【0001】[0001]
【産業上の利用分野】本発明は、カテーテルや細管用フ
ァイバスコープ等の体内挿入用医療器具の先端部に触覚
機能を付与してなる血管内壁を損傷させることがない安
全な体内挿入用医療器具に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a safe medical instrument for insertion into a body which does not damage the inner wall of a blood vessel which is provided with a tactile function at the tip of a medical instrument for insertion into the body such as a catheter or a fiberscope for a thin tube. Regarding
【0002】[0002]
【従来の技術】現在、カテーテル等の体内挿入用医療器
具には、視覚機能や作業機能など様々な機能が付与され
ているが、先端部に他物体との接触を感知する機能を付
与したものはなく、したがって、例えばカテーテルを血
管内に挿入するとき、先端部に加わる荷重は、人間の手
の感覚に頼っているのが現状である。このためカテーテ
ルの先端部で血管を突き破ってしまったり、損傷を与え
る等の問題が発生している。2. Description of the Related Art Currently, medical devices for insertion into the body such as catheters are provided with various functions such as visual function and working function, but those provided with a function of sensing contact with other objects at the tip thereof. Therefore, for example, when inserting a catheter into a blood vessel, the load applied to the tip end depends on the feeling of the human hand. Therefore, there are problems that the blood vessel is pierced or damaged at the tip of the catheter.
【0003】[0003]
【発明が解決しようとする課題】本発明の目的は、上記
問題を解消し、血管内壁を突き破ったり、損傷を与える
ことが防止され、安全に体内の目的個所に挿入すること
が可能な触覚機能を具備する体内挿入用医療器具を提供
することである。SUMMARY OF THE INVENTION The object of the present invention is to solve the above problems, prevent the inner wall of a blood vessel from being pierced or damaged, and provide a tactile function capable of being safely inserted into a target site in the body. A medical instrument for insertion into a body, comprising:
【0004】[0004]
【課題を解決するための手段】上記目的を達成するため
に、本発明者等は抵抗ひずみ計(以下、ストレインゲー
ジという)に着目し検討を重ねた結果、チューブの先端
縁近傍にストレインゲージを配設して触覚センサ部を形
成し、これを体内挿入用医療器具の先端部に取着するこ
とによって、この体内挿入用医療器具を、例えば血管内
に挿入するとき、上記触覚センサ部が血管と接触する
と、その圧力が測定できるようになることを見出し、本
発明を完成した。In order to achieve the above object, the inventors of the present invention have conducted a study by paying attention to a resistance strain gauge (hereinafter, referred to as a strain gauge), and as a result, have installed a strain gauge near the tip edge of the tube. By disposing the tactile sensor part and attaching the tactile sensor part to the tip part of the medical instrument for insertion into the body, when the medical instrument for insertion into the body is inserted into, for example, a blood vessel, the tactile sensor part becomes a blood vessel. The present invention has been completed by finding that the pressure can be measured when it comes into contact with.
【0005】即ち本発明の触覚機能を具備する体内挿入
用医療器具は、チューブの先端縁近傍にストレインゲー
ジを配設してなる触覚センサ部を、体内挿入用医療器具
の先端部に取着してなるものであって、望ましくは該チ
ューブが、その先端面に接触圧力担体を有するととも
に、この接触圧力担体の直下方向の側面にスリットを形
成してなるものである。That is, in the medical instrument for insertion into the body having the tactile function of the present invention, a tactile sensor section having a strain gauge disposed near the tip edge of the tube is attached to the tip section of the medical instrument for insertion into the body. Preferably, the tube has a contact pressure carrier on its tip end surface and a slit is formed on the side surface of the contact pressure carrier immediately below.
【0006】以下、本発明を図面に基づき詳細に説明す
る。図1は、本発明の一実施例を示す斜視図である。同
図において、Sは触覚機能を具備する体内挿入用医療器
具で、軟質チューブ2の先端縁3近傍にストレインゲー
ジ1を配設してなる触覚センサ部Aを、体内挿入用医療
器具Bの先端部に取着して構成されるものである。The present invention will be described in detail below with reference to the drawings. FIG. 1 is a perspective view showing an embodiment of the present invention. In the figure, S is a medical instrument for insertion into the body having a tactile function, and a tactile sensor section A having a strain gauge 1 disposed near the distal end edge 3 of a soft tube 2 and a tip of a medical instrument B for insertion into the body. It is configured by being attached to the section.
【0007】本発明が対象とする体内挿入用医療器具と
しては、カテーテル、循環器系内視鏡(例えば血管内視
鏡)、消化器系内視鏡(例えば大腸鏡)等がある。上記
ストレインゲージとは、通常抵抗ひずみ計とよばれるも
ので、力や圧力の測定に用いられる公知のセンサであ
る。本発明で使用するストレインゲージは、導体や半導
体の抵抗値が弾性ひずみによって変化することを利用す
るもので、外力による変位を電気インピーダンスに変換
して、その外力の大きさを測定するものである。このス
トレインゲージを形成する材料としては、温度係数が小
さいアドバンス(Cu ;54%,Ni ;46%)やニク
ロム系の合金等が使われる。The medical instruments for insertion into the body of the present invention include a catheter, a circulatory system endoscope (for example, an angioscope), a digestive system endoscope (for example, a colonoscope), and the like. The strain gauge is usually called a resistance strain gauge, and is a known sensor used for measuring force and pressure. The strain gauge used in the present invention utilizes the fact that the resistance value of a conductor or a semiconductor changes due to elastic strain, and it converts displacement caused by an external force into electrical impedance and measures the magnitude of the external force. . As a material for forming the strain gauge, advance (Cu: 54%, Ni: 46%) having a small temperature coefficient, a nichrome alloy, or the like is used.
【0008】このストレインゲージは、一般的には真空
蒸着法、CVD法、スパッタリング法、ゾル−ゲル法を
用いて上記アドバンス等の層が形成され、フォトリソグ
ラフィーによって回路パターンが形成される。本発明で
は、上記ストレインゲージを、チューブの先端部、特に
先端縁近傍(先端面や先端側面)に設けると、外力に対
する感度が向上するため、ストレインゲージの形成に
は、光CVDを用いるのが好ましい。In this strain gauge, generally, layers such as the advance described above are formed using a vacuum deposition method, a CVD method, a sputtering method, a sol-gel method, and a circuit pattern is formed by photolithography. In the present invention, when the strain gauge is provided at the tip portion of the tube, particularly near the tip edge (tip surface or tip side surface), sensitivity to external force is improved. Therefore, optical CVD is used for forming the strain gauge. preferable.
【0009】チューブ2は、外力Fをうけると容易に変
形する程度の弾性を有することが好ましく、具体的には
ポリウレタン、ポリイミド、シリコンゴム等があげられ
る。The tube 2 preferably has elasticity such that it is easily deformed when an external force F is applied, and specific examples thereof include polyurethane, polyimide, and silicone rubber.
【0010】上記の構成によれば図2に示すように、触
角センサAの先端部に外力Fが加わった場合、その作用
点を中心にチューブ2およびストレインゲージ1に弾性
ひずみが発生するため、このストレインゲージ1の抵抗
値の変化を測定すれば、外力Fの大きさを知ることがで
きる。According to the above construction, as shown in FIG. 2, when an external force F is applied to the tip of the tactile sensor A, elastic strain is generated in the tube 2 and the strain gauge 1 around the point of action thereof. The magnitude of the external force F can be known by measuring the change in the resistance value of the strain gauge 1.
【0011】また、本発明では、図3で示すように、チ
ューブ2の先端面に突起部5を形成するとともに、この
突起部5の直下方向のチューブ2側面にスリット4を形
成し、梁6(ビーム6)を得ると外力Fがビーム6に集
中してかかるようになり、微小の外力Fに対しても充分
に感知できる弾性構造が形成され、さらに、この弾性構
造の近傍にストレインゲージを配設するようにすれば、
極めて高感度な触覚センサを得ることができるので好ま
しい。Further, in the present invention, as shown in FIG. 3, a projection 5 is formed on the tip end surface of the tube 2, and a slit 4 is formed on the side surface of the tube 2 immediately below the projection 5 and the beam 6 is formed. When the (beam 6) is obtained, the external force F concentrates on the beam 6, and an elastic structure capable of sufficiently sensing even a small external force F is formed. Further, a strain gauge is provided in the vicinity of this elastic structure. If you arrange it,
This is preferable because a tactile sensor with extremely high sensitivity can be obtained.
【0012】上記突起部は、チューブにかかる荷重(外
力)を受け止めるものであればよく、その大きさ、形状
等は特定されるものではない。また、上記スリットは、
上記ビームと組み合わせて用いられ、上記突起部が受け
る荷重(外力)によってチューブの先端部を大きく変形
させる作用を奏する。したがって、上記突起部とスリッ
トとを組み合わせることにより、極微小の外力Fに対し
ても充分に感知できる弾性構造が形成され好ましい。こ
のスリットは、触覚センサの感度を向上できるものであ
ればよく、その大きさ、形状等は特定されるものではな
い。また、上記突起部およびスリットの数は、チューブ
内径および目的の感度にあわせて決定すればよく、特に
限定はされない。上記突起部またはスリットは、チュー
ブの先端部をレーザー、集束イオンビーム(FIB)等
の方法によって加工して形成される。The projection may be any one that can receive the load (external force) applied to the tube, and its size, shape, etc. are not specified. Also, the slit is
Used in combination with the beam, it exerts an effect of largely deforming the distal end portion of the tube by the load (external force) received by the protrusion. Therefore, by combining the protrusion and the slit, an elastic structure capable of sufficiently sensing even a minute external force F is formed, which is preferable. The slit may be any slit as long as it can improve the sensitivity of the tactile sensor, and its size, shape, etc. are not specified. Further, the numbers of the projections and the slits may be determined according to the inner diameter of the tube and the desired sensitivity, and are not particularly limited. The protrusion or slit is formed by processing the tip of the tube by a method such as laser or focused ion beam (FIB).
【0013】上記構成によると、図3に示すように、上
記触覚機能を具備する体内挿入用医療器具Sに外力Fが
かかると、先端部の突起部5が押圧され、さらにこの突
起部5の直下方向に形成したスリット4によって、該先
端部はさらに大きく変形するようになる。この変形によ
って、ストレインゲージ1の抵抗値が大幅に変化するよ
うになる。したがって、上記ストレインゲージ1を測定
器に接続しておくと、体内挿入用医療器具Sを血管内に
挿入する場合、この医療器具Sの先端部Aが血管に接触
する荷重(外力)が、手元で計測できるようになり、挿
入状態が数値で把握できるようになる。According to the above construction, as shown in FIG. 3, when the external force F is applied to the medical instrument S for insertion into the body having the tactile function, the projection 5 at the tip is pressed, and further the projection 5 of the projection 5 is pushed. The tip 4 is further deformed by the slit 4 formed in the direction directly below. Due to this deformation, the resistance value of the strain gauge 1 changes significantly. Therefore, when the strain gauge 1 is connected to the measuring instrument, when the medical instrument S for insertion into the body is inserted into a blood vessel, the load (external force) with which the distal end portion A of the medical instrument S contacts the blood vessel is at hand. It becomes possible to measure with, and it will be possible to grasp the insertion state numerically.
【0014】なお、本発明の体内挿入用医療器具がカテ
ーテルである場合、これを血管内へ挿入すると、上記ス
リット内部に血栓ができる可能性があるが、その場合は
この部分を充分柔らかいポリマーで埋めることによって
解決できる。When the medical device for insertion into the body of the present invention is a catheter, if it is inserted into a blood vessel, a thrombus may be formed inside the slit. In that case, this portion is made of a sufficiently soft polymer. Can be solved by filling.
【0015】また、ストレインゲージは、上記突起部と
スリットの組み合わせ構造において、最大の変位幅を得
る部分に配設することが望ましい。例えば、上記突起
部、スリットおよびストレインゲージ各々の形成場所、
形状、数などは、使用目的によって適宜選択すればよ
く、例えばその一例を示すと、図4(a)では、チュー
ブ2の先端面3aに突起部5とストレインゲージ1とを
形成し、この突起部5の直下方向のチューブ側面にはス
リット4を形成している。また、図4(b)のように、
チューブ2の先端面3aに突起部5を、この突起部5の
直下方向のチューブ側面にはスリット4を形成し、上記
突起部とスリットとの間のチューブ側面にはストレイン
ゲージ1を形成する構成としてもよい。Further, it is desirable that the strain gauge is arranged in a portion where the maximum displacement width is obtained in the above-mentioned structure in which the projection and the slit are combined. For example, the formation location of each of the above-mentioned protrusions, slits and strain gauges,
The shape, the number, etc. may be appropriately selected depending on the purpose of use. For example, as an example thereof, in FIG. 4A, the projection 5 and the strain gauge 1 are formed on the distal end surface 3a of the tube 2, and the projection 5 is formed. The slit 4 is formed on the side surface of the tube immediately below the portion 5. In addition, as shown in FIG.
A structure in which a projection 5 is formed on the tip surface 3a of the tube 2, a slit 4 is formed on the tube side surface of the projection 5 immediately below, and a strain gauge 1 is formed on the tube side surface between the projection and the slit. May be
【0016】上記ストレインゲージ2の信号回路aは、
図5に示すように、Au 、アルミ等の配線材料を用い
て、ストレインゲージと全く同様の薄膜形成法によりチ
ューブ1の断面に回路を形成し、体内挿入用医療器具と
の断面部(図示せず)に導くようにすればよい。さら
に、上記ストレインゲージ1および信号回路aの表面
に、ゾル−ゲル法、スピンコート法または蒸着法などを
用いて保護膜を形成することができるが、曲面上に形成
するには蒸着法を用いることが好ましい。蒸着法で作製
する保護膜の材質としては、絶縁性および可とう性を有
するもの、例えばポリパラキシレン等があげられる。The signal circuit a of the strain gauge 2 is
As shown in FIG. 5, a wiring material such as Au or aluminum is used to form a circuit in the cross section of the tube 1 by the same thin film forming method as the strain gauge, and the cross section with the medical instrument for insertion into the body (not shown). It is better to guide to (No.). Further, a protective film can be formed on the surface of the strain gauge 1 and the signal circuit a by using a sol-gel method, a spin coating method, a vapor deposition method, or the like, but the vapor deposition method is used to form the protective film on a curved surface. It is preferable. Examples of the material of the protective film formed by the vapor deposition method include those having insulating properties and flexibility, such as polyparaxylene.
【0017】[0017]
【作用】上記構成によれば、触覚機能を具備する体内挿
入用医療器具に外力がかかると、触覚センサ部を構成す
るチューブの先端縁近傍に歪みが生じ、この歪みによっ
てストレインゲージの抵抗値が変化するようになる。し
たがって、上記ストレインゲージを測定計に接続してお
くと、医療器具の先端部が血管に接触する荷重(外力)
が、手元で計測できるようになり、挿入状態が数値で把
握できるようになる。また、チューブの先端面に突起部
を形成し、さらにこの突起部の直下方向のチューブの側
面にスリットを形成する構成とするので、外力が突起部
に集中してかかるようになり、微小の外力に対しても充
分に感知できる弾性構造となる。したがって、この構造
近傍にストレインゲージを配設するようにすれば、極め
て高感度な触覚センサを得ることができるようになる。According to the above structure, when an external force is applied to the medical instrument for insertion into the body having the tactile function, a strain is generated in the vicinity of the tip edge of the tube constituting the tactile sensor portion, and this strain causes the resistance value of the strain gauge to change. It will change. Therefore, if the strain gauge is connected to a measuring instrument, the load (external force) that the tip of the medical device contacts the blood vessel
However, it becomes possible to measure it by hand, and it becomes possible to grasp the insertion state numerically. In addition, since the projection is formed on the tip surface of the tube and the slit is formed on the side surface of the tube directly below this projection, external force is concentrated on the projection and a small external force is applied. It has an elastic structure that can be sufficiently sensed. Therefore, by disposing the strain gauge in the vicinity of this structure, it becomes possible to obtain a tactile sensor with extremely high sensitivity.
【0018】[0018]
【実施例】以下、本発明の実施例を示し、より具体的に
説明する。なお、本発明が、実施例に限定されないこと
はいうまでもない。 (触覚センサAの製造)内径φ1.5〜1.6mm、肉厚
100μmのポリウレタン製チューブをレーザ加工し、
その先端面に、高さ100μm、円周方向長さ100μ
mの突起部をレーザ加工で形成し、さらに該突起部から
50μm直下のチューブ側面に幅50μm、円周方向長
さ500μmのスリットを、それぞれ各々等間隔に6箇
所形成した。次にレーザCVD法によってCrの合金か
らなるストレインゲージを先端面の突起間の平面上に突
起部を挟むように6対、計12箇所形成した。 (触覚センサAの実装)呼び外径φ1.6mmのカテーテ
ルの先端部に、上記触覚センサAを装着し、融着法によ
って固定して、図5に示す構成の触覚機能を具備するカ
テーテルSを作製した。信号回路aはAuを用いて、上
記ストレインゲージと同じレーザCVD法によってカテ
ーテルのルーメンの1つに設けた9本のリード線との間
に形成した。EXAMPLES Hereinafter, examples of the present invention will be shown and described more specifically. Needless to say, the present invention is not limited to the examples. (Manufacture of tactile sensor A) A polyurethane tube having an inner diameter of 1.5 to 1.6 mm and a wall thickness of 100 μm is laser processed,
Height 100μm, circumferential length 100μ on the tip surface
m projections were formed by laser processing, and further, 6 slits each having a width of 50 μm and a circumferential length of 500 μm were formed at equal intervals on the side surface of the tube directly below the projections by 50 μm. Next, 12 pairs of strain gauges made of an alloy of Cr were formed by laser CVD on the plane between the protrusions on the tip end face so as to sandwich the protrusions. (Implementation of Tactile Sensor A) The above-mentioned tactile sensor A is attached to the distal end of a catheter having a nominal outer diameter of φ1.6 mm, and is fixed by a fusion method to form a catheter S having a tactile function shown in FIG. It was made. The signal circuit a was formed by using Au by using the same laser CVD method as that of the above-mentioned strain gauge and between the nine lead wires provided in one of the lumens of the catheter.
【0019】上記構成のカテーテルとすることによっ
て、6箇所の各突起部が、血管内壁に対しどの程度の荷
重が加わっているかを、手元で数値として知ることがで
きた。すなわち、カテーテル先端部の血管内壁への接触
状態が数値として判るようになった。By using the catheter having the above-mentioned structure, it was possible to know by hand how much load each of the six protrusions applied to the inner wall of the blood vessel. That is, the contact state of the catheter tip portion with the inner wall of the blood vessel has come to be understood as a numerical value.
【0020】なお、上記実施例では、体内挿入用医療器
具としてカテーテルを用いたが、これをファイバスコー
プにかえて、触覚センサを先端部に装着したファイバス
コープとして、細管内で使用することが可能となる。In the above embodiment, the catheter was used as the medical instrument for insertion into the body, but it can be used in a thin tube as a fiberscope with a tactile sensor attached to the tip instead of the fiberscope. Becomes
【0021】[0021]
【発明の効果】本発明の触覚機能を具備する体内挿入用
医療器具によれば、これを体内、例えば血管内に挿入す
るとき、該医療器具の先端部が血管に接触する荷重(外
力)が手元で計測できるようになり、挿入状態が数値で
把握できるようになる。したがって、血管内壁を突き破
ったり、損傷を与えることが防止され、安全に体内の目
的個所に挿入することが可能となる。また、チューブの
先端面に突起部を形成し、さらにこの突起部の直下方向
のチューブの側面にスリットを形成する構成とし、微小
の外力に対しても充分に感知できる弾性構造を形成する
とともに、この構造近傍にストレインゲージを配設する
ので、極めて高感度な触覚センサがえられ、体内挿入用
医療器具を、より安全に体内の目的個所に挿入すること
が可能となる。According to the medical instrument for insertion into the body having the tactile function of the present invention, when the medical instrument is inserted into the body such as a blood vessel, the load (external force) with which the tip of the medical instrument contacts the blood vessel is applied. It becomes possible to measure at hand, and it becomes possible to grasp the insertion state numerically. Therefore, it is possible to prevent the inner wall of the blood vessel from being pierced or damaged, and it is possible to safely insert the blood vessel into the target site in the body. In addition, a projection is formed on the tip end surface of the tube, and a slit is formed on the side surface of the tube directly below the projection to form an elastic structure capable of sufficiently sensing even a small external force. Since the strain gauge is arranged in the vicinity of this structure, a tactile sensor having an extremely high sensitivity can be obtained, and the medical instrument for insertion into the body can be inserted into the target site in the body more safely.
【図1】本発明の一実施例を示す触覚機能を具備する体
内挿入用医療器具の斜視図である。FIG. 1 is a perspective view of a medical device for insertion into a body having a tactile function according to an embodiment of the present invention.
【図2】触覚センサ部に外力が加わった場合の動作を示
す斜視図である。FIG. 2 is a perspective view showing an operation when an external force is applied to the tactile sensor unit.
【図3】突起部およびスリットを設けた構成の触覚セン
サ部に外力が加わった場合の動作を示す部分斜視図であ
る。FIG. 3 is a partial perspective view showing an operation when an external force is applied to a tactile sensor unit having a configuration in which a protrusion and a slit are provided.
【図4】本発明の触覚センサ部の構成を示す部分拡大斜
視図である。FIG. 4 is a partially enlarged perspective view showing the configuration of the tactile sensor unit of the present invention.
【図5】本発明の触覚機能を具備する体内挿入用医療器
具におけるストレインゲージの回路接続構造を示す斜視
図である。FIG. 5 is a perspective view showing a circuit connection structure of a strain gauge in a medical instrument for insertion into a body having a tactile function of the present invention.
1 ストレインゲージ 2 チューブ 3 先端縁 A 触覚センサ部 B 体内挿入用医療器具 S 触覚機能を具備する体内挿入用医療器具 1 Strain gauge 2 Tube 3 Tip edge A Tactile sensor part B Medical device for internal insertion S Medical device for internal insertion with tactile function
───────────────────────────────────────────────────── フロントページの続き (72)発明者 遠山 修 兵庫県伊丹市池尻4丁目3番地 三菱電線 工業株式会社伊丹製作所内 (72)発明者 植田 益充 兵庫県伊丹市池尻4丁目3番地 三菱電線 工業株式会社伊丹製作所内 (72)発明者 山本 啓介 兵庫県伊丹市池尻4丁目3番地 三菱電線 工業株式会社伊丹製作所内 (72)発明者 伊藤 弘孝 兵庫県伊丹市池尻4丁目3番地 三菱電線 工業株式会社伊丹製作所内 (72)発明者 渡部 民重 兵庫県伊丹市池尻4丁目3番地 三菱電線 工業株式会社伊丹製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Osamu Toyama 4-3 Ikejiri, Itami City, Hyogo Prefecture Mitsubishi Cable Industries, Ltd. Itami Works (72) Inventor Masumi Ueda 4-chome Ikejiri, Itami City, Hyogo Mitsubishi Cable Industries, Ltd. Itami Works Co., Ltd. (72) Inventor Keisuke Yamamoto 4-3 Ikejiri, Itami City, Hyogo Prefecture Mitsubishi Cable Industries, Ltd. Itami Works (72) Inventor Hirotaka Ito 4-chome Ikejiri, Itami City, Hyogo Mitsubishi Cable Industries, Ltd. In Itami Works (72) Inventor Tamishige Watanabe 4-3 Ikejiri, Itami City, Hyogo Prefecture Mitsubishi Cable Industries Itami Works Co., Ltd.
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP43AJPH06190050A (en) | 1992-12-22 | 1992-12-22 | Medical apparatus for intracorporeal insertion having tactile function |
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP43AJPH06190050A (en) | 1992-12-22 | 1992-12-22 | Medical apparatus for intracorporeal insertion having tactile function |
Publication Number | Publication Date |
---|---|
JPH06190050Atrue JPH06190050A (en) | 1994-07-12 |
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP43APendingJPH06190050A (en) | 1992-12-22 | 1992-12-22 | Medical apparatus for intracorporeal insertion having tactile function |
Country | Link |
---|---|
JP (1) | JPH06190050A (en) |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19644856A1 (en)* | 1995-11-01 | 1997-05-15 | Tokai Rika Co Ltd | Catheter |
US6221023B1 (en) | 1995-12-01 | 2001-04-24 | Kabushiki Kaisha Tokai Rika Denki Seisakusho | Sensor for intra-corporeal medical device and a method of manufacture |
US6881551B2 (en) | 1991-03-04 | 2005-04-19 | Therasense, Inc. | Subcutaneous glucose electrode |
WO2005084542A1 (en)* | 2004-03-04 | 2005-09-15 | Agency For Science, Technology And Research | Apparatus for medical and/or simulation procedures |
US6973706B2 (en) | 1998-03-04 | 2005-12-13 | Therasense, Inc. | Method of making a transcutaneous electrochemical sensor |
US7003340B2 (en) | 1998-03-04 | 2006-02-21 | Abbott Diabetes Care Inc. | Electrochemical analyte sensor |
DE102006030407A1 (en)* | 2006-06-29 | 2008-01-03 | Werthschützky, Roland, Prof. Dr.-Ing. | Force sensor with asymmetric basic body for detecting at least one force component |
WO2008003307A2 (en) | 2006-07-06 | 2008-01-10 | Werthschuetzky Roland | Force sensor for the detection of a force vector |
US7381184B2 (en) | 2002-11-05 | 2008-06-03 | Abbott Diabetes Care Inc. | Sensor inserter assembly |
WO2007143633A3 (en)* | 2006-06-05 | 2008-09-04 | Physical Logic Ag | Catheter with pressure sensor and guidance system |
US7620438B2 (en) | 2006-03-31 | 2009-11-17 | Abbott Diabetes Care Inc. | Method and system for powering an electronic device |
CN103041495A (en)* | 2011-10-12 | 2013-04-17 | 上海凯旦医疗科技有限公司 | Endovascular interventional catheter tactile probe |
US8840553B2 (en) | 1998-04-30 | 2014-09-23 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8915850B2 (en) | 2005-11-01 | 2014-12-23 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8920319B2 (en) | 2005-11-01 | 2014-12-30 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8974386B2 (en) | 1998-04-30 | 2015-03-10 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9011332B2 (en) | 2001-01-02 | 2015-04-21 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9039975B2 (en) | 2006-03-31 | 2015-05-26 | Abbott Diabetes Care Inc. | Analyte monitoring devices and methods therefor |
US9066695B2 (en) | 1998-04-30 | 2015-06-30 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9078607B2 (en) | 2005-11-01 | 2015-07-14 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9095290B2 (en) | 2007-03-01 | 2015-08-04 | Abbott Diabetes Care Inc. | Method and apparatus for providing rolling data in communication systems |
US9323898B2 (en) | 2005-11-04 | 2016-04-26 | Abbott Diabetes Care Inc. | Method and system for providing basal profile modification in analyte monitoring and management systems |
US9962091B2 (en) | 2002-12-31 | 2018-05-08 | Abbott Diabetes Care Inc. | Continuous glucose monitoring system and methods of use |
US10039881B2 (en) | 2002-12-31 | 2018-08-07 | Abbott Diabetes Care Inc. | Method and system for providing data communication in continuous glucose monitoring and management system |
US10478108B2 (en) | 1998-04-30 | 2019-11-19 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
USD902408S1 (en) | 2003-11-05 | 2020-11-17 | Abbott Diabetes Care Inc. | Analyte sensor control unit |
JP2021029594A (en)* | 2019-08-23 | 2021-03-01 | 国立大学法人弘前大学 | Force detector, force detection block, production method of force detector and production method of force detection block |
US11045147B2 (en) | 2009-08-31 | 2021-06-29 | Abbott Diabetes Care Inc. | Analyte signal processing device and methods |
US12239463B2 (en) | 2020-08-31 | 2025-03-04 | Abbott Diabetes Care Inc. | Systems, devices, and methods for analyte sensor insertion |
US12268496B2 (en) | 2017-01-23 | 2025-04-08 | Abbott Diabetes Care Inc. | Systems, devices and methods for analyte sensor insertion |
US12274548B2 (en) | 2022-09-02 | 2025-04-15 | Abbott Diabetes Care Inc. | Sensor insertion devices and methods of use |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6881551B2 (en) | 1991-03-04 | 2005-04-19 | Therasense, Inc. | Subcutaneous glucose electrode |
US7462264B2 (en) | 1991-03-04 | 2008-12-09 | Abbott Diabetes Care Inc. | Subcutaneous glucose electrode |
DE19644856A1 (en)* | 1995-11-01 | 1997-05-15 | Tokai Rika Co Ltd | Catheter |
US5836886A (en)* | 1995-11-01 | 1998-11-17 | Kabushiki Kaisha Tokai Rika Denki Seisakusho | Catheter having a sensor |
DE19644856C2 (en)* | 1995-11-01 | 2001-07-05 | Tokai Rika Co Ltd | Catheter with a sensor |
US6221023B1 (en) | 1995-12-01 | 2001-04-24 | Kabushiki Kaisha Tokai Rika Denki Seisakusho | Sensor for intra-corporeal medical device and a method of manufacture |
US6973706B2 (en) | 1998-03-04 | 2005-12-13 | Therasense, Inc. | Method of making a transcutaneous electrochemical sensor |
US7003340B2 (en) | 1998-03-04 | 2006-02-21 | Abbott Diabetes Care Inc. | Electrochemical analyte sensor |
US8880137B2 (en) | 1998-04-30 | 2014-11-04 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9066697B2 (en) | 1998-04-30 | 2015-06-30 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9011331B2 (en) | 1998-04-30 | 2015-04-21 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9014773B2 (en) | 1998-04-30 | 2015-04-21 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US10478108B2 (en) | 1998-04-30 | 2019-11-19 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8974386B2 (en) | 1998-04-30 | 2015-03-10 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9042953B2 (en) | 1998-04-30 | 2015-05-26 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9066694B2 (en) | 1998-04-30 | 2015-06-30 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9066695B2 (en) | 1998-04-30 | 2015-06-30 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8840553B2 (en) | 1998-04-30 | 2014-09-23 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9072477B2 (en) | 1998-04-30 | 2015-07-07 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9011332B2 (en) | 2001-01-02 | 2015-04-21 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9498159B2 (en) | 2001-01-02 | 2016-11-22 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9610034B2 (en) | 2001-01-02 | 2017-04-04 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US10973443B2 (en) | 2002-11-05 | 2021-04-13 | Abbott Diabetes Care Inc. | Sensor inserter assembly |
US9980670B2 (en) | 2002-11-05 | 2018-05-29 | Abbott Diabetes Care Inc. | Sensor inserter assembly |
US7582059B2 (en) | 2002-11-05 | 2009-09-01 | Abbott Diabetes Care Inc. | Sensor inserter methods of use |
US11141084B2 (en) | 2002-11-05 | 2021-10-12 | Abbott Diabetes Care Inc. | Sensor inserter assembly |
US7381184B2 (en) | 2002-11-05 | 2008-06-03 | Abbott Diabetes Care Inc. | Sensor inserter assembly |
US11116430B2 (en) | 2002-11-05 | 2021-09-14 | Abbott Diabetes Care Inc. | Sensor inserter assembly |
US10750952B2 (en) | 2002-12-31 | 2020-08-25 | Abbott Diabetes Care Inc. | Continuous glucose monitoring system and methods of use |
US9962091B2 (en) | 2002-12-31 | 2018-05-08 | Abbott Diabetes Care Inc. | Continuous glucose monitoring system and methods of use |
US10039881B2 (en) | 2002-12-31 | 2018-08-07 | Abbott Diabetes Care Inc. | Method and system for providing data communication in continuous glucose monitoring and management system |
USD914881S1 (en) | 2003-11-05 | 2021-03-30 | Abbott Diabetes Care Inc. | Analyte sensor electronic mount |
USD902408S1 (en) | 2003-11-05 | 2020-11-17 | Abbott Diabetes Care Inc. | Analyte sensor control unit |
WO2005084542A1 (en)* | 2004-03-04 | 2005-09-15 | Agency For Science, Technology And Research | Apparatus for medical and/or simulation procedures |
US11103165B2 (en) | 2005-11-01 | 2021-08-31 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US11363975B2 (en) | 2005-11-01 | 2022-06-21 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US11911151B1 (en) | 2005-11-01 | 2024-02-27 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US10231654B2 (en) | 2005-11-01 | 2019-03-19 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9326716B2 (en) | 2005-11-01 | 2016-05-03 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8915850B2 (en) | 2005-11-01 | 2014-12-23 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US11399748B2 (en) | 2005-11-01 | 2022-08-02 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US10201301B2 (en) | 2005-11-01 | 2019-02-12 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US11272867B2 (en) | 2005-11-01 | 2022-03-15 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US10952652B2 (en) | 2005-11-01 | 2021-03-23 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9078607B2 (en) | 2005-11-01 | 2015-07-14 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8920319B2 (en) | 2005-11-01 | 2014-12-30 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9669162B2 (en) | 2005-11-04 | 2017-06-06 | Abbott Diabetes Care Inc. | Method and system for providing basal profile modification in analyte monitoring and management systems |
US11538580B2 (en) | 2005-11-04 | 2022-12-27 | Abbott Diabetes Care Inc. | Method and system for providing basal profile modification in analyte monitoring and management systems |
US9323898B2 (en) | 2005-11-04 | 2016-04-26 | Abbott Diabetes Care Inc. | Method and system for providing basal profile modification in analyte monitoring and management systems |
US8933664B2 (en) | 2006-03-31 | 2015-01-13 | Abbott Diabetes Care Inc. | Method and system for powering an electronic device |
US9743863B2 (en) | 2006-03-31 | 2017-08-29 | Abbott Diabetes Care Inc. | Method and system for powering an electronic device |
US9380971B2 (en) | 2006-03-31 | 2016-07-05 | Abbott Diabetes Care Inc. | Method and system for powering an electronic device |
US7620438B2 (en) | 2006-03-31 | 2009-11-17 | Abbott Diabetes Care Inc. | Method and system for powering an electronic device |
US9625413B2 (en) | 2006-03-31 | 2017-04-18 | Abbott Diabetes Care Inc. | Analyte monitoring devices and methods therefor |
US9039975B2 (en) | 2006-03-31 | 2015-05-26 | Abbott Diabetes Care Inc. | Analyte monitoring devices and methods therefor |
WO2007143633A3 (en)* | 2006-06-05 | 2008-09-04 | Physical Logic Ag | Catheter with pressure sensor and guidance system |
US8286510B2 (en) | 2006-06-29 | 2012-10-16 | Thorsten Meiss | Force sensor and method for detecting at least one force component |
JP2009541752A (en)* | 2006-06-29 | 2009-11-26 | ヴェルトシュツキー,ローラント | Force sensor and method for detecting at least one force component |
DE102006030407A1 (en)* | 2006-06-29 | 2008-01-03 | Werthschützky, Roland, Prof. Dr.-Ing. | Force sensor with asymmetric basic body for detecting at least one force component |
WO2008003307A2 (en) | 2006-07-06 | 2008-01-10 | Werthschuetzky Roland | Force sensor for the detection of a force vector |
JP2009543029A (en)* | 2006-07-06 | 2009-12-03 | ヴェルトシュツキー,ローラント | Force sensor for detecting force vector |
DE102006031635A1 (en)* | 2006-07-06 | 2008-01-17 | Werthschützky, Roland, Prof. Dr.-Ing. | Minaturisable force sensor for detecting a force vector |
US9801545B2 (en) | 2007-03-01 | 2017-10-31 | Abbott Diabetes Care Inc. | Method and apparatus for providing rolling data in communication systems |
US9095290B2 (en) | 2007-03-01 | 2015-08-04 | Abbott Diabetes Care Inc. | Method and apparatus for providing rolling data in communication systems |
US11045147B2 (en) | 2009-08-31 | 2021-06-29 | Abbott Diabetes Care Inc. | Analyte signal processing device and methods |
CN103041495A (en)* | 2011-10-12 | 2013-04-17 | 上海凯旦医疗科技有限公司 | Endovascular interventional catheter tactile probe |
US12268496B2 (en) | 2017-01-23 | 2025-04-08 | Abbott Diabetes Care Inc. | Systems, devices and methods for analyte sensor insertion |
JP2021029594A (en)* | 2019-08-23 | 2021-03-01 | 国立大学法人弘前大学 | Force detector, force detection block, production method of force detector and production method of force detection block |
US12239463B2 (en) | 2020-08-31 | 2025-03-04 | Abbott Diabetes Care Inc. | Systems, devices, and methods for analyte sensor insertion |
US12274548B2 (en) | 2022-09-02 | 2025-04-15 | Abbott Diabetes Care Inc. | Sensor insertion devices and methods of use |
Publication | Publication Date | Title |
---|---|---|
JPH06190050A (en) | Medical apparatus for intracorporeal insertion having tactile function | |
US6106476A (en) | Ultra miniature pressure sensor and guide wire using the same and method | |
US6221023B1 (en) | Sensor for intra-corporeal medical device and a method of manufacture | |
US8852130B2 (en) | Catheter with strain gauge sensor | |
JP6619845B2 (en) | Sensor element, sensor wire, and method of manufacturing sensor element | |
US9044202B2 (en) | Sensor guide wire | |
JP6290250B2 (en) | Pressure sensing endovascular device, system, and method | |
JP3766128B2 (en) | Sensor for body-insertable medical device and method for manufacturing the same | |
JPH07204278A (en) | Tactile sensor and body inserting medical instrument having the sensor | |
JPH06142031A (en) | Medical care tool to be inserted in body and provided with detecting function for amount of self deformation and tactile sense function | |
CN115414572B (en) | Manual feedback device of guide wire and interventional operation robot | |
JPH09135906A (en) | Sensor for intra-corporeal medical instrument | |
JPH07185008A (en) | Touch sensor for medical tool to be inserted into human body and medical tool therewith | |
JPH06209900A (en) | Tactile sense detecting mechanism | |
EP3656294A1 (en) | Capacitive pressure sensor for intraluminal guidewire or catheter | |
WO2009096631A1 (en) | Tuber diagnosis device |