【0001】[0001]
【産業上の利用分野】本発明は記憶装置に係り、特にト
ンネル電流以外の物理量を検出信号とした走査型プロー
ブ顕微鏡を用いて情報を記録再生する記憶装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a storage device, and more particularly to a storage device for recording / reproducing information using a scanning probe microscope using a physical quantity other than a tunnel current as a detection signal.
【0002】[0002]
【従来の技術】現在、情報記憶装置として磁気ディスク
及び光ディスクが広く普及している。しかし、ヘッド媒
体間のスペーシングや検出出力の実用限界と光の回折限
界等から、その記録密度は何れも100Gb/in2が限界と考
えられ、現在の推移で高密度化が進むと、21世紀初頭に
は記録限界に達すると予想される。従って、21世紀にむ
けてTb/in2級の新しい情報記録技術が必要とされてい
る。2. Description of the Related Art Currently, magnetic disks and optical disks are widely used as information storage devices. However, due to the spacing between head media and the practical limit of detection output and the diffraction limit of light, it is considered that the recording density is 100 Gb / in2 in both cases. It is expected that the record limit will be reached at the beginning of the century. Therefore, a new information recording technology of Tb / in2 level is needed for the 21st century.
【0003】このような状況の下、走査型プローブ顕微
鏡(Scanning Probe Microscope:SPM)を応用した記録技
術に注目が集められている。SPMを応用した記録技術と
しては走査型トンネル顕微鏡(Scanning Tunneling Micr
oscope:STM)によるものが主である。STMに関する技術は
米国特許第4,343,993号に記載がある。Under such circumstances, attention has been focused on a recording technique to which a scanning probe microscope (SPM) is applied. As a recording technology that applies SPM, a scanning tunneling microscope (Scanning Tunneling Micr
Mostly by oscope: STM). Techniques for STM are described in US Pat. No. 4,343,993.
【0004】STMを応用した記録技術の一例が特開昭61-
80536号公報に示されている。それは、原子の吸着、解
離現象を利用したものである。記録方法としては、電子
顕微鏡内に採用されるような従来の電子光学装置により
発生される電子ビームやSTMの探針からのトンネル電流
を利用して原子を結晶表面に吸着あるいは吸着原子を結
晶表面から解離させ、吸着原子の有無を記録情報の"
1"、"0"に対応させる。読出し方法としては、STMにより
吸着原子の有無を読み取る。An example of a recording technique applying STM is disclosed in Japanese Patent Laid-Open No. 61-
No. 80536. It utilizes the adsorption and dissociation phenomena of atoms. As a recording method, atoms are adsorbed on the crystal surface or the adsorbed atoms are adsorbed on the crystal surface by using an electron beam generated by a conventional electron optical device used in an electron microscope or a tunnel current from an STM probe. And dissociate from the
Corresponds to 1 "and" 0. "As a read method, the presence or absence of adsorbed atoms is read by STM.
【0005】[0005]
【発明が解決しようとする課題】前記従来技術では、SP
Mを応用した記録技術はSTMを用いたものに限られてい
る、低温や高真空等の外部からの影響が少ない環境下で
清浄な試料表面を必要とする、記録媒体として絶縁体を
使用することができず媒体の選択が制限される等の問題
がある。In the above-mentioned prior art, the SP
The recording technology applying M is limited to that using STM, which requires a clean sample surface in an environment where there is little external influence such as low temperature and high vacuum. Uses an insulator as a recording medium. However, there is a problem that the selection of the medium cannot be performed and the selection is limited.
【0006】本発明の目的は、大気中且つ常温で安定動
作する記録単位がnmオーダの情報記憶装置およびその記
録媒体を提供することにある。An object of the present invention is to provide an information storage device having a recording unit of the order of nm and a recording medium for the information storage device, which operates stably in the air and at room temperature.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
に、本発明は以下の手段を有する。In order to achieve the above object, the present invention has the following means.
【0008】トンネル電流以外の物理量を検出信号とす
るSPM、例えば原子間力顕微鏡 (Atomic Force Micro
scope:AFM)の絶縁性プローブに導電性を持たせるため、
プローブを多層構造とし最表面に導電層を設け、導電性
基板上に絶縁膜を形成してなる情報記録媒体上を記録信
号電圧が印加された前記プローブを相対的に走査させ、
記録信号電圧に対応した絶縁破壊領域を前記絶縁膜に形
成することにより情報の記録を行い、この記録媒体上を
前記プローブを相対的に走査させ前記絶縁膜の絶縁状態
を前記プローブと前記導電性基板間の電流変化として読
み出すことを特徴とする。SPM using a physical quantity other than tunnel current as a detection signal, for example, an atomic force microscope (Atomic Force Micro)
To make the insulating probe (scope: AFM) conductive,
Providing a conductive layer on the outermost surface of the probe and a multilayer structure, relatively scan the probe to which a recording signal voltage is applied on an information recording medium formed of an insulating film on a conductive substrate,
Information is recorded by forming a dielectric breakdown region corresponding to a recording signal voltage in the insulating film, and the probe is relatively scanned over the recording medium to make the insulating state of the insulating film conductive with the probe. It is characterized in that it is read out as a current change between the substrates.
【0009】[0009]
【作用】トンネル電流以外の物理量を検出信号とするSP
Mのプローブに導電性を持たせることはプローブ先端に
電荷を供給するように作用する。[Operation] SP that uses physical quantity other than tunnel current as detection signal
Making the M probe electrically conductive acts to supply an electric charge to the probe tip.
【0010】プローブ媒体間に電圧を印加することは媒
体表面に形成された絶縁膜に絶縁破壊を起こさせるよう
に作用する。Applying a voltage between the probe media acts to cause a dielectric breakdown in the insulating film formed on the media surface.
【0011】媒体上の絶縁破壊の生じている領域と生じ
ていない領域は記録単位の"1"、"0"に対応するように作
用する。Areas on the medium where dielectric breakdown has occurred and areas where no dielectric breakdown has occurred act so as to correspond to the recording units "1" and "0".
【0012】以上の作用により、記録単位がnmオーダ
の、大気中常温で安定動作する記録技術が提供できる。With the above operation, it is possible to provide a recording technique whose recording unit is on the order of nm and which operates stably at room temperature in the atmosphere.
【0013】[0013]
【実施例】以下に、本発明を実施例により詳細に説明す
る。EXAMPLES The present invention will be described in detail below with reference to examples.
【0014】実施例 1 最初に本発明を構成する記録媒体の特徴について説明す
る。図1にそのような記録媒体の概略図を示す。導電性
基板101はAu、Al等の導体やSi、Ge等の半導体、また単
体ではなくて化合物でもよく、基板101上に形成される
絶縁膜102の表面が極めて平坦で、また安定に保たれる
材料がよい。絶縁膜102は導電性基板101への絶縁性をあ
る程度保ち、またその絶縁性は膜に沿って均一である必
要があり、膜表面に配置された電極に電圧を印加するこ
とにより容易に絶縁的破壊を起こさせることができる材
料がよい。例えば、Si基板表面に熱処理により酸化膜Si
O2を形成させることが考えられる。絶縁膜SiO2表面の平
坦性は酸化温度により制御することができる。またその
膜厚は酸化温度と酸化時間により制御することができ
る。Example 1 First, the features of the recording medium constituting the present invention will be described. FIG. 1 shows a schematic diagram of such a recording medium. The conductive substrate 101 may be a conductor such as Au or Al, a semiconductor such as Si or Ge, or a compound instead of a single substance, and the surface of the insulating film 102 formed on the substrate 101 is extremely flat and kept stable. The materials used are good. The insulating film 102 needs to maintain the insulating property with respect to the conductive substrate 101 to some extent, and its insulating property needs to be uniform along the film, and can be easily insulated by applying a voltage to an electrode arranged on the film surface. A material that can cause destruction is preferable. For example, oxide film Si is formed by heat treatment on the surface of Si substrate.
It is possible to form O2 . The flatness of the surface of the insulating film SiO2 can be controlled by the oxidation temperature. The film thickness can be controlled by the oxidation temperature and the oxidation time.
【0015】実施例 2 図2はSPMの一つであるAFMを用いた記憶装置の概略図で
ある。AFMの技術は、フィジカル レビュー レターズ (P
hysical Review Letters) 第56巻 (1986年)第930頁に示
されている。プローブはカンチレバー3の先端に設けら
れた探針2である。探針2の先端原子と記録媒体1表面原
子との間に働く力を、カンチレバー3の背面から反射さ
れるレーザ光の変位をポジションセンサ7で感知するこ
とにより検出し、カンチレバー3のそりが一定に保たれ
る様に記録媒体1の位置が制御され(定斥力制御)、記録
媒体1の動きから表面像を得る。AFMに記録機能を付加す
るために、プローブに導電性を持たせ、探針2と記録媒
体1の間に印加し得る電圧印加装置12と探針2と記録媒体
1の間の電流を検出するための電流検出装置13を備え
る。Embodiment 2 FIG. 2 is a schematic diagram of a storage device using an AFM which is one of SPMs. AFM technology is based on the Physical Review Letters (P
hysical Review Letters) Volume 56 (1986) p. 930. The probe is the probe 2 provided at the tip of the cantilever 3. The force acting between the tip atom of the probe 2 and the surface atom of the recording medium 1 is detected by detecting the displacement of the laser beam reflected from the back surface of the cantilever 3 by the position sensor 7, and the warp of the cantilever 3 is constant. The position of the recording medium 1 is controlled so as to be maintained at (repulsive force control), and a surface image is obtained from the movement of the recording medium 1. In order to add a recording function to the AFM, the probe has conductivity, and a voltage applying device 12 capable of applying between the probe 2 and the recording medium 1, the probe 2 and the recording medium.
A current detecting device 13 for detecting the current between 1 is provided.
【0016】プローブは半導体プロセスで作製され、カ
ンチレバー3の長さは数100μmあり、探針2の先端曲率半
径は集束イオンビーム加工を行うことにより数100nmに
なる。プローブは通常SiO2、Si3N4等の絶縁性材料から
成るので、Au、Ga等の導電性材料でコーティングするこ
とによりプローブ表面に導体層3を設け、探針2先端に電
荷を供給する。コーティングを厚くすると探針先端の曲
率半径が大きくなり記録サイズが大きくなるので、コー
ティングの厚さは導電性を持ち且つ記録サイズが大きく
ならない程度がよい。Auをコーティングする場合は50nm
程度あればよい。The probe is manufactured by a semiconductor process, the length of the cantilever 3 is several 100 μm, and the radius of curvature of the tip of the probe 2 is several 100 nm by performing focused ion beam processing. Since the probe is usually made of an insulating material such as SiO2 and Si3 N4 , the conductor layer 3 is provided on the probe surface by coating with a conductive material such as Au and Ga, and the electric charge is supplied to the tip of the probe 2. . The thicker the coating, the larger the radius of curvature of the tip of the probe and the larger the recording size. Therefore, the thickness of the coating is preferably conductive and does not increase the recording size. 50 nm when coating Au
It only needs to be high.
【0017】実施例 3 図3に本発明の記録原理を示す。記録媒体1とその表面に
接した探針2の間に電圧を印加することにより、記録媒
体1表面に形成された絶縁膜102にnmオーダの領域にわた
り絶縁破壊を起こさせることができる。絶縁破壊に必要
な電圧は、絶縁膜102の膜厚が薄い程低くすることがで
きる。絶縁破壊領域103と絶縁領域を記録単位の"1"、"
0"に対応させることによりnmオーダの記録が可能とな
る。また再生は、記録媒体1とその表面に接した探針2の
間の電流変化を検出することで行うことができる。この
場合、記録媒体1とその表面に接した探針2の間に印加す
るバイアス電圧は記録の場合に印加する電圧よりも低い
ものでよい。Embodiment 3 FIG. 3 shows the recording principle of the present invention. By applying a voltage between the recording medium 1 and the probe 2 in contact with the surface of the recording medium 1, it is possible to cause dielectric breakdown in the insulating film 102 formed on the surface of the recording medium 1 over a region of nm order. The voltage required for dielectric breakdown can be lowered as the thickness of the insulating film 102 is smaller. The dielectric breakdown area 103 and the insulation area are recorded unit "1", "
Recording on the order of nm becomes possible by making it correspond to 0 ". Further, reproduction can be performed by detecting a current change between the recording medium 1 and the probe 2 in contact with the surface. In this case, The bias voltage applied between the recording medium 1 and the probe 2 in contact with its surface may be lower than the voltage applied in the case of recording.
【0018】[0018]
【発明の効果】本発明によれば、記録単位がnmオーダの
高密度記録、大気中常温で高速且つ安定な記録を実現す
ることができる。According to the present invention, it is possible to realize high-density recording with a recording unit of the order of nm and high-speed and stable recording at atmospheric temperature in the atmosphere.
【図1】本発明を構成する記録媒体を表す断面図であ
る。FIG. 1 is a cross-sectional view showing a recording medium that constitutes the present invention.
【図2】本発明によるAFMを用いた記憶装置を表す構成
概略図である。FIG. 2 is a schematic configuration diagram showing a storage device using an AFM according to the present invention.
【図3】本発明の記録原理を表す概略図である。FIG. 3 is a schematic diagram showing a recording principle of the present invention.
1…記録媒体、101…導電性基板、102…絶縁膜、103…絶
縁破壊領域、2…探針、3…カンチレバー、4…導電層、5
…XYZ駆動装置、6…半導体レーザ、7…ポジションセン
サ、8…変位検出回路、9…サーボ回路、10…XY駆動制御
装置、11…表示装置、12…加工電圧印加装置、13…電流
検出装置。1 ... Recording medium, 101 ... Conductive substrate, 102 ... Insulating film, 103 ... Dielectric breakdown region, 2 ... Probe, 3 ... Cantilever, 4 ... Conductive layer, 5
... XYZ drive device, 6 ... Semiconductor laser, 7 ... Position sensor, 8 ... Displacement detection circuit, 9 ... Servo circuit, 10 ... XY drive control device, 11 ... Display device, 12 ... Machining voltage application device, 13 ... Current detection device .
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP33412492AJPH06180870A (en) | 1992-12-15 | 1992-12-15 | Storage device |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP33412492AJPH06180870A (en) | 1992-12-15 | 1992-12-15 | Storage device |
| Publication Number | Publication Date |
|---|---|
| JPH06180870Atrue JPH06180870A (en) | 1994-06-28 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP33412492APendingJPH06180870A (en) | 1992-12-15 | 1992-12-15 | Storage device |
| Country | Link |
|---|---|
| JP (1) | JPH06180870A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0739004A1 (en)* | 1995-04-21 | 1996-10-23 | Hewlett-Packard Company | High capacity recording device having high density recording media |
| JP2002357529A (en)* | 2001-05-31 | 2002-12-13 | Olympus Optical Co Ltd | Spm cantilever |
| JP2012042213A (en)* | 2010-08-12 | 2012-03-01 | Fuji Electric Co Ltd | Film thickness evaluation method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0739004A1 (en)* | 1995-04-21 | 1996-10-23 | Hewlett-Packard Company | High capacity recording device having high density recording media |
| JP2002357529A (en)* | 2001-05-31 | 2002-12-13 | Olympus Optical Co Ltd | Spm cantilever |
| JP2012042213A (en)* | 2010-08-12 | 2012-03-01 | Fuji Electric Co Ltd | Film thickness evaluation method |
| Publication | Publication Date | Title |
|---|---|---|
| US5627815A (en) | Precision machining method precision machining apparatus and data storage apparatus using the same | |
| JP3148946B2 (en) | Probe driving mechanism, tunnel current detecting device using the mechanism, information processing device, piezoelectric actuator | |
| JP3060137B2 (en) | How to make a cantilever probe | |
| JP2884447B2 (en) | Cantilever probe, scanning tunneling microscope and information processing device using the same | |
| JP3073616B2 (en) | Information processing device with multiple probes | |
| JPH04339337A (en) | information processing equipment | |
| JPH05284765A (en) | Cantilever type displacement element, cantilever type probe using the same, scanning tunnel microscope and information processing apparatus using the cantilever type probe | |
| US5751686A (en) | Scanning probe tip covered with an electrical resistance to limit recording/reproducing current | |
| JPH03203839A (en) | Recording and reproducing device | |
| JPH0721598A (en) | Probe unit and information processing apparatus using the same | |
| JP3029143B2 (en) | Information playback method | |
| JPH06180870A (en) | Storage device | |
| JPH08297871A (en) | High-density recording medium and large-capacity recorder | |
| JPH01312753A (en) | Recording/playback device | |
| JP3305304B2 (en) | Probe driving mechanism and method of manufacturing piezoelectric actuator using the same | |
| JP2890268B2 (en) | Probe unit, information processing apparatus using the same, and scanning tunnel microscope | |
| JP3234722B2 (en) | Arc-shaped warped lever type actuator, method of driving the actuator, and information processing apparatus using information input / output probe | |
| JP2774506B2 (en) | High density information recording medium and recording / reproducing apparatus therefor | |
| JPH0540968A (en) | Recording and/or reproducing device | |
| JP2920915B2 (en) | Memory playback device | |
| JP3044417B2 (en) | Information processing device | |
| JP3217493B2 (en) | Information recording / reproducing device | |
| JP3118654B2 (en) | Information processing device and scanning tunneling electron microscope | |
| JPH08235653A (en) | Scanning probe recording / reproducing device | |
| JPH08249733A (en) | Information processing device |