが挙げられる。 散気手段の操作によって上記浸漬固定床内の環境を
交互に好気的あるいは嫌気的条件に置く。 上記の条件の浸漬固定床に有機性汚水を通水することに
よって、従来は不可能視されていた固定生物膜法に基づ
いて、生物学的窒素およびリンの同時除去が可能とな
る。The novel technical concept of the biological dephosphorization nitrification denitrification treatment method of the organic wastewater of the present invention is as follows. A filter medium consisting of a granular material having a three-dimensional network structure is filled to form a submerged fixed bed, and a high concentration of microorganisms is retained on the surface and inside of the filter medium. As the microorganisms to retain,
For example, dephosphorizing bacteria, nitrifying bacteria, denitrifying bacteria and the like can be mentioned. The environment in the immersion fixed bed is alternately placed under aerobic or anaerobic conditions by operating the aeration means. By passing organic wastewater through the immersed fixed bed under the above conditions, it is possible to simultaneously remove biological nitrogen and phosphorus based on the fixed biofilm method, which has heretofore been considered impossible.
【0006】立体的網目構造をもつ粒状物からなるろ材
は、表面のみならずその内部にも微生物を保持できるの
で高濃度に微生物を保持できる。従って浸漬固定床内の
環境を嫌気的条件に置いた時速やかに残存酸素が消費さ
れて嫌気的条件を実現することができる。また、立体的
網目構造をもつ粒状物からなるろ材には多種類の微生物
を同時に保持できる。このため、立体的網目構造をもつ
粒状物を充填して、高濃度、かつ多種類の微生物を保持
した浸漬固定床を、散気手段の操作によって交互に好気
的あるいは嫌気的条件の環境に置いて、本発明の特徴あ
る生物学的窒素およびリンの同時除去が実現できるので
ある。[0006] Since the filter medium made of a granular material having a three-dimensional network structure can retain the microorganisms not only on the surface but also inside thereof, it can retain the microorganisms at a high concentration. Therefore, when the environment in the immersion fixed bed is placed under anaerobic conditions, the residual oxygen is quickly consumed and the anaerobic conditions can be realized. In addition, a filter medium composed of a granular material having a three-dimensional network structure can simultaneously hold many kinds of microorganisms. For this reason, the fixed bed with a high concentration and holding various types of microorganisms packed with a granular material having a three-dimensional network structure is alternately changed to an aerobic or anaerobic environment by the operation of the aeration means. On the other hand, the characteristic simultaneous removal of biological nitrogen and phosphorus of the present invention can be realized.
【0007】これに対し、アンスラサイトなどからなる
ろ材ではろ材の表面に薄く微生物膜が保持されるに過ぎ
ないので、従来の固定生物膜法では、微生物が置かれる
環境が嫌気的になり難く、また充填固定床の洗浄時に脱
リン菌が系外に洗い出されてしまうためか、たとえ浸漬
ろ床を本発明の場合のように断続的に曝気しても生物脱
リン作用は殆ど生じないことを実験的に確認した。On the other hand, in the case of a filter medium made of anthracite or the like, only a thin microbial film is retained on the surface of the filter medium. Therefore, in the conventional fixed biofilm method, the environment in which the microorganisms are placed is less likely to be anaerobic. In addition, it may be that the dephosphorizing bacteria are washed out of the system when the packed fixed bed is washed, and even if the submerged filter bed is intermittently aerated as in the case of the present invention, the biological dephosphorization action hardly occurs. Was confirmed experimentally.
【0008】本発明の浸漬固定床に充填使用できるろ材
には、立体的網目構造を有する公知のろ材が使用できる
が、比重が軽く1に近いかつ多孔性で空隙率が90%を
越えるろ材が好ましく、特に好ましいものとしてポリウ
レタンフォームよりなる粒状片や合成繊維糸を小さな径
の糸毬状に丸めた粒状物などを挙げることができる。Known filter media having a three-dimensional network structure can be used as the filter media which can be filled and used in the immersion fixed bed of the present invention. However, a filter media having a specific gravity of close to 1 and being porous and having a porosity of more than 90% can be used. Preferable and particularly preferable are granular pieces made of polyurethane foam and granular materials obtained by rolling synthetic fiber yarn into a thread-like shape having a small diameter.
【0009】本発明の生物学的処理方法において、処理
槽内に設けた散気手段の操作によって浸漬固定床内の環
境を交互に好気的あるいは嫌気的条件に置く方法として
は、単に、酸素含有ガスを散気管に供給ために散気手段
に配備したブロアーの運転を断続的あるいは周期的に行
うことのみならず、ブロアーの運転は連続的に運転して
も、例えば散気管に供給するガスを交互断続的に空気と
窒素ガスとにする方法や周期的に空気と窒素ガスとの混
合比を変化する方法など任意の方法が選択できる。In the biological treatment method of the present invention, as a method of alternately setting the environment in the immersion fixed bed under aerobic or anaerobic conditions by operating the aeration means provided in the treatment tank, oxygen is simply used. The blower provided in the diffusing means for supplying the contained gas to the diffusing pipe is not only intermittently or periodically operated, but even if the blower is operated continuously, for example, the gas supplied to the diffusing pipe Any method can be selected, such as a method of alternately and intermittently changing to air and nitrogen gas or a method of periodically changing the mixing ratio of air and nitrogen gas.
【0010】[0010]
【具体的態様】図1は本発明の有機性汚水の生物学的脱
リン硝化脱窒素処理方法の工程を示しす処理装置の模式
図である。以下に、図1に従って本発明の構成について
説明する。しかしながら、以下の説明は本発明の実施態
様を制限するものではない。Specific Embodiment FIG. 1 is a schematic view of a treatment apparatus showing the steps of the biological dephosphorization nitrification denitrification treatment method of the organic wastewater of the present invention. The configuration of the present invention will be described below with reference to FIG. However, the following description does not limit the embodiments of the present invention.
【0011】処理槽Aには立体的網目構造を有する粒状
物よりなるろ材を充填した浸漬固定床2が設けられ、該
浸漬固定床2の上面は処理槽Aの水面下にある。下水な
どの有機性汚水(以下原汚水とよぶ)は原汚水供給管1
により浸漬固定床2の下から処理槽Aに供給され、上向
流で浸漬固定床2を通過する。浸漬固定床2の下部には
散気管4を有する散気手段が設けられ、送風機3によっ
て酸素含有ガスを散気管4に供給し浸漬固定床2におけ
る好気性生物処理のための酸素を供給する。もし浸漬固
定床2を嫌気的条件に置く時はこの送風機3を停止す
る。The treatment tank A is provided with an immersion fixed bed 2 filled with a filter medium made of granular material having a three-dimensional mesh structure, and the upper surface of the immersion fixed bed 2 is below the water surface of the treatment tank A. Organic wastewater such as sewage (hereinafter referred to as raw wastewater) is the raw wastewater supply pipe 1
Is supplied to the treatment tank A from below the immersion fixed bed 2, and passes through the immersion fixed bed 2 in an upward flow. An air diffusing unit having an air diffusing pipe 4 is provided below the immersion fixed bed 2, and an oxygen-containing gas is supplied to the diffusing pipe 4 by a blower 3 to supply oxygen for aerobic biological treatment in the immersion fixed bed 2. If the immersion fixed bed 2 is placed under anaerobic conditions, the blower 3 is stopped.
【0012】浸漬固定床2の上部には格子、多孔板ある
いはネットからなる多孔性部材5を浸漬固定床2の断面
全体に横断的に張設して洗浄時ろ床から充填ろ材が流出
することを防止する。また浸漬固定床2の上部には2系
統の流出管を設けている。1本は流出弁8を備えた処理
水流出管6であり、今1本は還流弁9と送水ポンプ10
を備えた処理水還流用の還流管7である。還流管7は原
汚水供給管1に連結され、還流弁9を開き送水ポンプ1
0を駆動して処理水を原汚水供給管1により処理槽Aに
還流することができる。還流弁9を閉じ、流出弁8をを
開いた状態にした場合には処理水は処理水流出管6を通
って系外に流出される。A porous member 5 consisting of a lattice, a perforated plate or a net is stretched across the entire cross section of the immersion fixed bed 2 above the immersion fixed bed 2 so that the filling filter medium flows out from the filter bed during washing. Prevent. Further, two lines of outflow pipes are provided above the immersion fixed bed 2. One is a treated water outflow pipe 6 equipped with an outflow valve 8, and now one is a reflux valve 9 and a water pump 10.
It is a reflux pipe 7 for refluxing the treated water. The reflux pipe 7 is connected to the raw sewage supply pipe 1, the reflux valve 9 is opened, and the water pump 1
By driving 0, the treated water can be returned to the treatment tank A through the raw sewage supply pipe 1. When the reflux valve 9 is closed and the outflow valve 8 is opened, the treated water flows out of the system through the treated water outflow pipe 6.
【0013】本発明の処理操作においては、浸漬固定床
2内を間歇的あるいは周期的に嫌気的および好気的環境
におくようにすることが特に重要な操作要件であり、そ
のため送風機3を間歇的に運転・停止させるかまたは周
期的に出力を増減させることにより、散気管4からの吐
出ガスを間歇的に送気状態・停止状態にするかあるいは
周期的にその流量を増減させるように制御できる。勿論
浸漬固定床2内を嫌気的および好気的環境におく手段と
しては、上記送風機3の運転を制御する方法以外に、例
えば酸素含有ガスと窒素ガスなど酸素を含まないガスを
交互吹込むことやガス中の酸素成分を周期的増減させる
など、任意の方法によって実現することができる。In the treatment operation of the present invention, it is a particularly important operation condition that the submerged fixed bed 2 is intermittently or periodically placed in an anaerobic and aerobic environment, and therefore the blower 3 is intermittently provided. Control to intermittently operate / stop or periodically increase / decrease the output so that the gas discharged from the air diffusing pipe 4 is intermittently put into an air supply state / stopped state or periodically increases / decreases its flow rate. it can. Of course, as a means for keeping the interior of the immersion fixed bed 2 in an anaerobic and aerobic environment, other than the method of controlling the operation of the blower 3, for example, an oxygen-containing gas and a gas not containing oxygen such as nitrogen gas are alternately blown. It can be realized by any method such as periodically increasing or decreasing the oxygen component in the gas.
【0014】[0014]
【作用】次に、本発明の作用について述べる。図1にお
いて、下水を代表例とする生物学的窒素およびリンを含
有する有機性汚水を原汚水供給管1よりポリウレタンフ
ォームなどの立体的網目構造を有する多孔性粒状物ろ材
が充填された浸漬固定床2に上向流として通水し、浸漬
固定床2の下部に設けた散気手段の散気管4から空気を
供給すると、多孔性粒状物ろ材の表面および内部の空隙
部に脱窒素菌、硝化菌、脱リン菌などが自然に増殖し、
高濃度に固定される。これら微生物の代謝により、原汚
水のBODやNH3−Nが除去され、NOX−Nが生成
する。同時に、リン酸が脱リン菌によって摂取される。Next, the function of the present invention will be described. In FIG. 1, organic sewage containing biological nitrogen and phosphorus, typified by sewage, is immersed and fixed through a raw sewage supply pipe 1 into a porous granular filter medium having a three-dimensional network structure such as polyurethane foam. When water is passed as an upward flow to the bed 2 and air is supplied from the diffusing pipe 4 of the diffusing means provided at the lower part of the immersion fixed bed 2, the denitrifying bacteria on the surface of the porous granular material filter medium and the voids inside thereof are Nitrifying bacteria, dephosphorization bacteria, etc. naturally grow,
It is fixed at a high concentration. Due to the metabolism of these microorganisms, BOD and NH3 —N of the raw sewage are removed and NOX —N is produced. At the same time, phosphoric acid is taken up by the dephosphorizing bacteria.
【0015】次に、原汚水を供給したままブロアー3を
停止すると、浸漬固定床2内の溶存酸素が消失し、浸漬
固定床2内が嫌気的状態になる。その結果、処理槽内の
NOX−Nが原汚水中のBOD源を水素供与体として脱
窒素菌によってN2ガスに還元されて除去される。また
結果的にはBODも同時に除去される。Next, when the blower 3 is stopped while supplying the raw sewage, the dissolved oxygen in the immersion fixed bed 2 disappears and the inside of the immersion fixed bed 2 becomes anaerobic. As a result, NOX -N in the treatment tank is reduced to N2 gas by the denitrifying bacterium using the BOD source in the raw wastewater as a hydrogen donor and removed. As a result, BOD is also removed at the same time.
【0016】さらに、粒状物ろ材に固定されている脱リ
ン菌からリン酸イオンが液側に放出される。その後、再
びブロアー3を駆動し、空気を散気管4から充填固定床
2内に送気すると、浸漬固定床2内が再び溶存酸素が存
在する好気的環境に変化し、NH3−Nの硝化、PO4
3−の脱リン菌への過剰摂取が起きる。以上のような
操作を繰り返すと、最終的にBOD、SS、窒素、リン
が高度に除去された清澄な処理水が処理水流出管6から
流出する。Further, phosphate ions are released to the liquid side from the dephosphorization bacteria fixed on the particulate matter filter medium. After that, when the blower 3 is driven again and air is sent from the air diffusing pipe 4 into the packed fixed bed 2, the inside of the immersed fixed bed 2 is changed again into an aerobic environment in which dissolved oxygen exists, and NH3 --N Nitrification, PO4
Overdose of3- dephosphorylating bacteria occurs. When the above operation is repeated, finally, clear treated water from which BOD, SS, nitrogen, and phosphorus are highly removed flows out from the treated water outflow pipe 6.
【0017】本発明において、微生物は従来のアンスラ
サイトやビニール板などを担体ろ材として用いた生物膜
法のように媒体表面にのみ付着しているのではなく、媒
体自身の内部の空隙部(ポリウレタンフォームからなる
粒状ろ材では立体網目構造を指す)に高濃度に保持され
ているので、曝気を停止または空気量を減少させるなど
充填固定床2内への酸素の供給を減少または停止させる
と、媒体内部の環境が速やかに嫌気的条件に到達する。
溶存酸素は微生物膜の表面近くで消費され内部深くには
浸透して行かないからである。このことが本発明におい
て、生物学的硝化脱窒と生物学的脱リン処理が同時に効
果的に行える理由の一つであると考えられる。In the present invention, the microorganisms are not attached only to the surface of the medium as in the biofilm method using a conventional anthracite or vinyl plate as the carrier filter medium, but are cavities (polyurethane) inside the medium itself. Since a granular filter material made of foam has a high concentration in a three-dimensional network structure), if the supply of oxygen to the packed fixed bed 2 is reduced or stopped by stopping aeration or reducing the amount of air, the medium The internal environment quickly reaches anaerobic conditions.
This is because dissolved oxygen is consumed near the surface of the microbial membrane and does not penetrate deep inside. This is considered to be one of the reasons why the biological nitrification denitrification and the biological dephosphorization treatment can be effectively performed simultaneously in the present invention.
【0018】これに対し、従来のアンスラサイトなどの
媒体表面に薄く微生物膜を保持させる固定生物膜法で
は、微生物が置かれる環境が嫌気的になり難く、また充
填固定床の洗浄時に脱リン菌が系外に洗い出されてしま
うためか、たとえ浸漬ろ床を本発明の場合のように断続
的に曝気しても生物脱リン作用は殆ど生じないことを実
験的に確認した。On the other hand, in the conventional fixed biofilm method in which a thin microbial film is held on the surface of a medium such as anthracite, the environment in which the microorganisms are placed is less likely to be anaerobic, and dephosphorization bacteria are used when washing the packed fixed bed. It was experimentally confirmed that the biological dephosphorization action hardly occurs even if the submerged filter is intermittently aerated as in the case of the present invention, probably because it is washed out of the system.
【0019】すなわち本発明において、固定生物膜を採
用しているにもかかわらず、脱窒素、生物学的脱リンが
効果的に生じる原因は前記したように、 立体的網目構造をもつ粒状物からなるろ材を充填し
て浸漬固定床を形成し、ろ材の表面および内部に高濃度
に多種類の微生物群を保持させ、さらに、 このような特定の粒状物ろ材に固定した微生物を充
填した層内に好気的・嫌気的条件を交互に繰り返して与
えること という本発明特有の条件を設定したことによる。That is, in the present invention, the reason why denitrification and biological dephosphorization are effectively produced in spite of the fact that a fixed biofilm is adopted is, as described above, that the particulate matter having a three-dimensional network structure is used. To form a dip-fixed bed by filling the filter medium with various types of microorganisms on the surface and inside of the filter medium at a high concentration, and further, in the layer filled with the microorganisms fixed to such a specific granular filter medium. This is because the condition peculiar to the present invention that the aerobic and anaerobic conditions are alternately and repeatedly given to the.
【0020】次に、原汚水の通水方向は図1のように浸
漬固定床2内に上向流で通水させる方法が、原汚水を下
向流で通水させる方法よりも本発明にとって好適であ
る。なぜならば、浸漬固定床2の下から曝気しているの
で、処理槽A内の上下方向の溶存酸素濃度は浸漬固定床
2の下部が低濃度であり、浸漬固定床2の上部ほど高濃
度になる。従って原汚水を下部から上向流で流すと、浸
漬固定床2の下部が散気空気量を減少させた場合、速や
かに嫌気的になり易く、脱窒素反応と、脱リン菌からの
リンの吐きだしが起こるのに好適であるためである。な
お、脱窒素効果を一層向上させるには、流出弁8の開度
を少なくし、還流弁9を開きポンプ10を駆動して処理
水の一部を原汚水供給管1を通して処理槽Aに還流して
循環させるとよい。As for the direction of water flow of the raw sewage, as shown in FIG. 1, the method of passing the raw sewage in the submerged fixed bed 2 in the upward flow is more suitable for the present invention than the method of passing the raw sewage in the downward flow. It is suitable. Because the aeration is performed from below the immersion fixed bed 2, the dissolved oxygen concentration in the vertical direction in the treatment tank A is low in the lower portion of the immersion fixed bed 2 and becomes higher in the upper portion of the immersion fixed bed 2. Become. Therefore, when the raw sewage is allowed to flow upward from the lower part, when the lower part of the submerged fixed bed 2 reduces the amount of air diffused, it easily becomes anaerobic, and the denitrification reaction and phosphorus from the dephosphorization bacteria This is because it is suitable for spitting. In order to further improve the denitrification effect, the opening degree of the outflow valve 8 is reduced, the reflux valve 9 is opened, and the pump 10 is driven to recirculate a part of the treated water to the treatment tank A through the raw wastewater supply pipe 1. Then it is good to circulate.
【0021】[0021]
【実施例】図1に示した処理設備を用いて、団地下水を
対象に6ヶ月間排水処理を行った。処理条件は表1の通
りである。 表1 処理槽寸法 : 直径 0.5mφ(丸型カラム) 高さ 2.0m 浸漬固定床高さ 1.5m 下水流量 : 2.0m3/日 浸漬固定床内上向流流速 10.2m/日(空塔基準) 滞留時間 3.5時間 曝気条件 : 1.5時間曝気→0.5時間曝気停止のサイクル 曝気時の空気流量 6.0m3/日 生物固定化ろ材: 連続気泡で、孔径2mmのポリウレタンフォー ムの角形粒状物(粒径10×25×25mm) 充填高さ 1.5m ろ床洗浄方法: 10日に1回30分間空気洗浄[Examples] Using the treatment facility shown in FIG. 1, wastewater treatment was carried out for a group of groundwater for 6 months. The processing conditions are as shown in Table 1. Table 1 Treatment tank dimensions: Diameter 0.5 mφ (round column) Height 2.0 m Immersion fixed bed height 1.5 m Sewage flow rate: 2.0 m3 / day Upflow velocity in immersion fixed bed 10.2 m / day (Empty tower standard) Residence time 3.5 hours Aeration condition: 1.5 hours aeration → 0.5 hours Cycle of aeration stop Air flow rate during aeration 6.0m3 / day Bioimmobilization filter medium: open cell, pore diameter 2mm Polyurethane foam prismatic particles (particle size 10 x 25 x 25 mm) Filling height 1.5 m Filter bed cleaning method: Air cleaning once every 10 days for 30 minutes
【0022】団地下水の平均の水質を表2に示す。 表2 水温 : 16 ℃ pH : 7.4 SS : 96.8 mg/リットル BOD : 210 mg/リットル リン酸 : 2.2 mg/リットル(PO4
3−として) 全窒素 : 42 mg/リットルTable 2 shows the average water quality of the aggregated groundwater. Table 2 Water temperature: 16 ° C. pH: 7.4 SS: 96.8 mg / liter BOD: 210 mg / liter Phosphoric acid: 2.2 mg / liter (PO4
3- as) total nitrogen: 42 mg / liter
【0023】1ヶ月間順致運転を行い、2ヶ月後から毎
日1回コンポジットサンプルを採取し、処理水の水質を
分析した。その結果を表3に示す。 表3 除去率 −−−−−−−−−−−−−−−−−−−−− −−−−−− pH : 6.9 SS : 2.1 mg/リットル 97.8% BOD : 210 mg/リットル 98.1% リン酸 : 2.2 mg/リットル 91.8% 全窒素 : 42 mg/リットル 77.8%The acclimatization operation was carried out for 1 month, and after 2 months, a composite sample was taken once a day and the water quality of the treated water was analyzed. The results are shown in Table 3. Table 3 Removal rate --------------------------------- pH: 6.9 SS: 2.1 mg / liter 97.8% BOD: 210 mg / liter 98.1% Phosphoric acid: 2.2 mg / liter 91.8% Total nitrogen: 42 mg / liter 77.8%
【0024】表3から、本発明により有機性汚水のS
S、BOD、リン酸および全窒素を単一の生物ろ床装置
により高度に除去されたことがわかる。From Table 3, S of organic wastewater according to the present invention
It can be seen that S, BOD, phosphoric acid and total nitrogen were highly removed by a single biofilter.
【0025】[0025]
【発明の効果】1.従来、不可能視されていた固定生物
膜法での生物学的窒素、リンの同時除去が可能となっ
た。 2.単一槽構成という最も簡単な装置構成により、有機
性汚水のSS、BOD、生物学的窒素およびリンの全て
を高度に除去することができる。 3.処理工程に沈降分離工程を含まないので、固液分離
に関するトラブルが発生せず、工程の維持管理が極めて
容易である。Effect of the Invention Simultaneous removal of biological nitrogen and phosphorus by the fixed biofilm method, which was previously considered impossible, has become possible. 2. The simplest device configuration, a single tank configuration, is capable of highly removing all of SS, BOD, biological nitrogen and phosphorus of organic wastewater. 3. Since the treatment process does not include the sedimentation separation process, troubles regarding solid-liquid separation do not occur, and the process maintenance is extremely easy.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の浸漬固定床を有する生物処理槽の1例
を示す模式図。FIG. 1 is a schematic view showing an example of a biological treatment tank having an immersion fixed bed of the present invention.
A 処理槽 1 原汚水供管 2 浸漬固定床 3 送風機 4 散気管 5 多孔性部材 6 処理水流出管 7 還流管 8 流出弁 9 還流弁 10 送水ポンプ A Treatment tank 1 Raw wastewater supply pipe 2 Immersion fixed bed 3 Blower 4 Diffuser pipe 5 Porous member 6 Treated water outflow pipe 7 Reflux pipe 8 Outflow valve 9 Reflux valve 10 Water pump
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP9153792AJP2609192B2 (en) | 1992-03-18 | 1992-03-18 | Biological dephosphorization nitrification denitrification treatment method of organic wastewater |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP9153792AJP2609192B2 (en) | 1992-03-18 | 1992-03-18 | Biological dephosphorization nitrification denitrification treatment method of organic wastewater |
| Publication Number | Publication Date |
|---|---|
| JPH0623390Atrue JPH0623390A (en) | 1994-02-01 |
| JP2609192B2 JP2609192B2 (en) | 1997-05-14 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP9153792AExpired - LifetimeJP2609192B2 (en) | 1992-03-18 | 1992-03-18 | Biological dephosphorization nitrification denitrification treatment method of organic wastewater |
| Country | Link |
|---|---|
| JP (1) | JP2609192B2 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH01287145A (en)* | 1988-05-13 | 1989-11-17 | Showa Denko Kk | Laminated board for electric circuit |
| JPH05309389A (en)* | 1992-05-11 | 1993-11-22 | Kubota Corp | Treatment of sewage |
| JPH06114392A (en)* | 1992-10-05 | 1994-04-26 | Taiyo Sanso Co Ltd | Method for treating organic waste water and apparatus therefor |
| WO1997037942A1 (en)* | 1996-04-10 | 1997-10-16 | Herhof Umwelttechnik Gmbh | Process and device for treatment of water from a biodegradeable process |
| FR2787782A1 (en)* | 1998-12-23 | 2000-06-30 | Omnium Traitement Valorisa | PROCESS FOR TREATING AN EFFLUENT USING SIMULTANEOUS NITRIFICATION / DENITRIFICATION IN A BIOFILTER |
| WO2003045853A1 (en)* | 2001-11-28 | 2003-06-05 | Ebara Corporation | Device and method for bio-membrane filtration |
| US6630067B2 (en)* | 2000-06-13 | 2003-10-07 | Trustees Of The University Of Pennsylvania | Methods and apparatus for biological treatment of aqueous waste |
| JP2012076014A (en)* | 2010-09-30 | 2012-04-19 | Toshiba Corp | Apparatus and method of water treatment |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS51150870A (en)* | 1975-06-19 | 1976-12-24 | Kobe Steel Ltd | Process for the removal of nitrogen in sewage |
| JPS61287498A (en)* | 1985-06-11 | 1986-12-17 | Kobe Steel Ltd | Biological treatment of organic sewage |
| JPH01218691A (en)* | 1988-02-29 | 1989-08-31 | Onoda Autoclaved Light Weight Concrete Co Ltd | Method for purifying treatment of organic waste water |
| JPH02273594A (en)* | 1989-04-14 | 1990-11-08 | Toto Ltd | Carrier for immobilizing microorganism |
| JPH03202196A (en)* | 1989-12-28 | 1991-09-03 | Inax Corp | Waste water treatment apparatus having phosphorus releasing chamber and waste water treatment method |
| JP3090696U (en)* | 2002-06-13 | 2002-12-20 | 深水 陳 | Crusher safety device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS51150870A (en)* | 1975-06-19 | 1976-12-24 | Kobe Steel Ltd | Process for the removal of nitrogen in sewage |
| JPS61287498A (en)* | 1985-06-11 | 1986-12-17 | Kobe Steel Ltd | Biological treatment of organic sewage |
| JPH01218691A (en)* | 1988-02-29 | 1989-08-31 | Onoda Autoclaved Light Weight Concrete Co Ltd | Method for purifying treatment of organic waste water |
| JPH02273594A (en)* | 1989-04-14 | 1990-11-08 | Toto Ltd | Carrier for immobilizing microorganism |
| JPH03202196A (en)* | 1989-12-28 | 1991-09-03 | Inax Corp | Waste water treatment apparatus having phosphorus releasing chamber and waste water treatment method |
| JP3090696U (en)* | 2002-06-13 | 2002-12-20 | 深水 陳 | Crusher safety device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH01287145A (en)* | 1988-05-13 | 1989-11-17 | Showa Denko Kk | Laminated board for electric circuit |
| JPH05309389A (en)* | 1992-05-11 | 1993-11-22 | Kubota Corp | Treatment of sewage |
| JPH06114392A (en)* | 1992-10-05 | 1994-04-26 | Taiyo Sanso Co Ltd | Method for treating organic waste water and apparatus therefor |
| US6113787A (en)* | 1996-04-10 | 2000-09-05 | Herhof Umwelttechnik Gmbh | Process and device for treatment of water from a biodegradeable process |
| WO1997037942A1 (en)* | 1996-04-10 | 1997-10-16 | Herhof Umwelttechnik Gmbh | Process and device for treatment of water from a biodegradeable process |
| FR2787782A1 (en)* | 1998-12-23 | 2000-06-30 | Omnium Traitement Valorisa | PROCESS FOR TREATING AN EFFLUENT USING SIMULTANEOUS NITRIFICATION / DENITRIFICATION IN A BIOFILTER |
| WO2000039034A1 (en)* | 1998-12-23 | 2000-07-06 | Otv Omnium De Traitement Et De Valorisation | Method for treating an effluent using simultaneous nitrification/denitrification in a trickling filter |
| US6632365B1 (en) | 1998-12-23 | 2003-10-14 | Otv Sa | Method for treating an effluent using simultaneous nitrification/denitrification in a biological filter |
| US6630067B2 (en)* | 2000-06-13 | 2003-10-07 | Trustees Of The University Of Pennsylvania | Methods and apparatus for biological treatment of aqueous waste |
| US6936170B2 (en) | 2000-06-13 | 2005-08-30 | The Trustees Of The University Of Pennsylvania | Methods and apparatus for biological treatment of aqueous waste |
| WO2003045853A1 (en)* | 2001-11-28 | 2003-06-05 | Ebara Corporation | Device and method for bio-membrane filtration |
| US7297275B2 (en) | 2001-11-28 | 2007-11-20 | Ebara Corporation | Biomembrane filtration apparatus and method |
| JP2012076014A (en)* | 2010-09-30 | 2012-04-19 | Toshiba Corp | Apparatus and method of water treatment |
| Publication number | Publication date |
|---|---|
| JP2609192B2 (en) | 1997-05-14 |
| Publication | Publication Date | Title |
|---|---|---|
| US6423229B1 (en) | Bioreactor systems for biological nutrient removal | |
| KR20050007259A (en) | Apparatus for treating organic material and nitrogen of wastewater by using air floatation type biofilter, and treatment method using the same | |
| JP2001145896A (en) | Apparatus for treating nitrogen-containing waste water | |
| JP2004261711A (en) | Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method | |
| JP2609192B2 (en) | Biological dephosphorization nitrification denitrification treatment method of organic wastewater | |
| JP2584386B2 (en) | Biological filtration method and device | |
| JP2565431B2 (en) | Method and apparatus for treating organic wastewater | |
| JP3470392B2 (en) | Organic wastewater treatment method and treatment apparatus | |
| JPH067789A (en) | Bacteria immobilized carrier and biologically nitrogen removing apparatus using the carrier | |
| KR101617426B1 (en) | Advanced water-treating apparatus | |
| KR100353004B1 (en) | Biological Nutrient Removal Method using a Submerged Moving Media Intermittent Aeration Reactor and System | |
| KR100527172B1 (en) | A method and apparatus for nitrogenous waste water of nitrogen and sewage | |
| JP3629727B2 (en) | Organic wastewater treatment method and apparatus | |
| JP2565449B2 (en) | Upflow biological treatment equipment | |
| JP2759308B2 (en) | Method and apparatus for treating organic wastewater | |
| JPH07328692A (en) | Biological nitrogen removal equipment | |
| JPH0671284A (en) | High-level purifying device for organic polluted water | |
| JPH07185589A (en) | Wastewater treatment method and device for nitrogen removal | |
| JP2003033787A (en) | Wastewater nitrification method | |
| JP2006116376A (en) | Wastewater treatment system | |
| JPS62155991A (en) | wastewater treatment equipment | |
| JP2673488B2 (en) | Method and apparatus for treating organic wastewater | |
| KR102690151B1 (en) | Complex water treamtment facitility using oxidation process by bio stone ball and the method thereby | |
| JP2565429B2 (en) | Method and apparatus for biological nitrification denitrification of organic wastewater | |
| KR100619254B1 (en) | Biological Nitrogen Removal Process Using Sulfur Oxidation Autotrophic Bacteria |