Movatterモバイル変換


[0]ホーム

URL:


JPH06165926A - Polysulfone-based hollow fiber membrane and method for producing the same - Google Patents

Polysulfone-based hollow fiber membrane and method for producing the same

Info

Publication number
JPH06165926A
JPH06165926AJP12486393AJP12486393AJPH06165926AJP H06165926 AJPH06165926 AJP H06165926AJP 12486393 AJP12486393 AJP 12486393AJP 12486393 AJP12486393 AJP 12486393AJP H06165926 AJPH06165926 AJP H06165926A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
vinylpyrrolidone
polysulfone
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12486393A
Other languages
Japanese (ja)
Other versions
JP3117575B2 (en
Inventor
Ichiro Kawada
一郎 河田
Takehiko Okamoto
健彦 岡本
Hiroyuki Akasu
弘幸 赤須
Kensaku Komatsu
賢作 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co LtdfiledCriticalKuraray Co Ltd
Priority to JP05124863ApriorityCriticalpatent/JP3117575B2/en
Publication of JPH06165926ApublicationCriticalpatent/JPH06165926A/en
Application grantedgrantedCritical
Publication of JP3117575B2publicationCriticalpatent/JP3117575B2/en
Anticipated expirationlegal-statusCritical
Expired - Fee Relatedlegal-statusCriticalCurrent

Links

Landscapes

Abstract

Translated fromJapanese

(57)【要約】【目的】 生体適応性に優れ、かつ乾燥した後に透水性
の低下のない、特に血液処理に適したポリスルホン系中
空繊維膜とその製造方法を提供する。【構成】 ポリスルホン系ポリマーからなる、内表面に
緻密層をもつ非対称構造の中空繊維膜であって、該中空
繊維膜はポリグリコール類を1重量%以上、ビニルピロ
リドン系ポリマーを1〜8重量%含有し、かつ中空繊維
膜の内表面緻密層に存在するポリスルホン系ポリマーと
ビニルピロリドン系ポリマーの重量比率が90:10〜60:
40で、しかも中空繊維膜の内表面緻密層に存在するビニ
ルピロリドン系ポリマーの重量比率が外表面層に存在す
るビニルピロリドン系ポリマーの重量比率の少なくとも
1.1倍であるポリスルホン系中空繊維膜。
(57) [Summary] [Object] To provide a polysulfone-based hollow fiber membrane which is excellent in biocompatibility and has no decrease in water permeability after being dried, and which is particularly suitable for blood treatment, and a method for producing the same. A hollow fiber membrane having an asymmetric structure having a dense layer on the inner surface, which comprises a polysulfone-based polymer, wherein the hollow fiber membrane contains 1% by weight or more of polyglycols and 1 to 8% by weight of vinylpyrrolidone-based polymer. The weight ratio of the polysulfone-based polymer and the vinylpyrrolidone-based polymer contained and present in the inner surface dense layer of the hollow fiber membrane is 90:10 to 60:
40, and the weight ratio of the vinylpyrrolidone polymer present in the inner surface dense layer of the hollow fiber membrane is at least the weight ratio of the vinylpyrrolidone polymer present in the outer surface layer.
Polysulfone-based hollow fiber membrane that is 1.1 times larger.

Description

Translated fromJapanese
【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はポリスルホン系中空繊維
膜およびその製造方法、特に中空繊維膜の内表面の緻密
層にビニルピロリドン系ポリマーを多量に存在させた、
血液処理に適したポリスルホン系中空繊維膜およびその
製造方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a polysulfone-based hollow fiber membrane and a method for producing the same, and in particular, a large amount of vinylpyrrolidone-based polymer is present in the dense layer on the inner surface of the hollow fiber membrane.
The present invention relates to a polysulfone hollow fiber membrane suitable for blood treatment and a method for producing the same.

【0002】[0002]

【従来の技術】近年、選択透過性分離膜を用いた分離技
術である限外濾過法、逆浸透法、気体分離法等が各種の
分野において実用化されており、その多様な用途に各々
適する素材から作られた分離膜が上市されている。選択
透過性分離膜の素材としては、セルロース系、セルロー
スアセテート系、ポリアミド系、ポリアクリロニトリル
系、ポリビニルアルコール系、ポリメチルメタクリレー
ト系、ポリスルホン系、ポリオレフィン系などのポリマ
ーが使用されている。中でもポリスルホン系ポリマー
は、耐熱性、耐酸性、耐アルカリ性、耐酸化性などの物
理化学的性質が優れていることから、最近医療用、工業
用分離膜の素材として注目されている。
2. Description of the Related Art In recent years, separation techniques using selective permeable separation membranes such as ultrafiltration, reverse osmosis and gas separation have been put to practical use in various fields and are suitable for various uses. Separation membranes made from materials are on the market. As materials for the selectively permeable separation membrane, polymers such as cellulose-based, cellulose acetate-based, polyamide-based, polyacrylonitrile-based, polyvinyl alcohol-based, polymethylmethacrylate-based, polysulfone-based, and polyolefin-based polymers are used. Among them, polysulfone-based polymers have recently attracted attention as materials for medical and industrial separation membranes because of their excellent physicochemical properties such as heat resistance, acid resistance, alkali resistance, and oxidation resistance.

【0003】しかしながら、ポリスルホン系ポリマーは
疎水性の素材であるために、これを素材とした選択透過
性分離膜は親水性ポリマーを素材とした選択透過性分離
膜に比べて、水濡れ性が悪く、また乾燥すると性能が低
下する。そこでポリスルホン系ポリマーからなる選択透
過性分離膜に親水性を付与して水濡れ性を向上させるた
めの検討がなされ、その一つの方法として、ポリスルホ
ン系ポリマー等の疎水性ポリマーからなる分離膜に、ポ
リビニルピロリドン等の親水性ポリマーを含有させた選
択透過性分離膜とその製法が提案されている。
However, since the polysulfone-based polymer is a hydrophobic material, the selectively permeable separation membrane made of this material has poor water wettability as compared with the selectively permeable separation membrane made of a hydrophilic polymer. Also, if it is dried again, the performance will decrease. Therefore, investigations have been made to impart hydrophilicity to the selectively permeable separation membrane made of polysulfone polymer to improve water wettability, and as one method thereof, to a separation membrane made of a hydrophobic polymer such as polysulfone polymer, A permselective separation membrane containing a hydrophilic polymer such as polyvinylpyrrolidone and a method for producing the same have been proposed.

【0004】例えば特公平2-18695 号にはポリスルホ
ン、分子量10万以上のポリビニルピロリドンおよびそれ
らの共通溶媒からなる原液を紡糸して製造された、分離
膜内に分子量10万以上のポリビニルピロリドンを5〜70
重量%含有させ、かつ11%以上の吸水能力を有するポリ
スルホン系分離膜とその製法が開示されている。特開昭
61-93801号には疎水性ポリマー、親水性ポリマーおよび
それらの共通溶媒からなる低粘度の原液を紡糸すること
により製造された、親水性ポリマーを1〜10重量%含有
させ、かつ3〜10%の吸水能力を有する血液処理用の中
空繊維膜とその製法が開示されている。
For example, in Japanese Examined Patent Publication No. 2-18695, polyvinylpyrrolidone having a molecular weight of 100,000 or more is prepared in a separation membrane by spinning an undiluted solution containing polysulfone, polyvinylpyrrolidone having a molecular weight of 100,000 or more and their common solvent. ~ 70
A polysulfone-based separation membrane having a water content of 11% or more by weight and a method for producing the same are disclosed. JPA
No. 61-93801 contains 1 to 10% by weight of a hydrophilic polymer produced by spinning a low-viscosity stock solution of a hydrophobic polymer, a hydrophilic polymer and their common solvent, and 3 to 10%. The hollow fiber membrane for blood treatment having the water absorption capacity and its manufacturing method are disclosed.

【0005】特開昭61-238306 号、同63-97666号にはポ
リスルホン系ポリマー、親水性ポリマー、該ポリスルホ
ン系ポリマーに対して非溶媒もしくは膨潤剤なる添加剤
を加えた系を製膜原液として用いたポリスルホン系分離
膜の製造方法が開示されている。また特開昭63-97205
号、同63-97634号には、上記方法で製造されたポリスル
ホン系分離膜に放射線処理および/または熱処理を施す
ことによって親水性ポリマーを不溶化する方法が開示さ
れている。さらに特開昭63-99325号には上記製膜原液を
用いて紡糸する際に、水溶性ポリマーを少なくとも5重
量%含有する注入液を使用して内表面を滑らかとしたポ
リスルホン系中空糸膜が開示されている。
JP-A-61-238306 and JP-A-63-97666 use a polysulfone-based polymer, a hydrophilic polymer, and a system in which an additive which is a non-solvent or a swelling agent is added to the polysulfone-based polymer as a film-forming stock solution. A method for producing the polysulfone-based separation membrane used is disclosed. In addition, JP-A-63-97205
No. 63-97634 discloses a method of insolubilizing a hydrophilic polymer by subjecting a polysulfone-based separation membrane produced by the above method to radiation treatment and / or heat treatment. Further, JP-A-63-99325 discloses a polysulfone-based hollow fiber membrane having an inner surface smoothed by using an injection solution containing at least 5% by weight of a water-soluble polymer when spinning using the above-mentioned membrane-forming stock solution. It is disclosed.

【0006】特開昭61-238834 号、同63-99325号には、
上記製造法により得られた平均孔径が500 オングストロ
ーム以上の細孔を持ち、かつ親水性ポリマーを3〜30重
量%含有する透水量が1000 ml/m2・hr・mmHg以上である
ポリスルホン系多孔膜が開示されている。特開昭61-402
号、同62-38205号には、非対称構造を有する疎水性ポリ
マーからなる分離膜の緻密層側だけが、該疎水性ポリマ
ーと親水性ポリマーとの混合物からなる分離膜が開示さ
れている。
Japanese Patent Laid-Open Nos. 61-238834 and 63-99325 disclose that
A polysulfone-based porous membrane having pores with an average pore size of 500 angstroms or more obtained by the above production method and containing 3 to 30% by weight of a hydrophilic polymer and having a water permeability of 1000 ml / m2 · hr · mmHg or more. Is disclosed. JP 61-402
No. 62-38205 discloses a separation membrane in which only a dense layer side of a separation membrane made of a hydrophobic polymer having an asymmetric structure is made of a mixture of the hydrophobic polymer and the hydrophilic polymer.

【0007】[0007]

【発明が解決しようとする課題】上記ポリスルホン系分
離膜は膜内に親水性ポリマーを存在させることにより疎
水性のポリスルホン系分離膜に水濡れ性を付与し、かつ
透水性能を向上させ、しかも、蛋白吸着等による膜の汚
染が防止される等の優れた性能を有しているが、生体適
合性についての十分な検討がなされておらず、抗血栓性
の点で必ずしも満足されるものではない。
The above-mentioned polysulfone-based separation membrane imparts water wettability to the hydrophobic polysulfone-based separation membrane by allowing a hydrophilic polymer to exist in the membrane, and improves the water permeability, and It has excellent properties such as prevention of membrane contamination due to protein adsorption, etc., but it has not been sufficiently examined for biocompatibility and is not always satisfactory in terms of antithrombotic properties. .

【0008】例えば特開昭61-93801号には血液処理に適
したポリスルホン系中空繊維膜が開示されている。かか
る中空繊維膜について明細書中には補体活性を低く抑え
ることができる膜である旨の記載があるが、補体活性が
低く抑えられるという特性は中空繊維膜が疎水性である
ことによってのみ発現される性質である。すなわち特開
昭61-93801号に開示された中空繊維膜は血液が接触する
内表面が十分に親水化されておらず、依然として疎水性
が残っていることを示唆している。血液が接触する表面
に疎水性が残っていると血小板が付着しやすい状態にあ
る。いったん中空繊維膜の内表面に血小板が付着する
と、血小板の凝集、崩壊により血液凝固系を活性化する
物質が放出されて血液凝固が生じる。
For example, Japanese Patent Laid-Open No. 61-93801 discloses a polysulfone-based hollow fiber membrane suitable for blood treatment. Regarding the hollow fiber membrane, there is a description in the specification that it is a membrane that can suppress the complement activity to a low level, but the characteristic that the complement activity can be suppressed to a low level is only due to the fact that the hollow fiber membrane is hydrophobic. This is the property that is expressed. That is, it is suggested that the hollow fiber membrane disclosed in Japanese Patent Laid-Open No. 61-93801 is not sufficiently hydrophilized on the inner surface with which blood is in contact, and still has hydrophobicity. If hydrophobicity remains on the surface with which blood contacts, platelets are likely to adhere. Once platelets adhere to the inner surface of the hollow fiber membrane, a substance that activates the blood coagulation system is released by the aggregation and disintegration of platelets, and blood coagulation occurs.

【0009】また特公平2-18695 号に開示されたポリス
ルホン系分離膜は11%以上の吸水能を有しているので、
製膜後の保存中に空気中の水分を吸収する。そのため分
離膜保存のために特別な設備が必要となる。また吸水能
が高いことは、分離膜内のポリビニルピロリドンの存在
量が多いため、分離膜の機械的性能が低下し、透水性能
も低下する。
Further, since the polysulfone-based separation membrane disclosed in Japanese Patent Publication No. 2-18695 has a water absorption capacity of 11% or more,
Absorbs moisture in the air during storage after film formation. Therefore, special equipment is required to store the separation membrane. In addition, the high water absorption ability means that the amount of polyvinylpyrrolidone present in the separation membrane is large, so that the mechanical performance of the separation membrane is deteriorated and the water permeability is also deteriorated.

【0010】さらに特開昭61-238306 号、特開昭63-993
25号等で開示されたポリスルホン系分離膜の製法あるい
は特開昭61-238834 号等で開示されたポリスルホン系分
離膜は、製膜原液に親水性ポリマーを添加しているた
め、特開昭61-93801号に開示されたポリスルホン系中空
繊維膜と同様に分離膜の内表面を十分に親水化すること
ができない。またかかる製法は 500オングストローム以
上の大きな孔を有する分離膜の製法に適しているが、血
液透析用の分離膜の製法には適当でない。特開昭63-993
25号に開示されたポリスルホン系分離膜の製法は内部凝
固液中に水溶性ポリマーを含有させているが、このポリ
マーにより中空糸膜の内表面に平滑性を付与しているだ
けで中空繊維膜の内表面に水溶性ポリマーを残存させる
ものではない。
Further, JP-A-61-238306 and JP-A-63-993
No. 25, etc., or the polysulfone-based separation membrane disclosed in JP-A No. 61-238834, the hydrophilic polymer is added to the membrane-forming stock solution. As with the polysulfone-based hollow fiber membrane disclosed in Japanese Patent No. 93801, the inner surface of the separation membrane cannot be sufficiently hydrophilized. Further, such a manufacturing method is suitable for manufacturing a separation membrane having large pores of 500 angstroms or more, but is not suitable for manufacturing a separation membrane for hemodialysis. JP-A-63-993
In the method for producing a polysulfone-based separation membrane disclosed in No. 25, a water-soluble polymer is contained in the internal coagulation liquid, but this polymer only imparts smoothness to the inner surface of the hollow fiber membrane. It does not leave the water-soluble polymer on the inner surface.

【0011】特開昭61-402号、同62-38205号に開示され
た非対称構造を有するポリスルホン系分離膜は緻密層の
みが親水化されているだけなので、分離膜を乾燥すると
透水性が著しく低下する。また、親水化されていない部
分での蛋白吸着が生じる。
In the polysulfone-based separation membranes having an asymmetric structure disclosed in JP-A-61-402 and 62-38205, only the dense layer is hydrophilized, so that when the separation membrane is dried, the water permeability becomes remarkable. descend. In addition, protein adsorption occurs in the non-hydrophilized portion.

【0012】したがって、本発明の目的は従来のポリス
ルホン系分離膜の上記問題を解消した、生体適合性に優
れ、かつ乾燥した後に透水性の低下のない、特に血液処
理に適したポリスルホン系中空繊維膜を提供することに
ある。本発明の他の目的は、上記ポリスルホン系中空繊
維膜の製造方法を提供することにある。
Therefore, the object of the present invention is to solve the above-mentioned problems of the conventional polysulfone-based separation membrane, have excellent biocompatibility, and exhibit no decrease in water permeability after drying, and are particularly suitable for blood treatment. To provide a membrane. Another object of the present invention is to provide a method for producing the polysulfone-based hollow fiber membrane.

【0013】[0013]

【課題を解決するための手段】本発明者らは上記課題を
達成すべく従来のポリスルホン系中空糸膜とその製造方
法について検討したところ、意外にも中空糸膜にポリグ
リコール類とビニルピロリドン系ポリマーを含有させ、
かつ中空糸膜の内表面にビニルピロリドン系ポリマーを
多量に存在させると、ポリスルホン系ポリマーの優れた
物理化学的性能と、ビニルピロリドン系ポリマーの優れ
た親水性の両方の性能を併せ持つ、特に抗血栓性に優れ
た中空繊維膜が提供できることを見出し、更に検討した
結果本発明に到達したものである。
Means for Solving the Problems The present inventors have examined conventional polysulfone-based hollow fiber membranes and a method for producing the same in order to achieve the above-mentioned objects. As a result, surprisingly, polyglycols and vinylpyrrolidone-based hollow fiber membranes are used. Contains a polymer,
When a large amount of vinylpyrrolidone-based polymer is present on the inner surface of the hollow fiber membrane, it has both the excellent physicochemical performance of polysulfone-based polymer and the excellent hydrophilicity of vinylpyrrolidone-based polymer, especially antithrombosis. As a result of further finding out that a hollow fiber membrane having excellent properties can be provided, the present invention has been achieved.

【0014】すなわち、本発明のポリスルホン系中空繊
維膜は、ポリスルホン系ポリマーからなる、内表面に緻
密層をもつ非対称構造の中空繊維膜であって、該中空繊
維膜はポリスルホン系ポリマーを主成分とし、少なくと
も1重量%のポリグリコール類と1〜8重量%のビニル
ピロリドン系ポリマーを含有し、かつ中空繊維膜の内表
面の緻密層に存在するポリスルホン系ポリマーとビニル
ピロリドン系ポリマーの重量比率が90:10〜60:40で、
しかも中空繊維膜の内表面の上記緻密層に存在するビニ
ルピロリドン系ポリマーの重量比率が外表面層に存在す
るビニルピロリドン系ポリマーの重量比率の少なくとも
1.1倍であることを特徴とする。
That is, the polysulfone-based hollow fiber membrane of the present invention is a hollow fiber membrane made of polysulfone-based polymer and having an asymmetric structure having a dense layer on the inner surface. The hollow fiber membrane is mainly composed of polysulfone-based polymer. Containing at least 1% by weight of polyglycols and 1 to 8% by weight of vinylpyrrolidone-based polymer, and having a weight ratio of the polysulfone-based polymer and vinylpyrrolidone-based polymer present in the dense layer on the inner surface of the hollow fiber membrane is 90. : 10 to 60:40,
Moreover, the weight ratio of the vinylpyrrolidone polymer present in the dense layer on the inner surface of the hollow fiber membrane is at least the weight ratio of the vinylpyrrolidone polymer present in the outer surface layer.
It is characterized by being 1.1 times.

【0015】また本発明にかかるポリスルホン系中空繊
維膜の製造方法は、ポリスルホン系ポリマーと重量平均
分子量が 200〜 6000のポリグリコール類および重量平
均分子量が少なくとも10000のビニルピロリドン系ポリ
マーとを混合溶解した製膜原液を環状オリフィスより吐
出させる工程と、 0.1〜4重量%のビニルピロリドン系
ポリマーを含有する溶液を上記吐出原液の環状の流れの
内部に供給してポリスルホン系中空繊維膜を形成する工
程と、該製膜されたポリスルホン系中空繊維膜を、該ポ
リスルホン系ポリマーに対して貧溶媒作用を有する溶液
で処理して、中空繊維膜の内表面の緻密層に存在するビ
ニルピロリドン系ポリマーの重量比率が外表面層に存在
するビニルピロリドン系ポリマーの重量比率の少なくと
も 1.1倍となるように調整する工程とを含んでなること
を特徴とする。
In the method for producing a polysulfone hollow fiber membrane according to the present invention, a polysulfone polymer, a polyglycol having a weight average molecular weight of 200 to 6000, and a vinylpyrrolidone polymer having a weight average molecular weight of at least 10,000 are mixed and dissolved. Discharging a film-forming stock solution from an annular orifice; and supplying a solution containing 0.1 to 4% by weight of a vinylpyrrolidone-based polymer into the annular flow of the discharge stock solution to form a polysulfone-based hollow fiber membrane. The treated polysulfone-based hollow fiber membrane is treated with a solution having a poor solvent action for the polysulfone-based polymer, and the weight ratio of the vinylpyrrolidone-based polymer present in the dense layer on the inner surface of the hollow fiber membrane is Is at least 1.1 times the weight ratio of the vinylpyrrolidone-based polymer present in the outer surface layer. And a process including:

【0016】本発明のポリスルホン系中空繊維膜を製造
するために用いる原液は、基本的には、ポリスルホン系
ポリマー、重量平均分子量が 200〜6000のポリグリコー
ル類、重量平均分子量が少なくとも1万のビニルピロリ
ドン系ポリマーおよびそれらポリマーの共通溶媒からな
る4成分系で構成される。
The stock solution used for producing the polysulfone hollow fiber membrane of the present invention is basically a polysulfone polymer, polyglycols having a weight average molecular weight of 200 to 6000, vinyl having a weight average molecular weight of at least 10,000. It is composed of a four-component system consisting of a pyrrolidone-based polymer and a common solvent for these polymers.

【0017】ポリスルホン系ポリマーは、通常化学式
(1)または化学式(2)で示される繰り返し単位からなる
ものであるが、アルキル系やスルホン基等の官能基を含
んでもよい。
The polysulfone-based polymer is usually composed of a repeating unit represented by the chemical formula (1) or the chemical formula (2), but may contain an alkyl group or a functional group such as a sulfone group.

【0018】[0018]

【化1】[Chemical 1]

【0019】[0019]

【化2】[Chemical 2]

【0020】原液中に含まれるポリスルホン系ポリマー
の濃度は、目的用途に適合した特性を有する中空繊維膜
の製造を可能とする濃度範囲であればよく、通常10〜25
重量%、好ましくは15〜20重量%である。10重量%未満
では中空繊維膜としての十分な強度を得ることができ
ず、また実用的な中空繊維膜が形成できなくなる。また
25重量%を越えると貫通孔が減少し膜の透過性能や透析
性能の低下を引き起こすため実用的でない。
The concentration of the polysulfone-based polymer contained in the undiluted solution may be in the concentration range that allows the production of a hollow fiber membrane having properties suited to the intended use, and is usually 10 to 25.
%, Preferably 15-20% by weight. If it is less than 10% by weight, sufficient strength as a hollow fiber membrane cannot be obtained, and a practical hollow fiber membrane cannot be formed. Also
If it exceeds 25% by weight, the number of through-holes is reduced and the permeation performance and dialysis performance of the membrane are deteriorated, which is not practical.

【0021】ポリグリコール類は、ポリエチレングリコ
ール、ポリプロピレングリコール、これらの共重合体、
またはこれらのエステル、アミン、エーテル、アセター
ル誘導体で重量平均分子量が 200〜6000のポリマーが用
いられる。本発明では、ポリグリコール類を原液中に添
加するため次のような利点がある。まずポリグリコール
類の第1の作用は、ポリスルホンに対して貧溶媒の作用
があるので微孔形成剤として有効で、これを添加すると
ミクロ相分離効果が向上して空孔率や表面開孔率の高い
多孔性の膜が形成されやすくなり、優れた透過性能およ
び透析性能を有する分離膜を得ることができる。
Polyglycols include polyethylene glycol, polypropylene glycol, copolymers thereof,
Alternatively, a polymer having a weight average molecular weight of 200 to 6000, which is an ester, amine, ether or acetal derivative thereof, is used. The present invention has the following advantages because the polyglycols are added to the stock solution. First, the first action of polyglycols is effective as a micropore-forming agent because it acts as a poor solvent for polysulfone, and the addition of this improves the microphase separation effect and improves the porosity and surface porosity. It is easy to form a highly porous membrane, and a separation membrane having excellent permeation performance and dialysis performance can be obtained.

【0022】第2に微孔形成剤として通常用いられてい
る水、アルコール類、グリセリン、無機塩類等と比べて
原液の増粘効果があり、しかも添加量による粘度の急激
な変化がないので中空繊維膜を製造するために好適な粘
性を有する原液を容易に調製することができる。
Secondly, it has a thickening effect on the stock solution as compared with water, alcohols, glycerin, inorganic salts and the like which are usually used as a micropore-forming agent, and there is no rapid change in viscosity depending on the amount added, so that it is hollow. A stock solution having a suitable viscosity for producing a fiber membrane can be easily prepared.

【0023】第3に原液中にポリグリコール類を添加す
ると、後述するように膜内に残存させるビニルピロリド
ン系ポリマーの含有効率が向上する傾向が認められ、少
ない添加量でも効率よくビニルピロリドン系ポリマーを
中空繊維膜に含有させることができる。原液中にポリグ
リコール類を添加するとビニルピロリドン系ポリマーの
含有効率が向上する理由は不明であるが、ポリグリコー
ル類は他の微孔形成剤と比較して凝固の挙動が異なる、
あるいは分散剤的な役割を果たす等の理由が考えられ
る。いずれにてしてもビニルピロリドン系ポリマーが少
ない添加量でも効率よく該ビニルピロリドン系ポリマー
を中空繊維膜中に含有させることができるので、コスト
面やビニルピロリドン系ポリマーの含有比率調整の点で
有利である。また、ビニルピロリドン系ポリマーの添加
量を少なくできるので、原液粘度を紡糸が安定な範囲に
抑えやすい。
Thirdly, when polyglycols are added to the stock solution, there is a tendency that the content efficiency of the vinylpyrrolidone-based polymer that remains in the film is improved as described later, and the vinylpyrrolidone-based polymer can be efficiently added even with a small addition amount. Can be contained in the hollow fiber membrane. It is unclear why the addition efficiency of the vinylpyrrolidone-based polymer is improved by adding polyglycols to the stock solution, but polyglycols have different coagulation behaviors compared to other micropore-forming agents,
Alternatively, the reason may be that it plays a role as a dispersant. In any case, since the vinylpyrrolidone-based polymer can be efficiently contained in the hollow fiber membrane even with a small addition amount of the vinylpyrrolidone-based polymer, it is advantageous in terms of cost and adjustment of the content ratio of the vinylpyrrolidone-based polymer. Is. In addition, since the amount of vinylpyrrolidone-based polymer added can be reduced, the stock solution viscosity can be easily suppressed within a stable spinning range.

【0024】第4に、原液中に添加したポリグリコール
類は完全に除去されず若干量が膜内に残存するが、膜内
にポリグリコール類とビニルピロリドン系ポリマーとを
共存させることで抗血栓性が増強される傾向が認められ
る。
Fourthly, the polyglycols added to the stock solution are not completely removed and a small amount remains in the membrane. However, by coexisting the polyglycols and the vinylpyrrolidone-based polymer in the membrane, antithrombosis is caused. There is a tendency that sex is enhanced.

【0025】このように、ポリグリコール類を用いるこ
とにより有利な点が多い。本発明において、上述の効果
を効果的に発揮させるためには、原液中へのポリグリコ
ール類の添加量は、ポリグリコール類の重量平均分子
量、ポリスルホン系ポリマー濃度や溶媒の種類によって
異なるが、ポリスルホン系ポリマーに対して50〜300 重
量%、通常 100〜200 重量%添加することが好ましい。
As described above, the use of polyglycols has many advantages. In the present invention, in order to effectively exhibit the above-mentioned effects, the addition amount of polyglycols in the stock solution varies depending on the weight average molecular weight of polyglycols, the polysulfone-based polymer concentration and the type of solvent. It is preferable to add 50 to 300% by weight, usually 100 to 200% by weight, to the polymer.

【0026】ビニルピロリドン系ポリマーは、主として
ポリスルホン系中空繊維膜に残存して疎水性のポリスル
ホン系中空繊維膜に親水性を付与させるものであり、ポ
リグリコール類よりも重量平均分子量の大きいポリマ
ー、通常重量平均分子量が少なくとも1万のポリマーが
用いられる。かかるビニルピロリドン系ポリマーとして
は、ポリビニルピロリドン、ビニルピロリドン・酢酸ビ
ニル共重合体、ビニルピロリドン・ビニルアルコール共
重合体、ビニルピロリドン・スチレン共重合体、ビニル
ピロリドン・ジメチルアミノエチルメタクリレート共重
合体等やこれらの変性ポリマーが挙げられる。
The vinylpyrrolidone-based polymer mainly remains in the polysulfone-based hollow fiber membrane to impart hydrophilicity to the hydrophobic polysulfone-based hollow fiber membrane, and has a larger weight-average molecular weight than polyglycols, usually A polymer having a weight average molecular weight of at least 10,000 is used. Such vinylpyrrolidone-based polymers include polyvinylpyrrolidone, vinylpyrrolidone / vinyl acetate copolymer, vinylpyrrolidone / vinyl alcohol copolymer, vinylpyrrolidone / styrene copolymer, vinylpyrrolidone / dimethylaminoethylmethacrylate copolymer and the like. Modified polymers of

【0027】ビニルピロリドン系ポリマーは親水性効果
を発揮する量を膜内に残存させる必要があるが、原液中
にビニルピロリドン系ポリマーを大量に添加すると原液
の粘度が急激に増加して中空繊維膜の製造が困難となっ
たり、また、余剰のビニルピロリドン系ポリマーの抽出
に時間がかかり、洗浄が不十分となりやすい。さらに中
空繊維膜を乾燥させるとビニルピロリドン系ポリマーの
中空繊維膜の外表面側へのマイグレーションが著しくな
って中空繊維同士の膠着が発生し、中空繊維膜の取扱い
やモジュール化時の障害となる。さらにビニルピロリド
ン系ポリマーの添加量が増加すると中空繊維膜中の含有
重量比率が多くなって、ポリスルホン系ポリマーが持つ
機械的強度、耐熱性、耐薬品性等の物理的及び化学的特
性が損なわれるとともに、ビニルピロリドン系ポリマー
の膨潤に伴う水透過性能あるいは透析性能の低下を引き
起こすことになる。
The vinylpyrrolidone-based polymer needs to remain in the membrane in an amount exhibiting a hydrophilic effect. However, when a large amount of the vinylpyrrolidone-based polymer is added to the undiluted solution, the viscosity of the undiluted solution rapidly increases and the hollow fiber membrane is obtained. Of the vinylpyrrolidone-based polymer may be difficult to produce, and it may take time to extract the excess vinylpyrrolidone-based polymer, resulting in insufficient washing. Further, when the hollow fiber membrane is dried, migration of the vinylpyrrolidone-based polymer to the outer surface side of the hollow fiber membrane becomes remarkable, and the hollow fibers stick to each other, which becomes an obstacle in handling the hollow fiber membrane and modularization. Furthermore, when the amount of vinylpyrrolidone-based polymer added increases, the content ratio by weight in the hollow fiber membrane increases, and the physical and chemical properties of polysulfone-based polymer such as mechanical strength, heat resistance, and chemical resistance are impaired. At the same time, the water permeation performance or the dialysis performance is deteriorated due to the swelling of the vinylpyrrolidone-based polymer.

【0028】したがってビニルピロリドン系ポリマーを
原液中に大量に添加することは必ずしも好ましいことで
はない。原液中へのビニルピロリドン系ポリマーの添加
量はポリスルホン系中空繊維膜に親水性を付与する最小
限の量が好ましい。ビニルピロリドン系ポリマーの添加
量はポリスルホン系ポリマーに対して2〜30重量%、通
常5〜15重量%添加される。
Therefore, it is not always preferable to add a large amount of the vinylpyrrolidone polymer to the stock solution. The amount of the vinylpyrrolidone-based polymer added to the stock solution is preferably the minimum amount that imparts hydrophilicity to the polysulfone-based hollow fiber membrane. The vinylpyrrolidone-based polymer is added in an amount of 2 to 30% by weight, usually 5 to 15% by weight, based on the polysulfone-based polymer.

【0029】溶媒は、ポリスルホン系ポリマー、ポリグ
リコール類、ビニルピロリドン系ポリマーを全て溶解す
るものであり、ジメチルホルムアミド、ジメチルアセト
アミド、N−メチル−2−ピロリドン、ジメチルスルホ
キシド、スルホラン、ジオキサン等の多種の溶媒、ある
いは上記2種類以上の混合液からなる溶媒が用いられる
が、特にジメチルホルムアミド、ジメチルアセトアミド
が好ましく用いられる。
The solvent dissolves all polysulfone-based polymers, polyglycols and vinylpyrrolidone-based polymers, and various solvents such as dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, sulfolane and dioxane are used. A solvent or a solvent composed of a mixture of two or more of the above is used, and dimethylformamide and dimethylacetamide are particularly preferably used.

【0030】上記組成の組み合わせにより、種々の性状
をもつ原液を得ることができる。例えば、溶解性の低い
溶媒を用い、かつポリグリコール類の添加量を多くする
と、特定の温度以上、または特定の温度以下でも相分離
する原液が得られる。この原液を用いて相分離温度付近
で紡糸すると精密濾過等に適した比較的ポーラスな孔を
有する中空繊維膜が製造できる。逆に、溶解性の良い溶
媒を用い、かつポリグリコール類の添加量を少なくする
と比較的安定な原液性状となり限外濾過や透析等に適し
た緻密な膜が製造できる。
Stock solutions having various properties can be obtained by combining the above compositions. For example, if a solvent having low solubility is used and the amount of polyglycols added is large, a stock solution that undergoes phase separation even at a specific temperature or higher or at a specific temperature or lower is obtained. When this stock solution is spun at around the phase separation temperature, a hollow fiber membrane having relatively porous pores suitable for microfiltration can be produced. On the other hand, if a solvent having good solubility is used and the amount of polyglycols added is reduced, a relatively stable stock solution is obtained, and a dense membrane suitable for ultrafiltration or dialysis can be produced.

【0031】以上の系からなる原液を用いてポリスルホ
ン系中空繊維膜を得る。製膜操作は公知の乾湿式法を用
いることができ、一定の温度に保温された上記原液及び
内部凝固液が2重管構造の環状ノズルより同時に吐出さ
れ、凝固浴に導入される。乾湿式法では、ノズル吐出か
ら凝固浴に浸漬する前に気体中(一般的には空気中)を
通過させる。ノズルの吐出面と凝固浴表面の気中走行距
離(以下ドライゾーン長という)は通常 0.1〜100cm 、
特に1〜50cmが好ましい。 0.1cmより短いと凝固浴の僅
かな波立ちでノズルが凝固浴に接触して乾湿式紡糸する
ことが困難となる。また 100cmを越えると多ホール紡糸
においては糸揺れによる中空繊維同士の膠着が発生す
る。ドライゾーン中を加湿させると空気中の水分により
ミクロ相分離や緩和な凝固が促進され、孔径の大きな多
数の微孔を有する外表面層を備えた中空繊維膜を容易に
得ることができる。この効果は、ドライゾーン長が 0.1
cmと非常に短くても認められ、凝固浴に直接浸漬する湿
式法とは全く異なった外表面層構造を有する中空繊維膜
が得られる。
A polysulfone-based hollow fiber membrane is obtained using the stock solution of the above system. A known dry-wet method can be used for the film forming operation, and the stock solution and the internal coagulating solution which are kept at a constant temperature are simultaneously discharged from an annular nozzle having a double pipe structure and introduced into a coagulating bath. In the dry-wet method, a gas (generally in air) is passed through before being immersed in a coagulation bath from a nozzle. The distance traveled in air between the nozzle discharge surface and the coagulation bath surface (hereinafter referred to as the dry zone length) is usually 0.1 to 100 cm,
Particularly, 1 to 50 cm is preferable. If the length is shorter than 0.1 cm, the nozzle comes into contact with the coagulation bath due to slight waviness of the coagulation bath, and it becomes difficult to perform dry-wet spinning. On the other hand, if it exceeds 100 cm, in the multi-hole spinning, the hollow fibers will stick to each other due to the shaking of the yarn. When the inside of the dry zone is humidified, microphase separation and mild coagulation are promoted by the water content in the air, and a hollow fiber membrane having an outer surface layer having a large number of micropores having a large pore size can be easily obtained. This effect has a dry zone length of 0.1.
Even a very short cm is recognized, and a hollow fiber membrane having an outer surface layer structure completely different from the wet method of directly immersing in a coagulation bath is obtained.

【0032】さらに原液のノズル吐出口での線速度に対
する導糸速度の比(以下ノズルドラフトという)を変化
させることにより膜内外表面層の微細孔の形状を変化さ
せることもできる。ノズルドラフトを大きくすれば細長
いスリット状の微細孔となりやすく、逆に小さくすれは
比較的円形の微細孔となりやすい。しかし、極端にノズ
ルドラフトを大きくしたり、また小さくすると製造が不
安定となるので、ノズルドラフトは通常2〜5の範囲に
設定される。
Further, the shape of the fine pores in the inner and outer surface layers of the film can be changed by changing the ratio of the yarn introducing speed to the linear speed at the nozzle discharge port of the stock solution (hereinafter referred to as nozzle draft). If the nozzle draft is increased, elongated slit-like fine holes are likely to be formed, and conversely, if the nozzle draft is small, a relatively circular fine hole is likely to be formed. However, if the nozzle draft is extremely increased or decreased, the manufacturing becomes unstable, so that the nozzle draft is usually set in the range of 2 to 5.

【0033】また本発明においては、中空繊維膜内表面
の緻密層に存在するビニルピロリドン系ポリマーの重量
比率を向上させるためにビニルピロリドン系ポリマーを
含有した内部凝固液を用いる。内部凝固液に使用される
ビニルピロリドン系ポリマーは、必ずしも原液に添加し
たものと同一である必要はなく、種類が異なっていたり
分子量の異なるものを使用してもよいが、重量平均分子
量が小さいポリマーを用いると凝固時に膜内部に拡散し
やすくなり、期待したほど内表面緻密層に存在する重量
比率が向上しない場合がある。透析膜等の緻密な膜では
重量平均分子量の小さいポリマーも使用できるが、一般
的には重量平均分子量10万以上の高分子量のものを用い
るほうが少ない添加量で効率よく内表面緻密層側に存在
する重量比率のみを増加できるので好ましい。
Further, in the present invention, an internal coagulating liquid containing a vinylpyrrolidone polymer is used to improve the weight ratio of the vinylpyrrolidone polymer present in the dense layer on the inner surface of the hollow fiber membrane. The vinylpyrrolidone-based polymer used in the internal coagulation liquid does not necessarily have to be the same as that added to the stock solution, and different types or different molecular weights may be used, but a polymer having a small weight average molecular weight When used, it tends to diffuse inside the film during solidification, and the weight ratio present in the inner surface dense layer may not be improved as expected. Polymers with low weight average molecular weight can be used for dense membranes such as dialysis membranes, but in general, it is better to use high molecular weight polymers with a weight average molecular weight of 100,000 or more so that they can be efficiently present on the inner surface dense layer side with a small addition amount. It is preferable because only the weight ratio can be increased.

【0034】内部凝固液としては水、アルコール類、グ
リコール類等のポリスルホン系ポリマーに対して非溶媒
または貧溶媒の単独や2種類以上の混合液にビニルピロ
リドン系ポリマーを添加した系が用いられる。更に、こ
れらに溶媒を添加すると凝固速度が変化し孔径制御に役
立つので好適である。溶媒を添加する場合は溶媒重量比
率を10〜90%、特に30〜80%にすることが好ましい。10
%以下は溶媒の効果が少なく、90%以上では凝固速度が
非常におそくなるので紡糸が困難となる。また、塩化リ
チウム、塩化亜鉛、硝酸ナトリウム等の無機塩を添加す
ると表面開孔率が増加する等好ましい場合がある。内部
凝固液に添加するビニルピロリドン系ポリマーは、通常
0.1〜4重量%が好ましい。 0.1重量%以下では内表面
緻密層中に存在するビニルピロリドン系ポリマーの重量
比率増加の効果が不十分であり、4重量%を越えると余
剰のビニルピロリドン系ポリマーの洗浄に時間がかかり
経済的ではない。また、内表面緻密層中に存在するビニ
ルピロリドン系ポリマーの重量比率が過剰となり透過性
能や透析性能の低下等の問題が発生する恐れがある。し
たがって、添加量については、ビニルピロリドン系ポリ
マーの種類、重量平均分子量、原液中のビニルピロリド
ン系ポリマー含量等を考慮にいれて選択する必要があ
る。ただし、内部凝固液はビニルピロリドン系ポリマー
が完全に溶解された溶液を使用する必要があり、この条
件を満たす組成、濃度に設定しなければならない。
As the internal coagulating liquid, a non-solvent or a poor solvent alone or a mixture of two or more kinds of vinylpyrrolidone-based polymers added to polysulfone-based polymers such as water, alcohols and glycols is used. Furthermore, it is preferable to add a solvent to these because the coagulation rate changes and it helps control the pore size. When a solvent is added, the solvent weight ratio is preferably 10 to 90%, particularly preferably 30 to 80%. Ten
% Or less, the effect of the solvent is small, and if 90% or more, the solidification rate becomes very slow, and spinning becomes difficult. In addition, it may be preferable to add an inorganic salt such as lithium chloride, zinc chloride or sodium nitrate because the surface porosity increases. The vinylpyrrolidone polymer added to the internal coagulation liquid is usually
0.1 to 4% by weight is preferable. If it is less than 0.1% by weight, the effect of increasing the weight ratio of the vinylpyrrolidone-based polymer present in the inner surface dense layer is insufficient, and if it exceeds 4% by weight, it takes time to clean the excess vinylpyrrolidone-based polymer, which is economically inefficient. Absent. In addition, the weight ratio of the vinylpyrrolidone-based polymer present in the inner surface dense layer may become excessive, which may cause problems such as deterioration of permeation performance and dialysis performance. Therefore, it is necessary to select the addition amount in consideration of the type of vinylpyrrolidone polymer, the weight average molecular weight, the content of vinylpyrrolidone polymer in the stock solution, and the like. However, it is necessary to use a solution in which the vinylpyrrolidone-based polymer is completely dissolved as the internal coagulation liquid, and the composition and concentration must satisfy this condition.

【0035】凝固液には水、アルコール類、グリコール
類等のポリスルホン系ポリマーの非溶媒、または貧溶媒
の単独、あるいは2種類以上の混合液、さらにこれらと
溶媒との混合液が用いられるが、ポリスルホン系ポリマ
ーの貧溶媒または非溶媒の作用のあるもので極性溶媒、
ポリグリコール類及びビニルピロリドン系ポリマーと相
溶性がある溶液であれば特に制限はない。
As the coagulating liquid, a non-solvent of polysulfone-based polymer such as water, alcohols and glycols, a poor solvent alone, or a mixed liquid of two or more kinds, and a mixed liquid of these and a solvent are used. A polar solvent that acts as a poor solvent or non-solvent for polysulfone-based polymers,
There is no particular limitation as long as it is a solution compatible with polyglycols and vinylpyrrolidone polymers.

【0036】凝固浴で凝固した中空繊維膜は、次いで水
洗または40〜70℃以下の温水洗浄で溶媒、ポリグリコー
ル類、ビニルピロリドン系ポリマーが抽出除去される。
この際ポリグリコール類は大部分が、ビニルピロリドン
系ポリマーは余剰分が抽出されるが、どちらも完全には
抽出されず膜中に残存する。ポリグリコール類、ビニル
ピロリドン系ポリマーが中空繊維膜中に残存する理由と
しては凝固の際に膜中に取り込まれ固定化されるためと
推測される。
The hollow fiber membrane coagulated in the coagulation bath is then washed with water or warm water at 40 to 70 ° C. or lower to extract and remove the solvent, polyglycols and vinylpyrrolidone type polymer.
At this time, most of the polyglycols and the surplus of the vinylpyrrolidone-based polymer are extracted, but neither is completely extracted and remains in the film. It is speculated that the reason why the polyglycols and the vinylpyrrolidone-based polymer remain in the hollow fiber membrane is that the polyglycols and the vinylpyrrolidone-based polymer remain in the hollow fiber membrane and are incorporated into the membrane during immobilization.

【0037】次に、場合によっては80℃以上の熱水処理
を行う。熱水処理を予め行っておくと、溶媒、ポリグリ
コール類、ビニルピロリドン系ポリマーの洗浄効率が向
上する上に熱に対する安定性が向上し、たとえば 100℃
以上の高圧蒸気減菌を行った際に中空繊維膜の収縮等が
防止できるので有効である。
Next, in some cases, hot water treatment at 80 ° C. or higher is performed. If hot water treatment is performed in advance, the washing efficiency of the solvent, polyglycols, vinylpyrrolidone-based polymer will be improved, and stability against heat will be improved.
This is effective because it is possible to prevent the hollow fiber membrane from shrinking when the above high-pressure steam sterilization is performed.

【0038】本発明では上記工程の後、さらに中空繊維
膜をポリスルホン系ポリマーに対して貧溶媒作用を有す
る溶液によって処理し、膜全体、特に外表面側の余剰の
ビニルピロリドン系ポリマーの抽出除去を行う。貧溶媒
作用を有する溶媒とは、ポリスルホン系ポリマーに対し
て溶解はしないが膨潤等の何らかの作用を有するもの
で、かつビニルピロリドン系ポリマーを溶解するものを
いい、アルコール類、エチレングリコール、プロピレン
グリコール、グリセリン、重量平均分子量 600以下のポ
リエチレングリコールの単独や混合液またはそれらの1
重量%以上の水溶液が例示できる。また処理方法には、
中空繊維膜を凝固して洗浄した後に引き続き抽出処理す
る方法と、膜を乾燥してモジュールを作製したのちにモ
ジュール毎に抽出処理する方法があるが、例えば膜を乾
燥させたときに中空繊維膜同士の膠着が発生しモジュー
ル化時の障害となり得る場合は前者の方法を用い、膠着
の問題はあまりなくモジュール化後の方が効率的である
場合は後者の方法を用いるというように、製造条件、工
程通過性、製造効率、コスト等を考慮して選択すること
ができる。また、両方で処理することも可能である。該
処理は製造安定性を向上し、さらにビニルピロリドン系
ポリマーの含有量や分布状態を血液処理に適した状態に
調節することを目的としているので、処理液組成や処理
時間はこの点を充分考慮して設定する必要がある。
In the present invention, after the above steps, the hollow fiber membrane is further treated with a solution having a poor solvent action for the polysulfone-based polymer to extract and remove the excess vinylpyrrolidone-based polymer on the entire membrane, especially on the outer surface side. To do. The solvent having a poor solvent action is a solvent that does not dissolve in the polysulfone-based polymer but has some action such as swelling, and dissolves the vinylpyrrolidone-based polymer, alcohols, ethylene glycol, propylene glycol, Glycerin, polyethylene glycol having a weight average molecular weight of 600 or less, alone or as a mixture, or one of them
An aqueous solution of not less than wt% can be exemplified. In addition, the processing method,
There is a method of coagulating and washing the hollow fiber membrane and then performing an extraction treatment, and a method of producing a module by drying the membrane and then performing an extraction treatment for each module. For example, when the membrane is dried, a hollow fiber membrane is used. If the former method is used when there is sticking between each other and can be an obstacle to modularization, the latter method is used when there is not much problem of sticking and it is more efficient after modularization. It can be selected in consideration of process passability, manufacturing efficiency, cost, and the like. It is also possible to process both. The treatment is intended to improve the production stability, and further to adjust the content and distribution of the vinylpyrrolidone polymer to a state suitable for blood treatment. Then you need to set it.

【0039】水洗、熱水洗処理、貧溶媒作用を有する溶
液での処理等を行うと余剰のポリグリコール類やビニル
ピロリドン系ポリマーが抽出除去され、中空繊維膜中に
取り込まれ固定化されたものだけが残存するため、使用
時にこれらが溶出することはほとんどない。
After washing with water, washing with hot water, treatment with a solution having a poor solvent action, etc., excess polyglycols and vinylpyrrolidone-based polymers are extracted and removed, and only those immobilized and incorporated into the hollow fiber membrane are removed. Since they remain, they rarely elute during use.

【0040】本発明の中空繊維膜は、透析型人工腎臓装
置承認基準に示された「透析器の品質および試験法」の
透析膜の溶出物試験(以下これを人工腎臓承認基準と略
称する)に記載されている方法により、溶出物の評価を
行うと、紫外線吸収スペクトルとして、層長10mmで波長
220〜350nm における吸光度が 0.1以下であり、そのま
まの状態でも人工腎臓承認基準に合格するものである。
このように、本発明の中空繊維膜は、例えば、熱処理、
アルカリ加熱処理、γ線処理等の従来公知の手段により
ビニルピロリドン系ポリマーを架橋構造化し、水に対し
て不溶化する処理を特別に行わなくても、血液処理装
置、特に透析型人工腎臓に使用できる。
The hollow fiber membrane of the present invention is a dialysis membrane eluate test of "dialysis machine quality and test method" indicated in the dialysis-type artificial kidney device approval standard (hereinafter abbreviated as artificial kidney approval standard). When the eluate is evaluated by the method described in, the UV absorption spectrum shows the wavelength at a layer length of 10 mm.
It has an absorbance of less than 0.1 at 220-350 nm, and it passes the artificial kidney approval standard as it is.
Thus, the hollow fiber membrane of the present invention, for example, heat treatment,
It can be used for a blood treatment apparatus, especially for a dialysis-type artificial kidney without special treatment of cross-linking structure of vinylpyrrolidone polymer by a conventionally known means such as alkali heat treatment, γ-ray treatment, etc. .

【0041】これらの処理を終えた中空繊維膜は、たと
えば枠等に捲き取り、乾燥される。乾燥した中空繊維膜
は束ねられ、その両端部はポリウレタンなどの熱硬化性
ポリマーによりハウジングに固定されモジュール化され
る。該モジュールは、EOG滅菌、高圧蒸気滅菌等の公
知の方法で滅菌処理された後、体液等の処理装置とし
て、血液透析、血液濾過、血液濃縮などに供される。
The hollow fiber membrane that has undergone these treatments is wound on a frame or the like and dried. The dried hollow fiber membranes are bundled, and both ends thereof are fixed to a housing with a thermosetting polymer such as polyurethane to be modularized. The module is sterilized by a known method such as EOG sterilization and high-pressure steam sterilization, and then used as a treatment device for body fluids such as hemodialysis, blood filtration, and blood concentration.

【0042】上記製造方法により、ポリグリコール類を
少なくとも1重量%、ビニルピロリドン系ポリマーを1
〜8重量%含有し、かつ中空繊維膜の内表面緻密層に存
在するポリスルホン系ポリマーとビニルピロリドン系ポ
リマーの重量比率が90:10〜60:40で、しかも中空繊維
膜の内表面緻密層に存在するビニルピロリドン系ポリマ
ーの重量比率が外表面層に存在するビニルピロリドン系
ポリマーの重量比率の少なくとも 1.1倍である、特に血
液処理用に適したポリスルホン系中空繊維膜を得ること
ができる。
According to the above production method, at least 1% by weight of polyglycols and 1% of vinylpyrrolidone-based polymer are used.
The weight ratio of polysulfone-based polymer and vinylpyrrolidone-based polymer contained in the inner surface dense layer of the hollow fiber membrane is 90:10 to 60:40, and the inner surface dense layer of the hollow fiber membrane is contained. It is possible to obtain a polysulfone-based hollow fiber membrane in which the weight ratio of the vinylpyrrolidone-based polymer present is at least 1.1 times the weight ratio of the vinylpyrrolidone-based polymer present in the outer surface layer, and which is particularly suitable for blood treatment.

【0043】上記中空繊維膜中に存在するポリグリコー
ル類の重量比率およびビニルピロリドン系ポリマーの重
量比率はNMRによって決定され、中空繊維膜の内表面
緻密層と外表面層に存在するビニルピロリドン系ポリマ
ーの重量比率はX線光電子分光法(ESCA)によって
決定される。また、中空繊維膜の抗血栓性の良否を判断
する簡単な評価方法として、血液を流通させた後のモジ
ュールを解体し、血栓によって閉塞している中空繊維膜
の数を数える方法と、血小板損傷による放出因子である
βトロンボグロブリンの濃度の増加または血液凝固系の
活性によって最終段階であるフィブリノーゲンがフィブ
リンとなるときに生成されるフィブリノペプタイドAの
濃度の増加を測定する方法がある。
The weight ratio of the polyglycols and the weight ratio of the vinylpyrrolidone-based polymer present in the hollow fiber membrane are determined by NMR, and the vinylpyrrolidone-based polymer present in the inner surface dense layer and the outer surface layer of the hollow fiber membrane is determined. Is determined by X-ray photoelectron spectroscopy (ESCA). In addition, as a simple evaluation method to judge the quality of the antithrombotic property of the hollow fiber membrane, a method of disassembling the module after circulating blood and counting the number of hollow fiber membranes blocked by the thrombus, and platelet damage There is a method for measuring an increase in the concentration of β-thromboglobulin, which is a release factor, or an increase in the concentration of fibrinopeptide A produced when fibrinogen becomes fibrin, which is the final step due to the activity of the blood coagulation system.

【0044】本発明のポリスルホン系中空繊維膜は以下
の理由により、ポリグリコール類とビニルピロリドン系
ポリマーの両方を含む必要がある。すなわち、中空繊維
膜がその内表面緻密層にビニルピロリドン系ポリマーを
ビニルピロリドン系ポリマーとポリスルホン系ポリマー
の重量比率が15/85となるように含有し、かつポリグリ
コール類の含有比率が2重量%となるように紡糸したポ
リスルホン系中空繊維膜(A)と、該中空繊維膜(A)
と同じ内表面緻密層における重量比率でビニルピロリド
ン系ポリマーを含むが、ポリグリコール類を含有しない
中空繊維膜(B)を用いて、それぞれ膜面積が 1.7m2
人工腎臓用モジュールを組み立てた後、同一の慢性腎不
全患者の治療に適用した。使用後モジュールを解体し血
液凝固によって閉塞した中空繊維の本数を数え閉塞率を
比較すると、ポリグリコール類を含有した中空繊維膜を
用いた人工腎臓(A)では閉塞率が5%に過ぎないが、
ポリグリコール類を含有しない中空繊維膜を用いた人工
腎臓(B)では閉塞率が65%となり、ポリスルホン系中
空繊維膜中にビニルピロリドン系ポリマーとポリグリコ
ール類とを共存させることが抗血栓性に対して極めて有
効であることが示された。
The polysulfone-based hollow fiber membrane of the present invention must contain both polyglycols and vinylpyrrolidone-based polymers for the following reasons. That is, the hollow fiber membrane contains vinylpyrrolidone-based polymer in the inner surface dense layer so that the weight ratio of vinylpyrrolidone-based polymer and polysulfone-based polymer is 15/85, and the content ratio of polyglycols is 2% by weight. And a polysulfone-based hollow fiber membrane (A) spun so that
After assembling the artificial kidney module with a membrane area of 1.7 m2 each using a hollow fiber membrane (B) that contains vinylpyrrolidone-based polymer in the same weight ratio in the inner surface dense layer but does not contain polyglycols. , Applied to the treatment of the same patient with chronic renal failure. When the module was disassembled after use and the number of hollow fibers blocked by blood coagulation was counted and the blocking rates were compared, the blocking rate was only 5% in the artificial kidney (A) using the hollow fiber membrane containing polyglycols. ,
In the artificial kidney (B) using the hollow fiber membrane containing no polyglycols, the occlusion rate is 65%, and coexistence of the vinylpyrrolidone polymer and polyglycols in the polysulfone hollow fiber membrane has antithrombotic properties. It was shown to be extremely effective against this.

【0045】更に、本発明のポリスルホン系中空繊維膜
には、少なくとも1重量%のポリグリコール類が存在す
る必要がある。1重量%未満では抗血栓性に問題があり
血液処理用に適用することができない。
Further, at least 1% by weight of polyglycols must be present in the polysulfone hollow fiber membrane of the present invention. If it is less than 1% by weight, there is a problem with antithrombotic properties and it cannot be applied for blood treatment.

【0046】次にポリスルホン系中空繊維膜の内表面緻
密層に存在するポリスルホン系ポリマーとビニルピロリ
ドン系ポリマーの重量比率は90:10〜60:40であること
を要する。即ち、上記比率を種々に変えて製造したポリ
スルホン系中空繊維膜を用いて有効膜表面積 500 cm2
ミニモジュールを作成し、これらに新鮮な血液を流通さ
せた。ミニモジュールを通過する血液中のβトロンボグ
ロブリンおよびフィブリノペプタイドAの濃度を、血液
を流通させる血液回路のみのそれらの濃度(ブランク)
と対比した。少なくとも1重量%のポリグリコール類を
含んでなる中空繊維膜については、内表面緻密層に存在
するビニルピロリドン系ポリマーとポリスルホン系ポリ
マーの重量比率が少なくとも10/90であれば、βトロン
ボグロブリンおよびフィブリノペプタイドAの濃度はそ
れぞれブランク濃度の 110%以下及び 120%以下であり
抗血栓性に優れるのに対し、上記ビニルピロリドン系ポ
リマーとポリスルホン系ポリマーの重量比率が10/90未
満であれば、これら指標となる物質の濃度は、それぞれ
ブランク濃度の 350%及び 400%にもなり、抗血栓性に
劣る。血液流通後のミニモジュールを解体し、血栓によ
って閉塞している中空繊維膜の数を数えると、ビニルピ
ロリドン系ポリマーとポリスルホン系ポリマーの重量比
率が少なくとも10/90であれば数%程度の中空繊維膜が
閉塞してしるのに対し、上記重量比率が10/90未満では
50%以上の中空繊維膜の閉塞が観察された。一方、ビニ
ルピロリドン系ポリマーとポリスルホン系ポリマーの重
量比率が40/60より大であれば、βトロンボグロブリン
およびフィブリノペプタイドAの濃度はブランク濃度の
105%〜 110%であり、抗血栓性は維持されるが、親水
性ポリマーの膨潤により透水性能は小さくなる。これら
の点から、中空繊維膜が少なくとも1重量%のポリグリ
コール類を含有する場合に、優れた抗血栓性を有するた
めには、血液が接触する中空繊維膜内表面の緻密層に存
在するビニルピロリドン系ポリマーとポリスルホン系ポ
リマーのの重量比率を少なくとも10/90とする必要があ
り、透水性能や中分子量物質の透過性能を維持するため
には内表面の緻密層に存在するビニルピロリドン系ポリ
マーとポリスルホン系ポリマーの重量比率を40/60以下
に抑える必要がある。
Next, it is necessary that the weight ratio of the polysulfone polymer to the vinylpyrrolidone polymer present in the inner surface dense layer of the polysulfone hollow fiber membrane is 90:10 to 60:40. That is, mini modules having an effective membrane surface area of 500 cm2 were prepared using polysulfone-based hollow fiber membranes produced by changing the above-mentioned ratio variously, and fresh blood was circulated through these. Concentrations of β-thromboglobulin and fibrinopeptide A in blood passing through the mini-module, those concentrations only in the blood circuit for circulating blood (blank)
Contrasted with. For hollow fiber membranes containing at least 1% by weight of polyglycols, if the weight ratio of vinylpyrrolidone-based polymer to polysulfone-based polymer present in the inner surface dense layer is at least 10/90, β-thromboglobulin and fibrin The concentration of Nopeptide A is 110% or less and 120% or less of the blank concentration, respectively, which is excellent in antithrombogenicity. On the other hand, when the weight ratio of the vinylpyrrolidone polymer and the polysulfone polymer is less than 10/90, The concentration of the substance used as an index is 350% and 400% of the blank concentration, respectively, and the antithrombotic property is poor. After disassembling the mini-module after blood circulation and counting the number of hollow fiber membranes clogged by thrombus, if the weight ratio of vinylpyrrolidone polymer and polysulfone polymer is at least 10/90, hollow fibers will be about several percent. While the membrane is clogged, if the weight ratio is less than 10/90,
Over 50% of hollow fiber membrane blockage was observed. On the other hand, if the weight ratio of vinylpyrrolidone-based polymer and polysulfone-based polymer is greater than 40/60, the concentrations of β-thromboglobulin and fibrinopeptide A are
It is 105% to 110%, and the antithrombogenicity is maintained, but the water permeability is reduced due to the swelling of the hydrophilic polymer. From these points, in order to have excellent antithrombogenicity when the hollow fiber membrane contains at least 1% by weight of polyglycol, the vinyl present in the dense layer on the inner surface of the hollow fiber membrane in contact with blood The weight ratio of the pyrrolidone-based polymer and the polysulfone-based polymer must be at least 10/90, and in order to maintain the water permeation performance and the permeation performance of medium molecular weight substances, the vinylpyrrolidone-based polymer present in the dense layer on the inner surface It is necessary to keep the weight ratio of the polysulfone polymer to 40/60 or less.

【0047】また、本発明の中空繊維膜においては、膜
の内表面緻密層に存在するビニルピロリドン系ポリマー
の重量比率が外表面層に存在するビニルピロリドン系ポ
リマーの重量比率の 1.1倍以上である。このように、ビ
ニルピロリドン系ポリマーを中空繊維膜内表面緻密層に
多量に存在させると、中空繊維膜の内外表面層に存在す
るビニルピロリドン系ポリマーの重量比率が同じである
従来の中空繊維膜に比べ透水性が3倍以上、イヌリンの
透過率が2倍以上と透過性能を格段に向上させることが
できる。また本発明の中空繊維膜はアルブミンがほとん
ど透過しない(透過率5%以下)シャープな分画性を有
し、尿素などの低分子量物質のみならず、低分子量タン
パク質であるβ2−ミクログロブリンに至るまで高い透
析性能を有する。透過性能や透析性能が向上する理由
は、ビニルピロリドン系ポリマーを膜全体に比較的均一
に含有させるよりも内表面層に多量に存在させる方が、
膜全体のビニルピロリドン系ポリマーの含有量を少なく
できるのでビニルピロリドン系ポリマーの膨潤による透
過抵抗を小さくできるためである。なお、中空繊維膜の
抗血栓性に与える影響から、膜の内表面緻密層に存在す
るビニルピロリドン系ポリマーの重量比率が外表面層に
存在するビニルピロリドン系ポリマーの重量比率の 1.5
倍以上、特に 2.0倍以上であることが好ましい。
In the hollow fiber membrane of the present invention, the weight ratio of the vinylpyrrolidone polymer present in the inner surface dense layer of the membrane is 1.1 times or more the weight ratio of the vinylpyrrolidone polymer present in the outer surface layer. . Thus, when a large amount of the vinylpyrrolidone-based polymer is present in the inner surface dense layer of the hollow fiber membrane, a conventional hollow fiber membrane in which the weight ratio of the vinylpyrrolidone-based polymer present in the inner and outer surface layers of the hollow fiber membrane is the same is obtained. In comparison, the water permeability is 3 times or more, and the inulin transmittance is 2 times or more, so that the permeation performance can be remarkably improved. Further, the hollow fiber membrane of the present invention has a sharp fractionation property that albumin hardly permeates (permeability of 5% or less), and reaches not only low molecular weight substances such as urea but also low molecular weight protein β2-microglobulin. It has high dialysis performance. The reason why the permeation performance and the dialysis performance are improved is that the vinylpyrrolidone-based polymer is present in a large amount in the inner surface layer rather than being relatively uniformly contained in the entire membrane.
This is because the content of the vinylpyrrolidone-based polymer in the entire membrane can be reduced and the permeation resistance due to the swelling of the vinylpyrrolidone-based polymer can be reduced. From the effect on the antithrombogenicity of the hollow fiber membrane, the weight ratio of the vinylpyrrolidone-based polymer present in the inner surface dense layer of the membrane is 1.5 times that of the vinylpyrrolidone-based polymer present in the outer surface layer.
It is preferably double or more, and particularly preferably 2.0 or more.

【0048】さらに、親水性や優れた透水性能や物質の
透過性能を有するためには、中空繊維膜全体に含有され
るビニルピロリドン系ポリマーは1〜8重量%、通常2
〜5重量%が好ましい。1重量%未満では親水性が不十
分であり、8重量%を越えるとビニルピロリドン系ポリ
マーの膨潤に伴う透過性能や透析性能の低下が起り、更
にはポリスルホン系ポリマーのもつ機械的強度、耐熱
性、耐薬品性等の物理的または化学的特性が失われる。
Further, in order to have hydrophilicity, excellent water permeation performance and substance permeation performance, the vinylpyrrolidone-based polymer contained in the entire hollow fiber membrane is 1 to 8% by weight, usually 2% by weight.
-5% by weight is preferred. If it is less than 1% by weight, the hydrophilicity is insufficient, and if it exceeds 8% by weight, the permeation performance and dialysis performance are deteriorated due to the swelling of the vinylpyrrolidone polymer, and the mechanical strength and heat resistance of the polysulfone polymer are further increased. , Physical or chemical properties such as chemical resistance are lost.

【0049】本発明の中空繊維膜は、その内径が50〜50
0 μm 、膜厚が5〜250 μm である。内径が50μm 未満
では圧力損失が大きく、500 μm を越えるとモジュール
が大きくなりすぎて取扱が不便である。また膜厚が5μ
m 未満では紡糸が困難でリークが発生し易く、250 μm
を越えると透水性や透析性が著しく低下する他、モジュ
ールが大きくなり不経済である。
The hollow fiber membrane of the present invention has an inner diameter of 50-50.
The thickness is 0 μm and the film thickness is 5 to 250 μm. If the inner diameter is less than 50 μm, the pressure loss is large, and if it exceeds 500 μm, the module becomes too large and it is inconvenient to handle. The film thickness is 5μ
If it is less than m, spinning is difficult and leaks easily occur.
If it exceeds, the water permeability and the dialysis property are significantly lowered, and the module becomes large, which is uneconomical.

【0050】中空繊維膜の外表面層には0.05〜1μm の
微孔が多数存在し、内表面緻密層にはスリット幅0.001
〜0.05μm の多数のスリット状微孔を有している。ま
た、断面構造は、内表面側に厚さ 0.1〜3μm の実質的
に物質を分離する緻密層を有し、膜断面中央部に向かっ
て孔径が徐々に拡大し、中央部は平均孔径1〜5μm の
網状組織、外表面側は平均孔径 0.1〜0.5 μm の網状組
織で構成された非対称の膜構造である。
The outer surface layer of the hollow fiber membrane has a large number of micropores of 0.05 to 1 μm, and the inner surface dense layer has a slit width of 0.001.
It has a large number of slit-like pores of ~ 0.05 μm. In addition, the cross-sectional structure has a dense layer having a thickness of 0.1 to 3 μm that substantially separates substances on the inner surface side, the pore diameter gradually increases toward the center of the membrane cross section, and the central portion has an average pore diameter of 1 to 1. It has an asymmetric membrane structure composed of a network of 5 μm and a network of average pore size 0.1 to 0.5 μm on the outer surface side.

【0051】外表面に孔の認められないような緻密層を
有する中空繊維膜では、濾過速度が小さく、特に血液処
理に用いた場合、濾過速度が遅くなるとともに、除去対
象物質である低分子量タンパク質の透過性能や、分子量
数千〜1万付近の中分子量物質の透過性能も低くなり、
また、尿素などの低分子量物質の透析性能も著しく低下
するが、本発明のポリスルホン系中空繊維膜は内表面に
緻密層、外表面に中央部よりは緻密な網状構造を有して
いるので、機械的強度に優れリークが発生しにくく、か
つ優れた溶質透過性を保持することができる。
A hollow fiber membrane having a dense layer having no pores on the outer surface has a low filtration rate, and particularly when used for blood treatment, the filtration rate becomes slow and the low molecular weight protein to be removed is a substance to be removed. Permeation performance and the permeation performance of medium and high molecular weight substances of several thousand to 10,000
Further, although the dialysis performance of low molecular weight substances such as urea is significantly reduced, the polysulfone-based hollow fiber membrane of the present invention has a dense layer on the inner surface and a denser network structure than the central portion on the outer surface. It has excellent mechanical strength and is less likely to cause leaks, and can maintain excellent solute permeability.

【0052】[0052]

【実施例】以下実施例により本発明をさらに具体的に説
明するが、本発明はこれにより何ら限定されるものでは
ない。なお、透水性は有効長15cmの内圧型ラボモジュー
ルを作成し、25℃、通水圧 0.5Kg/cm2の条件で一定時間
内に中空繊維膜を透過した水の量を測定し、算出した。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. The water permeability was calculated by preparing an internal pressure type lab module having an effective length of 15 cm and measuring the amount of water that had permeated the hollow fiber membrane within a certain time under the conditions of 25 ° C. and a water pressure of 0.5 Kg / cm2 .

【0053】また中空繊維膜内に存在するポリグリコー
ル類とビニルピロリドン系ポリマーのそれぞれの重量比
率は核磁気共鳴分析(NMR)法で測定した。また、中
空繊維膜の内表面緻密層または外表面層に存在するビニ
ルピロリドン系ポリマーの重量比率は、X線光電子分光
(ESCA)法で次のようにして求めた。すなわちポリ
スルホン系ポリマーの硫黄(S)とビニルピロリドン系
ポリマーの窒素(N)の存在比率を求め、このSとNの
存在比率をポリスルホン系ポリマーの重量(Wps)とビ
ニルピロリドン系ポリマーの重量(Wvp)にそれぞれ換
算し、内表面緻密層または外表面層に存在するビニルピ
ロリドン系ポリマーの重量比率(R%)を次式(1)に
より算出した。 R(%)=Wvp/(Wps+Wvp)× 100 ・・・(1)
The weight ratio of each of the polyglycols and the vinylpyrrolidone polymer present in the hollow fiber membrane was measured by a nuclear magnetic resonance analysis (NMR) method. The weight ratio of the vinylpyrrolidone-based polymer present in the inner surface dense layer or the outer surface layer of the hollow fiber membrane was determined by the X-ray photoelectron spectroscopy (ESCA) method as follows. That is, the abundance ratio of sulfur (S) in the polysulfone-based polymer and nitrogen (N) in the vinylpyrrolidone-based polymer is obtained, and the abundance ratio of S and N is calculated as the weight of the polysulfone-based polymer (Wps ) and the weight of the vinylpyrrolidone-based polymer ( Wvp ), and the weight ratio (R%) of the vinylpyrrolidone-based polymer present in the inner surface dense layer or the outer surface layer was calculated by the following formula (1). R (%) = Wvp / (Wps + Wvp ) × 100 (1)

【0054】また中空繊維膜の内表面緻密層に存在する
ビニルピロリドン系ポリマーの重量比率(Rin)と外表
面層に存在するビニルピロリドン系ポリマーの重量比率
(Rout)の比(P)は次式(2)により算出した。 P=Rin/Rout ・・・(2)
The ratio (P) of the weight ratio (Rin ) of the vinylpyrrolidone polymer present in the inner surface dense layer of the hollow fiber membrane to the weight ratio (Rout ) of the vinylpyrrolidone polymer present in the outer surface layer is It was calculated by the following equation (2). P = Rin / Rout (2)

【0055】実施例1 ポリスルホン(アモコ社製、ユーデルP1700、以下「P
S」と略称する)17重量%、ポリエチレングリコール
(三洋化成工業社製、PEG 600、重量平均分子量 60
0、以下「PEG」と略称する) 12.75重量%、ポリビ
ニルピロリドン(GAF社製、K−90、重量平均分子量
120万、以下「PVP」と略称する)2.55%、ジメチル
アセトアミド(以下、「DMA」と略称する)67.7%を
混合し、加熱攪拌して均一透明な原液を調製した。この
原液を45℃にて16時間静置し、脱泡した後、外径 0.5m
m、内径0.25mmの環状ノズルより、内部凝固液としてD
MA40重量%、PVP 0.5重量%、水59.5重量%で構成
される溶液と同時に50℃で吐出し、相対湿度80%、50℃
に調整した空気中に押し出した。ドライゾーン長10cmの
空中走行後、12 m/minの速度で50℃の水中に導いて凝固
させた。この時のノズルドラフトは 3.2であった。次い
で、60℃の温水洗浄および90℃の熱水処理、90℃の6重
量%グリセリン水溶液中に5分間の浸漬処理を行った後
に枠に巻き取り、乾燥して外径 280μm 、内径 200μm
の中空繊維膜を得た。得られた中空繊維膜の透水性能は
200 l/m2・hr・(kg/cm2)、膜中にPVPとPEGが
それぞれ 5.5重量%、 2.0重量%存在し、内表面緻密層
に存在するPVPとPSの重量比率は23/77、また内表
面緻密層中のPVPの重量比率と外表面層に存在するP
VPの重量比率の比は 2.0であった。また、人工腎臓承
認基準により溶出物の評価を行ったところ、層長10mmで
波長 220nmの紫外線吸収スペクトルにおいて 0.051の吸
光度を示し、この中空繊維膜は上記基準に合格した。
Example 1 Polysulfone (Amoco, Udel P1700, hereinafter referred to as "P"
17% by weight, polyethylene glycol (manufactured by Sanyo Kasei Co., Ltd., PEG 600, weight average molecular weight 60)
0, hereinafter abbreviated as "PEG") 12.75% by weight, polyvinylpyrrolidone (GAF, K-90, weight average molecular weight)
2.5 million of 1,200,000 (hereinafter, abbreviated as "PVP") and 67.7% of dimethylacetamide (hereinafter, abbreviated as "DMA") were mixed, and heated and stirred to prepare a uniform transparent stock solution. This stock solution was left standing at 45 ° C for 16 hours to defoam and then had an outer diameter of 0.5m.
m as an internal coagulating liquid from an annular nozzle with an inner diameter of 0.25 mm
A solution composed of 40% by weight MA, 0.5% by weight PVP, and 59.5% by weight water was simultaneously discharged at 50 ° C, 80% relative humidity, 50 ° C.
It was extruded into the adjusted air. After running in the air at a dry zone length of 10 cm, it was introduced into water at 50 ° C at a speed of 12 m / min to be solidified. The nozzle draft at this time was 3.2. Then, wash with hot water at 60 ℃, hot water treatment at 90 ℃, and soak in 6wt% glycerin aqueous solution at 90 ℃ for 5 minutes, then wind on a frame, dry and 280μm outer diameter, 200μm inner diameter.
To obtain a hollow fiber membrane. The water permeability of the obtained hollow fiber membrane is
200 l / m2 · hr · (kg / cm2 ), PVP and PEG are 5.5 wt% and 2.0 wt% respectively in the membrane, and the weight ratio of PVP and PS in the inner surface dense layer is 23/77. In addition, the weight ratio of PVP in the inner surface dense layer and P existing in the outer surface layer
The weight ratio of VP was 2.0. When the eluate was evaluated according to the artificial kidney approval standard, it showed an absorbance of 0.051 in the ultraviolet absorption spectrum at a wavelength of 220 nm with a layer length of 10 mm, and this hollow fiber membrane passed the above standards.

【0056】この中空繊維膜を9700本束ね有効膜面積
1.7m2の人工腎臓用モジュールを組み立て、該モジュー
ルに各々エチレンオキサイドガス滅菌、高圧蒸気滅菌、
γ線滅菌を施した。これら滅菌済のモジュールをそれぞ
れ同一の慢性腎不全患者に適用し、残血状態(中空繊維
閉塞による)の比較を行ったところ、エチレンオキサイ
ドガス滅菌および高圧蒸気滅菌を施したものでは、中空
繊維閉塞による残血が殆ど無かったが、γ線滅菌を施し
たものでは明らかに多かった。なお、上記の中空繊維膜
をクロロホルムに溶解すると、γ線滅菌処理を施したも
ののみ不溶解成分が存在した。かかる不溶解成分は、P
VPが架橋構造化したものと考えられ、これにより残血
が多く、抗血栓性が低下したものと推定される。
9700 of these hollow fiber membranes are bundled to form an effective membrane area
1.7 m2 artificial kidney module was assembled, and ethylene oxide gas sterilization, high pressure steam sterilization, and
It was subjected to γ-ray sterilization. When these sterilized modules were applied to the same patients with chronic renal failure and the residual blood conditions (due to hollow fiber occlusion) were compared, it was found that hollow fiber occlusion was observed in the ones subjected to ethylene oxide gas sterilization and high-pressure steam sterilization. There was almost no residual blood due to γ-ray sterilization, but it was obviously high in those subjected to γ-ray sterilization. When the above hollow fiber membrane was dissolved in chloroform, the insoluble component was present only in the one subjected to the γ-ray sterilization treatment. Such insoluble component is P
It is considered that VP has a crosslinked structure, and it is presumed that this results in a large amount of residual blood and reduced antithrombotic properties.

【0057】実施例2 PS17重量%、PEG20.4重量%、PVP1.7 重量%、
DMA60.9重量%を混合し、加熱攪拌して均一透明な原
液を調製した。この原液を45℃にて16時間静置し、脱泡
した後、外径 0.5mm、内径 0.25mm の環状ノズルより、
DMA40重量%、PVP 0.3重量%、水59.7重量%から
なる内部凝固液とともに50℃で吐出し、50℃、相対湿度
80%に調整された空中に押し出し、ドライゾーン長10cm
の空中走行後、12m/min の速度で50℃の水中に導いて凝
固させた。この時のノズルドラフトは 3.2であった。次
いで、60℃の温水洗浄及び90℃の熱水処理、90℃の6重
量%グリセンリン水溶液中に5分間浸漬した後に枠に捲
きとり、乾燥して外径 280μm 、内径 200μm の中空繊
維膜を得た。なお、この中空繊維膜は乾燥後の膠着糸が
皆無であり、安定に製造することができた。
Example 2 17% by weight of PS, 20.4% by weight of PEG, 1.7% by weight of PVP,
60.9% by weight of DMA was mixed and heated and stirred to prepare a uniform transparent stock solution. This stock solution was allowed to stand at 45 ° C for 16 hours, and after defoaming, it was passed through an annular nozzle with an outer diameter of 0.5 mm and an inner diameter of 0.25 mm.
Discharge at 50 ° C with internal coagulation liquid consisting of DMA 40% by weight, PVP 0.3% by weight, and water 59.7% by weight, 50 ° C, relative humidity
Extruded in the air adjusted to 80%, dry zone length 10 cm
After running in the air, it was introduced into water at 50 ° C at a speed of 12 m / min to coagulate. The nozzle draft at this time was 3.2. Next, washing with hot water at 60 ° C and hot water treatment at 90 ° C, immersing in a 6% by weight glycerin aqueous solution at 90 ° C for 5 minutes, winding on a frame, and drying to obtain a hollow fiber membrane with an outer diameter of 280 μm and an inner diameter of 200 μm. It was This hollow fiber membrane had no glued yarn after drying, and could be stably manufactured.

【0058】この膜は、図1に示す10000 倍の走査型電
子顕微鏡写真(以下SEM写真と略称する)から、中空
繊維膜の外表面層には0.05〜1μm の多数の微細孔が存
在していることが確認された。また図2に示す10000 倍
のSEM写真から中空繊維膜の内表面緻密層には幅0.00
1 〜0.03μm のスリット状の微細孔が多数存在している
ことが確認された。図3に示す1500倍の中空繊維膜の断
面を示すSEM写真、図4に示す外表面側の断面を示す
10000 倍のSEM写真、図5に示す中央部の断面を示す
10000 倍のSEM写真および図6に示す内表面側の断面
を示す10000 倍のSEM写真より、内表面側に厚さが
0.2〜1μm の緻密層が形成され、膜断面の中央部に向
かって徐々に孔径が拡大し、膜の中央部は1〜3μm の
網状組織、外表面側は 0.1〜0.3 μm の緻密な網状組織
からなる層で構成された非対称構造の膜であることが確
認された。得られた中空繊維膜の透水性能は 300 l/m2
・hr・(Kg/cm2)、膜中にPVPとPEGがそれぞれ 3.5
重量%、 2.2重量%存在し、内表面緻密層に存在するP
VPとPSの重量比率は23/77、内表面緻密層に存在す
るPVPの重量比率と外表面層に存在するPVPの重量
比率の比は 2.1であった。
From the scanning electron microscope photograph (hereinafter referred to as SEM photograph) of 10000 times shown in FIG. 1, this membrane has a large number of fine pores of 0.05 to 1 μm in the outer surface layer of the hollow fiber membrane. Was confirmed. In addition, from the SEM photograph at 10000 times shown in Fig. 2, the width of the inner surface dense layer of the hollow fiber membrane is 0.00
It was confirmed that a large number of slit-shaped micropores of 1 to 0.03 μm existed. FIG. 3 is a SEM photograph showing the cross section of the 1500 times hollow fiber membrane shown in FIG. 3, and the cross section of the outer surface side shown in FIG.
10000 times SEM photograph, showing the cross section of the central part shown in FIG.
From the 10000 times SEM photograph and the 10000 times SEM photograph showing the cross section on the inner surface side shown in FIG. 6, the thickness on the inner surface side is
A dense layer of 0.2 to 1 μm is formed, the pore diameter gradually increases toward the center of the cross section of the membrane, the center of the membrane has a network of 1 to 3 μm, and the outer surface side has a network of 0.1 to 0.3 μm. It was confirmed that the film had an asymmetric structure composed of a layer consisting of. The water permeability of the obtained hollow fiber membrane is 300 l / m2
・ Hr ・ (Kg / cm2 ), PVP and PEG are 3.5 each in the film.
%, 2.2% by weight, P present in the inner surface dense layer
The weight ratio of VP and PS was 23/77, and the weight ratio of PVP existing in the inner surface dense layer to PVP existing in the outer surface layer was 2.1.

【0059】実施例3 PS17重量%、PEG34.0重量%、PVP 0.4重量%、
DMA 48.6 重量%を混合加熱攪拌して均一透明な製膜
原液を調製した。この製膜原液を45℃にて16時間静置
し、脱泡した後、外径 0.5mm、内径0.25mmの環状ノズル
より、DMA40重量%、ポリビニルピロリドン(GAF
社製、K−120 、重量平均分子量250 万) 1.5重量%、
水58.5重量%からなる内部凝固液とともに50℃で吐出
し、50℃、相対湿度80%に調整した空中に押し出した。
ドライゾーン長10cmの空中走行後、12m/min の速度で50
℃の水中に導いて凝固させた。この時のノズルドラフト
は 3.2であった。次いで、60℃の温水洗浄及び90℃の熱
水処理、90℃の5重量%グリセンリン水溶液中に5分間
浸漬した後、枠に捲きとり、乾燥して外径 280μm 、内
径 200μm の中空繊維膜を得た。得られた中空繊維膜の
透水性能は 400 l/m2・hr・(Kg/cm2)、膜中にPVPと
PEGがそれぞれ 2.8重量%、 2.2重量%存在し、内表
面緻密層に存在するPVPとPSの重量比率は32/68 、
内表面緻密層に存在するPVPの重量比率と外表面層に
存在するPVPの重量比率の比は16.5であった。なお、
この中空繊維膜は乾燥後の膠着糸が皆無であり、安定に
製造することができた。
Example 3 17% by weight PS, 34.0% by weight PEG, 0.4% by weight PVP,
DMA 48.6% by weight was mixed and heated to prepare a uniform transparent film forming stock solution. This film-forming stock solution was allowed to stand at 45 ° C. for 16 hours to defoam, then 40% by weight of DMA, polyvinylpyrrolidone (GAF) was obtained from an annular nozzle having an outer diameter of 0.5 mm and an inner diameter of 0.25 mm.
Manufactured by K-120, weight average molecular weight 2.5 million) 1.5% by weight,
It was discharged at 50 ° C together with an internal coagulating liquid consisting of 58.5% by weight of water, and extruded into the air adjusted to 50 ° C and 80% relative humidity.
After running in the dry zone with a length of 10 cm, 50 at a speed of 12 m / min.
It was introduced into water at ℃ and solidified. The nozzle draft at this time was 3.2. Then, wash with warm water at 60 ° C and hot water treatment at 90 ° C, immerse in 5% by weight aqueous glycerin solution at 90 ° C for 5 minutes, wind on a frame and dry to obtain a hollow fiber membrane with an outer diameter of 280 μm and an inner diameter of 200 μm. Obtained. The water permeability of the obtained hollow fiber membrane is 400 l / m2 · hr · (Kg / cm2 ), and PVP and PEG are present in the membrane at 2.8 wt% and 2.2 wt%, respectively, and are present in the inner surface dense layer. The weight ratio of PVP and PS is 32/68,
The ratio of the weight ratio of PVP existing in the inner surface dense layer to the weight ratio of PVP existing in the outer surface layer was 16.5. In addition,
This hollow fiber membrane had no glued yarn after drying and could be stably manufactured.

【0060】実施例4 PS17重量%、PEG20.4重量%、ビニルピロリドン・
酢酸ビニル共重合体(GAF社製、S630、以下「P
VP/VA」と略称する) 1.7重量%、DMA60.9重量
%を混合加熱攪拌して均一透明な原液を調製した。45℃
にて16時間静置し、脱泡した後、外径 0.5mm、内径0.25
mmの環状ノズルより、DMA40重量%、PVP/VA
0.5重量%、水59.5重量%からなる内部凝固液とともに5
0℃で吐出し、50℃、相対湿度80%に調整した空中に押
し出した。ドライゾーン長10cmの空中走行後、12m/min
の速度で50℃の水中に導いて凝固させた。この時のノズ
ルドラフトは 3.2であった。次いで、60℃の温水洗浄及
び90℃の熱水処理、30℃の10重量%エタノール水溶液中
に5分間浸漬した後に枠に捲きとり、乾燥して外径 280
μm 、内径 200μmの中空繊維膜を得た。得られた中空
繊維膜の透水性能は 480 l/m2・hr・(Kg/cm2)、膜中に
PVP/VAとPEGがそれぞれ 3.2重量%、 2.1重量
%存在し、内表面緻密層に存在するPVP/VAとPS
の重量比率は21/79 、内表面緻密層に存在するPVP/
VAの重量比率と外表面層に存在するPVP/VAの重
量比率の比は 1.7であった。なお、この中空繊維膜は乾
燥後の膠着糸が皆無であり、安定に製造することができ
た。
Example 4 17% by weight of PS, 20.4% by weight of PEG, vinylpyrrolidone
Vinyl acetate copolymer (manufactured by GAF, S630, hereinafter "P
(Abbreviated as "VP / VA") 1.7 wt% and DMA 60.9 wt% were mixed and heated to prepare a uniform transparent stock solution. 45 ° C
After allowing to stand for 16 hours and defoaming, outside diameter 0.5mm, inside diameter 0.25
mm ring nozzle, DMA 40% by weight, PVP / VA
5 with internal coagulation liquid consisting of 0.5 wt% and water 59.5 wt%
It was discharged at 0 ° C and extruded into the air adjusted to 50 ° C and 80% relative humidity. 12m / min after running in the dry zone with a length of 10cm
It was introduced into water at a temperature of 50 ° C. and solidified. The nozzle draft at this time was 3.2. Next, washing with warm water at 60 ° C and hot water treatment at 90 ° C, immersing in a 10% by weight aqueous ethanol solution at 30 ° C for 5 minutes, winding on a frame, and drying to obtain an outer diameter of 280
A hollow fiber membrane having a diameter of 200 μm and a diameter of 200 μm was obtained. The water permeability of the obtained hollow fiber membrane was 480 l / m2 · hr · (Kg / cm2 ), and PVP / VA and PEG were present in the membrane at 3.2% by weight and 2.1% by weight respectively, and the inner surface dense layer was Existing PVP / VA and PS
The weight ratio of 21/79, PVP / which is present in the inner surface dense layer
The ratio of the weight ratio of VA to the weight ratio of PVP / VA existing in the outer surface layer was 1.7. This hollow fiber membrane had no glued yarn after drying, and could be stably manufactured.

【0061】実施例5 PS17重量%、PEG10.2重量%、PVP 1.7重量%、
DMA71.1重量%を混合加熱攪拌して均一透明な原液を
調製した。45℃にて16時間静置し、脱泡した後、外径
0.5mm、内径0.25mmの環状ノズルより、DMA40重量
%、PVP 0.5重量%、水59.5重量%からなる内部凝固
液とともに50℃で吐出し、50℃、相対湿度80%に調整さ
れた空中に押し出した。ドライゾーン長10cmの空中走行
後、12m/minの速度で50℃の水中に導いて凝固させた。
この時のノズルドラフトは 3.2であった。次いで、60℃
の温水洗浄及び90℃の熱水処理、80℃の8重量%グリセ
リン水溶液中に10分間浸漬した後に枠に捲きとり、乾燥
して外径 280μm 、内径 200μmの中空繊維膜を得た。
得られた中空繊維膜の透水性能は 260 l/m2・hr・(Kg/
cm2)、膜中にPVPとPEGがそれぞれ 2.8重量%、
1.9重量%存在し、内表面緻密層に存在するPVPとP
Sの重量比率は15/85 、内表面緻密層に存在するPVP
の重量比率と外表面層に存在するPVPの重量比率の比
は 1.9であった。なお、この中空繊維膜は乾燥後の膠着
糸が皆無であり、安定に製造することができた。
Example 5 17% by weight PS, 10.2% by weight PEG, 1.7% by weight PVP,
71.1% by weight of DMA was mixed and stirred by heating to prepare a uniform transparent stock solution. After leaving at 45 ° C for 16 hours to remove bubbles, the outer diameter
From an annular nozzle with a diameter of 0.5 mm and an inner diameter of 0.25 mm, discharge at 50 ° C with an internal coagulating liquid consisting of 40% by weight DMA, 0.5% by weight PVP and 59.5% by weight water, and extrude into the air adjusted to 50 ° C and 80% relative humidity. It was After running in the air with a dry zone length of 10 cm, it was introduced into water at 50 ° C. at a speed of 12 m / min and solidified.
The nozzle draft at this time was 3.2. Then 60 ℃
Was washed with warm water, treated with hot water at 90 ° C., immersed in an 8 wt% glycerin aqueous solution at 80 ° C. for 10 minutes, wound on a frame and dried to obtain a hollow fiber membrane having an outer diameter of 280 μm and an inner diameter of 200 μm.
The water permeability of the obtained hollow fiber membrane is 260 l / m2 · hr ・ (Kg /
cm2 ), PVP and PEG are 2.8 wt% each in the film,
1.9% by weight of PVP and P present in the inner surface dense layer
The weight ratio of S is 15/85, PVP existing in the inner surface dense layer
And the weight ratio of PVP present in the outer surface layer was 1.9. This hollow fiber membrane had no glued yarn after drying, and could be stably manufactured.

【0062】比較例1 PS17重量%、PEG34.0重量%、DMA49.0重量%を
混合加熱攪拌して均一透明な原液を調製した。45℃にて
16時間静置し、脱泡した後、外径 0.5mm、内径0.25mmの
環状ノズルより、DMA40重量%、水60重量%からなる
内部凝固液とともに50℃で吐出し、50℃、相対湿度80%
に調整された空中に押し出した。ドライゾーン長10cmの
空中走行後、12m/min の速度で50℃の水中に導いて凝固
させた。この時のノズルドラフトは 3.2であった。次い
で、60℃の温水洗浄及び90℃の熱水処理を行った後に、
90℃のグリセリン10重量%水溶液に15分間膜を浸漬した
後に枠に捲きとり、乾燥して外径 280μm、内径 200μm
の中空繊維膜を得た。得られた中空繊維膜の透水性能
は 800 l/m2・hr・(Kg/cm2)であった。
Comparative Example 1 17% by weight of PS, 34.0% by weight of PEG and 49.0% by weight of DMA were mixed and stirred to prepare a uniform transparent stock solution. At 45 ℃
After leaving it for 16 hours and defoaming, it was discharged from an annular nozzle with an outer diameter of 0.5 mm and an inner diameter of 0.25 mm at 50 ° C with an internal coagulation liquid consisting of 40% by weight DMA and 60% by weight water, at 50 ° C, relative humidity 80 %
Extruded into the air adjusted to. After running in the dry zone with a length of 10 cm, it was introduced into water at 50 ° C at a speed of 12 m / min and solidified. The nozzle draft at this time was 3.2. Then, after performing hot water washing at 60 ° C and hot water treatment at 90 ° C,
Immerse the membrane in a 10% by weight aqueous solution of glycerin at 90 ℃ for 15 minutes, wind it on a frame, and dry it to obtain an outer diameter of 280μm and an inner diameter of 200μm.
To obtain a hollow fiber membrane. The water permeability of the obtained hollow fiber membrane was 800 l / m2 · hr · (Kg / cm2 ).

【0063】比較例2 PS17重量%、水 1.0重量%、PVPを 6.0重量%、D
MA76.0重量%を混合加熱攪拌して均一透明な原液を調
製した。45℃にて16時間静置し、脱泡した後、外径 0.5
mm、内径0.25mmの環状ノズルより、DMA40重量%、水
60重量%からなる内部凝固液とともに50℃で吐出し、50
℃、相対湿度80%に調整された空中に押し出した。ドラ
イゾーン長10cmの空中走行後、12m/min の速度で50℃の
水中に導いて凝固させた。この時のノズルドラフトは
3.2であった。次いで、60℃の温水洗浄及び90℃の熱水
処理、80℃の8重量%グリセリン水溶液中に10分間浸漬
した後に枠に捲きとり、乾燥して外径 280μm 、内径 2
00μmの中空繊維膜を得た。得られた中空繊維膜の透水
性能は 80 l/m2・hr・(Kg/cm2)、膜中にPVPが5重量
%存在し、内表面緻密層に存在するPVPとPSの重量
比率は16/84、内表面緻密層に存在するPVPの重量比
率と外表面層に存在するPVPの重量比率の比は 0.7で
あった。なお、この中空繊維膜は乾燥後の膠着糸が非常
に多く、安定に製造することができなかった。
Comparative Example 2 PS 17% by weight, water 1.0% by weight, PVP 6.0% by weight, D
76.0% by weight of MA was mixed and stirred under heating to prepare a uniform transparent stock solution. After leaving it at 45 ° C for 16 hours to remove bubbles, the outside diameter is 0.5.
mm, inner diameter 0.25 mm, annular DMA, 40% by weight, water
Discharge at 50 ° C with internal coagulation liquid consisting of 60% by weight,
Extruded into the air adjusted to 80 ° C and 80% relative humidity. After running in the dry zone with a length of 10 cm, it was introduced into water at 50 ° C at a speed of 12 m / min and solidified. The nozzle draft at this time is
It was 3.2. Then, wash with warm water at 60 ℃ and hot water treatment at 90 ℃, immerse in a 8% by weight glycerin aqueous solution at 80 ℃ for 10 minutes, then wind on a frame and dry to obtain an outer diameter of 280μm and an inner diameter of 2
A 00 μm hollow fiber membrane was obtained. The water permeability of the obtained hollow fiber membrane was 80 l / m2 · hr · (Kg / cm2 ), 5% by weight of PVP was present in the membrane, and the weight ratio of PVP and PS present in the inner surface dense layer was 16/84, the ratio of the weight ratio of PVP existing in the inner surface dense layer to the weight ratio of PVP existing in the outer surface layer was 0.7. It should be noted that this hollow fiber membrane could not be manufactured stably because the amount of glued yarn after drying was very large.

【0064】比較例3 実施例2の原液を用い、DMA40重量%、水60重量%か
らなる内部凝固液とともに50℃で吐出し、50℃、相対湿
度80%に調整された空中に押し出した。ドライゾーン長
10cmの空中走行後、12m/min の速度で50℃の水中に導い
て凝固させた。この時のノズルドラフトは 3.2であっ
た。次いで、60℃の温水洗浄及び90℃の熱水処理、90℃
の6重量%グリセリン水溶液中に5分間浸漬した後に枠
に捲きとり、乾燥して外径 280μm 、内径 200μmの中
空繊維膜を得た。得られた中空繊維膜の透水性能は600
l/m2・hr・(Kg/cm2)、膜中にPVPとPEGがそれぞれ
3.0重量%、 2.1重量%存在し、内表面緻密層に存在す
るPVPとPSの重量比率は 8/92、内表面緻密層に存
在するPVPの重量比率と外表面層に存在するPVPの
重量比率の比は 0.8であった。
Comparative Example 3 Using the stock solution of Example 2, the mixture was discharged at 50 ° C. together with an internal coagulating liquid consisting of 40% by weight DMA and 60% by weight water, and extruded into the air adjusted to 50 ° C. and 80% relative humidity. Dry zone length
After running in the air for 10 cm, it was introduced into water at 50 ° C. at a speed of 12 m / min and solidified. The nozzle draft at this time was 3.2. Then, wash with warm water at 60 ℃ and hot water treatment at 90 ℃, 90 ℃
Was immersed in a 6% by weight aqueous solution of glycerin for 5 minutes, wound on a frame, and dried to obtain a hollow fiber membrane having an outer diameter of 280 μm and an inner diameter of 200 μm. The water permeability of the obtained hollow fiber membrane is 600.
l / m2 · hr · (Kg / cm2 ), PVP and PEG in the film, respectively
3.0% by weight and 2.1% by weight, the weight ratio of PVP and PS in the inner surface dense layer is 8/92, the weight ratio of PVP in the inner surface dense layer and the weight ratio of PVP in the outer surface layer The ratio was 0.8.

【0065】比較例4 実施例2の方法で得られた中空繊維膜を60℃の温水洗浄
し、90℃の熱水処理を行った後、グリセリン水溶液中へ
浸漬することなく、枠に捲きとり、乾燥して外径 280μ
m 、内径 200μm の中空繊維膜を得たが、乾燥後の中空
繊維膜同士の膠着が多く、安定に製造することができな
かった。また得られた中空繊維膜の透水性能は 125 l/m
2 ・hr・(Kg/cm2)と極めて低く実用上問題がある。
Comparative Example 4 The hollow fiber membrane obtained by the method of Example 2 was washed with hot water at 60 ° C., treated with hot water at 90 ° C., and then wound on a frame without being immersed in an aqueous glycerin solution. Dried, outer diameter 280μ
Although a hollow fiber membrane with m 2 and an inner diameter of 200 μm was obtained, the hollow fiber membranes after drying were often stuck to each other and could not be stably produced. The water permeability of the obtained hollow fiber membrane is 125 l / m.
It is extremely low at2 · hr · (Kg / cm2 ), which poses a practical problem.

【0066】実施例6 PS17重量%、PEG22.0重量%、PVP 1.7重量%、
ジメチルホルムアミド59.3重量%を混合加熱攪拌して均
一透明な原液を調製した。45℃にて16時間静置し、脱泡
した後、外径 0.7mm、内径 0.3mmの環状ノズルより、ジ
メチルホルムアミド59.5重量%、PVP 0.5重量%、水
40重量%からなる内部凝固液とともに30℃で吐出し、相
対湿度80%、50℃に調整された空中に押し出した。ドラ
イゾーン長10cmの空中走行後、10.5m/min の速度で50℃
の水中に導いて凝固させた。この時のノズルドラフトは
3.8であった。次いで、60℃の温水洗浄及び90℃の熱水
処理、75℃の 7.5重量%グリセリン水溶液中に10分間浸
漬した後に枠に捲きとり、乾燥して外径 360μm 、内径
230μm の中空繊維膜を得た。得られた中空繊維膜の透
水性能は850 l/m2・hr・(Kg/cm2)、膜中にPVPとPE
Gがそれぞれ 2.7重量%、 1.8重量%存在し、内表面緻
密層に存在するPVPとPSの重量比率は20/80、内表
面緻密層に存在するPVPの重量比率と外表面層に存在
するPVPの重量比率の比は 3.0であった。なお、この
中空繊維膜は乾燥後の膠着糸が皆無であり、安定に製造
することができた。
Example 6 17% by weight PS, 22.0% by weight PEG, 1.7% by weight PVP,
59.3% by weight of dimethylformamide was mixed and stirred to prepare a uniform transparent stock solution. After leaving it at 45 ° C for 16 hours to remove bubbles, 59.5% by weight of dimethylformamide, 0.5% by weight of PVP and water were added from an annular nozzle with an outer diameter of 0.7 mm and an inner diameter of 0.3 mm
It was discharged at 30 ° C with an internal coagulation liquid consisting of 40% by weight and extruded into the air adjusted to 50 ° C and 80% relative humidity. After running in the dry zone with a length of 10 cm, at a speed of 10.5 m / min, 50 ° C
It was introduced into the water and solidified. The nozzle draft at this time is
It was 3.8. Then, wash with warm water at 60 ° C and hot water treatment at 90 ° C, immerse in a 7.5% by weight glycerin aqueous solution at 75 ° C for 10 minutes, wind it up on a frame, and dry it to give an outer diameter of 360 μm and an inner diameter.
A 230 μm hollow fiber membrane was obtained. The water permeability of the obtained hollow fiber membrane is 850 l / m2 · hr · (Kg / cm2 ), and PVP and PE are contained in the membrane.
G of 2.7% by weight and 1.8% by weight of G respectively, the weight ratio of PVP and PS existing in the inner surface dense layer is 20/80, the weight ratio of PVP existing in the inner surface dense layer and the PVP existing in the outer surface layer The weight ratio of was 3.0. This hollow fiber membrane had no glued yarn after drying, and could be stably manufactured.

【0067】実施例7 実施例2、3、5と比較例1〜3で得られた中空繊維膜
を9700本束ね有効膜面積 1.7m2の人工腎臓用モジュール
を組み立てた。これらはすべてウェット状態で高圧蒸気
滅菌を行った。該モジュールを用いて、UFR(限外濾
過速度)および透析性能を日本人工臓器学会の性能評価
基準に基づいて測定した。またアルブミン、イヌリンの
ふるい係数の測定は、ハイパフォーマンスメンブレン研
究会に示された方法(腎と透析 別冊 27 167 (1989))
で行った。測定結果を表1に示す。表1から、実施例
2、3、5は透析性能等すべてに優れ、しかも残血(中
空繊維の閉塞による)が少なく抗血栓性に優れていた。
一方比較例1は透析性能等すべてに優れているが、抗血
栓性に問題がある。また比較例2、3は透析性能が低
く、かつ抗血栓性にも問題があった。
Example 7 9700 hollow fiber membranes obtained in Examples 2, 3 and 5 and Comparative Examples 1 to 3 were bundled to assemble an artificial kidney module having an effective membrane area of 1.7 m2 . All of these were autoclaved under wet conditions. Using the module, UFR (ultrafiltration rate) and dialysis performance were measured based on the performance evaluation standard of the Japan Society for Artificial Organs. The sieving coefficient of albumin and inulin was measured by the method presented by the High Performance Membrane Study Group (Kidney and dialysis separate volume 27 167 (1989)).
I went there. The measurement results are shown in Table 1. From Table 1, Examples 2, 3 and 5 were excellent in all dialysis performance and the like, and had less residual blood (due to the clogging of the hollow fiber) and excellent antithrombotic property.
On the other hand, Comparative Example 1 is excellent in all dialysis performance, etc., but has a problem in antithrombotic property. Further, Comparative Examples 2 and 3 had low dialysis performance and had a problem in antithrombotic property.

【0068】[0068]

【表1】[Table 1]

【0069】 urea; 尿素、inu.イヌリン、Alb;アルブミン 注1) 単位:ml/(min ・m2・mmHg) 注2) 残血:◎;殆ど無、〇;少 △;やや多い
×;多
Urea; urea, inu. Inulin, Alb; albumin Note 1) Unit: ml / (min · m2 · mmHg) Note 2) Residual blood: ◎; almost none, 〇; small △; rather large
×; many

【0070】[0070]

【発明の効果】以上のように、本発明のポリスルホン中
空繊維膜は、特に生体適合性、延いては抗血栓性に優れ
るような親水性高分子の種類、含有量、存在形態を有
し、さらに高い透水性、シャープな分画性を有している
ので、本発明のポリスルホン系中空繊維膜を使用して体
液処理を行うと、例えば、血液透析においては、優れた
抗血栓性の効果により残血(中空繊維の閉塞による)が
ない、または非常に少ないので安全に透析治療が実施で
きる。また、持続的血液濾過(CAVH)のように長時
間連続的に濾過を行う治療においては、少量のヘパリン
投与で、血栓による中空繊維膜の閉塞がなく長時間安定
して治療に用いることができ、さらに、中分子量物質は
透過されるが、有用タンパク質であるアルブミンはほと
んど除去されないので、血液の膠質浸透圧が維持可能で
ある。また本発明によるポリスルホン系中空繊維膜の製
造方法は、原液の粘度調整が容易で、かつ中空繊維膜の
外表面層に存在するビニルピロリドン系ポリマーの重量
比率が低いため、中空繊維膜の製造工程において、中空
繊維膜同士の膠着がなく安定に中空繊維膜を製造でき
る。
INDUSTRIAL APPLICABILITY As described above, the polysulfone hollow fiber membrane of the present invention has the kind, content, and existence form of the hydrophilic polymer which is particularly excellent in biocompatibility, and by extension, antithrombotic property, Since it has high water permeability and sharp fractionation property, when the body fluid treatment is performed using the polysulfone-based hollow fiber membrane of the present invention, for example, in hemodialysis, an excellent antithrombotic effect can be obtained. Since there is no or very little residual blood (due to hollow fiber blockage), dialysis treatment can be safely performed. Further, in a treatment such as continuous hemofiltration (CAVH) in which continuous filtration is performed for a long time, a small amount of heparin can be administered, and the hollow fiber membrane is not occluded by a thrombus and can be stably used for a long time. Furthermore, since the medium molecular weight substance is permeated, but the useful protein albumin is hardly removed, the oncotic pressure of blood can be maintained. Further, the method for producing a polysulfone-based hollow fiber membrane according to the present invention, the viscosity of the stock solution is easy to adjust, and since the weight ratio of the vinylpyrrolidone-based polymer present in the outer surface layer of the hollow fiber membrane is low, the production process of the hollow fiber membrane is In the above, the hollow fiber membranes can be stably manufactured without sticking between the hollow fiber membranes.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例2で得られたポリスルホン系中空繊維膜
の外表面層の構造を示す10000倍のSEM写真である。
1 is a 10,000 times SEM photograph showing the structure of the outer surface layer of the polysulfone-based hollow fiber membrane obtained in Example 2. FIG.

【図2】上記中空繊維膜の内表面緻密層の構造を示す10
000 倍のSEM写真である。
FIG. 2 shows the structure of the inner surface dense layer of the hollow fiber membrane.
This is a 000 times SEM photograph.

【図3】上記中空繊維膜の断面構造を示す1500倍のSE
M写真である。
[Fig. 3] 1500 times SE showing the cross-sectional structure of the hollow fiber membrane
It is an M photograph.

【図4】上記中空繊維膜の外表面側の断面構造を示す10
000 倍のSEM写真である。
FIG. 4 shows a cross-sectional structure of the outer surface side of the hollow fiber membrane 10
This is a 000 times SEM photograph.

【図5】上記中空繊維膜の中央部の断面構造を示す1000
0 倍のSEM写真である。
FIG. 5 shows a cross-sectional structure of the central portion of the hollow fiber membrane 1000
It is a 0x SEM photograph.

【図6】上記中空繊維膜の内表面側の断面構造を示す10
000 倍のSEM写真である。
FIG. 6 shows a cross-sectional structure on the inner surface side of the hollow fiber membrane 10
This is a 000 times SEM photograph.

フロントページの続き (72)発明者 小松 賢作 岡山県倉敷市酒津1621番地 株式会社クラ レ内Front page continuation (72) Inventor Kensaku Komatsu 1621 Sakata, Kurashiki City, Okayama Prefecture Kuraray Co., Ltd.

Claims (11)

Translated fromJapanese
【特許請求の範囲】[Claims]【請求項1】 ポリスルホン系ポリマーからなる、内表
面に緻密層をもつ非対称構造の中空繊維膜であって、該
中空繊維膜はポリスルホン系ポリマーを主成分とし、少
なくとも1重量%のポリグリコール類と1〜8重量%の
ビニルピロリドン系ポリマーを含有し、かつ中空繊維膜
の内表面の緻密層に存在するポリスルホン系ポリマーと
ビニルピロリドン系ポリマーの重量比率が90:10〜60:
40で、しかも中空繊維膜の内表面の上記緻密層に存在す
るビニルピロリドン系ポリマーの重量比率が外表面層に
存在するビニルピロリドン系ポリマーの重量比率の少な
くとも 1.1倍であることを特徴とするポリスルホン系中
空繊維膜。
1. A hollow fiber membrane of polysulfone-based polymer having an asymmetric structure having a dense layer on the inner surface, the hollow fiber membrane containing a polysulfone-based polymer as a main component and at least 1% by weight of polyglycols. The weight ratio of the polysulfone-based polymer to the vinylpyrrolidone-based polymer, which contains 1 to 8% by weight of the vinylpyrrolidone-based polymer and is present in the dense layer on the inner surface of the hollow fiber membrane, is 90:10 to 60:
40, and the weight ratio of the vinylpyrrolidone polymer present in the dense layer on the inner surface of the hollow fiber membrane is at least 1.1 times the weight ratio of the vinylpyrrolidone polymer present in the outer surface layer. -Based hollow fiber membrane.
【請求項2】 上記ポリグリコール類がポリエチレング
リコールである請求項1に記載のポリスルホン系中空繊
維膜。
2. The polysulfone-based hollow fiber membrane according to claim 1, wherein the polyglycol is polyethylene glycol.
【請求項3】 上記ビニルピロリドン系ポリマーがポリ
ビニルピロリドン、ビニルピロリドン・酢酸ビニル共重
合体、ビニルピロリドン・ビニルアルコール共重合体、
ビニルピロリドン・スチレン共重合体、ビニルピロリド
ン・ジメチルアミノエチルメタクリレート共重合体およ
びこれらの変性ポリマーよりなる群から選ばれる請求項
1または2に記載のポリスルホン系中空繊維膜。
3. The vinylpyrrolidone-based polymer is polyvinylpyrrolidone, vinylpyrrolidone / vinyl acetate copolymer, vinylpyrrolidone / vinyl alcohol copolymer,
The polysulfone-based hollow fiber membrane according to claim 1 or 2, which is selected from the group consisting of a vinylpyrrolidone-styrene copolymer, a vinylpyrrolidone-dimethylaminoethylmethacrylate copolymer and modified polymers thereof.
【請求項4】 中空繊維膜の内表面の緻密層に存在する
ビニルピロリドン系ポリマーの重量比率が外表面層に存
在するビニルピロリドン系ポリマーの重量比率の少なく
とも 1.5倍である請求項1ないし3の何れかに記載のポ
リスルホン系中空繊維膜。
4. The weight ratio of the vinylpyrrolidone polymer present in the dense layer on the inner surface of the hollow fiber membrane is at least 1.5 times the weight ratio of the vinylpyrrolidone polymer present in the outer surface layer. The polysulfone-based hollow fiber membrane according to any one of claims.
【請求項5】 中空繊維膜の内表面の緻密層に存在する
ビニルピロリドン系ポリマーの重量比率が外表面層に存
在するビニルピロリドン系ポリマーの重量比率の少なく
とも 2.0倍である請求項1ないし4の何れかに記載のポ
リスルホン系中空繊維膜。
5. The weight ratio of the vinylpyrrolidone polymer present in the dense layer on the inner surface of the hollow fiber membrane is at least 2.0 times the weight ratio of the vinylpyrrolidone polymer present in the outer surface layer. The polysulfone-based hollow fiber membrane according to any one of claims.
【請求項6】 ポリスルホン系ポリマーと重量平均分子
量 200〜 6,000のポリグリコール類および重量平均分子
量が少なくとも10,000のビニルピロリドン系ポリマーと
を混合溶解した製膜原液を環状オリフィスより吐出させ
る工程と、 0.1〜4重量%のビニルピロリドン系ポリマ
ーを含有する溶液を上記吐出原液の環状の流れの内部に
供給してポリスルホン系中空繊維膜を形成する工程と、
該製膜されたポリスルホン系中空繊維膜を、該ポリスル
ホン系ポリマーに対して貧溶媒作用を有する溶液で処理
して、中空繊維膜の内表面の緻密層に存在するビニルピ
ロリドン系ポリマーの重量比率が外表面層に存在するビ
ニルピロリドン系ポリマーの重量比率の少なくとも 1.1
倍となるように調整する工程とを含んでなることを特徴
とするポリスルホン系中空繊維膜の製造方法。
6. A step of discharging a film-forming stock solution obtained by mixing and dissolving a polysulfone polymer, a polyglycol having a weight average molecular weight of 200 to 6,000 and a vinylpyrrolidone polymer having a weight average molecular weight of at least 10,000 from an annular orifice, A step of supplying a solution containing 4% by weight of a vinylpyrrolidone-based polymer to the inside of the annular flow of the discharge stock solution to form a polysulfone-based hollow fiber membrane;
The formed polysulfone-based hollow fiber membrane is treated with a solution having a poor solvent action to the polysulfone-based polymer, and the weight ratio of the vinylpyrrolidone-based polymer present in the dense layer on the inner surface of the hollow fiber membrane is reduced. At least 1.1 by weight of vinylpyrrolidone-based polymer present in the outer surface layer.
The method for producing a polysulfone-based hollow fiber membrane, which comprises a step of adjusting the number to be doubled.
【請求項7】 上記ポリグリコール類がポリエチレング
リコールである請求項6に記載のポリスルホン系中空繊
維膜の製造方法。
7. The method for producing a polysulfone-based hollow fiber membrane according to claim 6, wherein the polyglycol is polyethylene glycol.
【請求項8】 上記ビニルピロリドン系ポリマーがポリ
ビニルピロリドン、ビニルピロリドン・酢酸ビニル共重
合体、ビニルピロリドン・ビニルアルコール共重合体、
ビニルピロリドン・スチレン共重合体、ビニルピロリド
ン・ジメチルアミノエチルメタクリレート共重合体およ
びこれらの変性ポリマーよりなる群から選ばれる請求項
6または7に記載のポリスルホン系中空繊維膜の製造方
法。
8. The vinylpyrrolidone-based polymer is polyvinylpyrrolidone, vinylpyrrolidone / vinyl acetate copolymer, vinylpyrrolidone / vinyl alcohol copolymer,
The method for producing a polysulfone-based hollow fiber membrane according to claim 6 or 7, which is selected from the group consisting of a vinylpyrrolidone-styrene copolymer, a vinylpyrrolidone-dimethylaminoethylmethacrylate copolymer and modified polymers thereof.
【請求項9】 上記ポリスルホン系ポリマーに対して貧
溶媒作用を有する溶液が水、アルコール類、エチレング
リコール、プロピレングリコール、グリセリン、重量平
均分子量 600以下のポリエチレングリコールよりなる群
から選ばれる少なくとも1種の液体である請求項6ない
し9の何れかに記載のポリスルホン系中空繊維膜の製造
方法。
9. The solution having a poor solvent action to the polysulfone polymer is at least one selected from the group consisting of water, alcohols, ethylene glycol, propylene glycol, glycerin, and polyethylene glycol having a weight average molecular weight of 600 or less. The method for producing a polysulfone-based hollow fiber membrane according to claim 6, which is a liquid.
【請求項10】 中空繊維膜の内表面の緻密層に存在す
るビニルピロリドン系ポリマーの重量比率が外表面層に
存在するビニルピロリドン系ポリマーの重量比率の少な
くとも 1.5倍となるように、ポリスルホン系中空繊維膜
を該ポリスルホン系ポリマーに対して貧溶媒作用を有す
る溶液で処理して調整する請求項6ないし9に記載のポ
リスルホン系中空繊維膜の製造方法。
10. A polysulfone-based hollow so that the weight ratio of the vinylpyrrolidone-based polymer present in the dense layer on the inner surface of the hollow fiber membrane is at least 1.5 times the weight ratio of the vinylpyrrolidone-based polymer present in the outer surface layer. The method for producing a polysulfone-based hollow fiber membrane according to claim 6, wherein the fiber membrane is prepared by treating the fiber membrane with a solution having a poor solvent action with respect to the polysulfone-based polymer.
【請求項11】 中空繊維膜の内表面の緻密層に存在す
るビニルピロリドン系ポリマーの重量比率が外表面層に
存在するビニルピロリドン系ポリマーの重量比率の少な
くとも2倍となるように、ポリスルホン系中空繊維膜を
該ポリスルホン系ポリマーに対して貧溶媒作用を有する
溶液で処理して調整する請求項6ないし10に記載のポリ
スルホン系中空繊維膜の製造方法。
11. A polysulfone-based hollow so that the weight ratio of the vinylpyrrolidone-based polymer present in the dense layer on the inner surface of the hollow fiber membrane is at least twice the weight ratio of the vinylpyrrolidone-based polymer present in the outer surface layer. The method for producing a polysulfone-based hollow fiber membrane according to claim 6, wherein the fiber membrane is treated with a solution having a poor solvent action with respect to the polysulfone-based polymer.
JP05124863A1992-04-291993-04-30 Polysulfone-based hollow fiber membrane and method for producing the sameExpired - Fee RelatedJP3117575B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP05124863AJP3117575B2 (en)1992-04-291993-04-30 Polysulfone-based hollow fiber membrane and method for producing the same

Applications Claiming Priority (3)

Application NumberPriority DateFiling DateTitle
JP137929921992-04-29
JP4-1379291992-04-29
JP05124863AJP3117575B2 (en)1992-04-291993-04-30 Polysulfone-based hollow fiber membrane and method for producing the same

Publications (2)

Publication NumberPublication Date
JPH06165926Atrue JPH06165926A (en)1994-06-14
JP3117575B2 JP3117575B2 (en)2000-12-18

Family

ID=26461432

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP05124863AExpired - Fee RelatedJP3117575B2 (en)1992-04-291993-04-30 Polysulfone-based hollow fiber membrane and method for producing the same

Country Status (1)

CountryLink
JP (1)JP3117575B2 (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH07289863A (en)*1994-04-271995-11-07Asahi Medical Co LtdPolysulfone hollow fiber membrane and its production
WO1997013575A1 (en)*1995-10-091997-04-17Asahi Kasei Kogyo Kabushiki KaishaPolysulfone membrane for purifying blood
US5938929A (en)*1995-06-301999-08-17Toray Industries, Inc.Polysulfone hollow fiber semipermeable membrane
JP2001314736A (en)*2000-05-122001-11-13Kuraray Co Ltd Manufacturing method of membrane forming stock solution and hollow fiber membrane
US6432309B1 (en)1997-05-192002-08-13Asahi Medical Co, LtdPolysulfone-base hollow-fiber hemocathartic membrane and processes for the production thereof
EP1141699A4 (en)*1998-11-202002-11-20Bio Merieux IncDevices and methods for performing blood coagulation assays by piezoelectric sensing
WO2005051460A1 (en)*2003-11-262005-06-09Toyo Boseki Kabushiki KaishaPolysulfone-based hollow-fiber membrane with selective permeability
JP2005214919A (en)*2004-02-022005-08-11Toray Ind IncSeparation membrane for pretreatment for protein and/or peptide analysis
JP2005230811A (en)*2004-01-192005-09-02Mitsubishi Rayon Co Ltd Method for producing porous membrane
WO2005089917A1 (en)*2004-03-222005-09-29Toyo Boseki Kabushiki KaishaSeparation membrane with selective permeability and process for producing the same
JP2005329087A (en)*2004-05-202005-12-02Toyobo Co LtdPolysulfone base permselective hollow fiber membrane excellent in hemocompatibility
JP2005334318A (en)*2004-05-272005-12-08Toyobo Co LtdHigh strength and high water permeability hollow fiber membrane type hemocatharsis apparatus
JP2005342102A (en)*2004-06-012005-12-15Toyobo Co LtdPolysulfone based permselective hollow yarn membrane with excellent blood compatibility
JP2005348874A (en)*2004-06-092005-12-22Toyobo Co Ltd Polysulfone permselective hollow fiber membrane
JP2006304827A (en)*2005-04-262006-11-09Toyobo Co Ltd Blood purifier
JP2007069017A (en)*2006-11-162007-03-22Toyobo Co LtdPreferential separation membrane for blood processing and its manufacturing method and module
WO2007125943A1 (en)*2006-04-262007-11-08Toyo Boseki Kabushiki KaishaPolymeric porous hollow fiber membrane
JPWO2006025352A1 (en)*2004-08-302008-05-08東レ株式会社 Fractionation device
JP2008110054A (en)*2006-10-302008-05-15Kuraray Medical IncHollow fiber membrane for blood purification and its manufacturing method
EP1634611A4 (en)*2003-08-292008-09-03Toyo BosekiHighly water-permeable blood purifier of hollow-fiber membrane type
WO2009072548A1 (en)*2007-12-062009-06-11Asahi Kasei Kuraray Medical Co., Ltd.Porous hollow fiber membrane for treating blood
JP2009536090A (en)*2006-05-062009-10-08メムブラーナ ゲゼルシャフト ミット ベシュレンクテル ハフツング Ultrafiltration membrane
WO2009123088A1 (en)*2008-03-312009-10-08東レ株式会社Separation membrane, method of producing the same and separation membrane module using the separation membrane
JP2009262147A (en)*2008-03-312009-11-12Toray Ind IncPolysulfone-based separation membrane and method for manufacturing for polysulfone-based separation membrane module
JP2010104984A (en)*2008-09-302010-05-13Toray Ind IncPolysulfone-based hollow fiber membrane module and method of manufacturing the same
US7837042B2 (en)2004-08-102010-11-23Nipro CorporationPolysulfone type selectively permeable hollow fiber membrane module and process for manufacturing the same
WO2011021300A1 (en)*2009-08-212011-02-24東レ株式会社Water-vapor-permeable membrane, hollow-fiber membrane, and hollow-fiber membrane module
JP2011072987A (en)*2009-09-012011-04-14Toray Ind IncSeparation membrane, separation membrane module, method of manufacturing separation membrane, and method of manufacturing separation membrane module
JP2011092928A (en)*2009-09-302011-05-12Toray Ind IncSeparation membrane and separation membrane module
JP2011092931A (en)*2009-09-302011-05-12Toray Ind IncHollow fiber membrane module and method of manufacturing the same
JP2011173115A (en)*2010-01-292011-09-08Toray Ind IncHollow fiber membrane and method for producing hollow fiber membrane
JP2012011221A (en)*2011-09-122012-01-19Asahi Kasei Kuraray Medical Co LtdHollow fiber membrane for blood purification and manufacturing method thereof
JP2012019890A (en)*2010-07-132012-02-02Asahi Kasei Kuraray Medical Co LtdHollow fiber membrane for blood processing, and hollow fiber membrane type blood processing device
JP2012507393A (en)*2008-10-312012-03-29ゼネラル・エレクトリック・カンパニイ Method and apparatus for polysulfone membrane
WO2012091028A1 (en)2010-12-282012-07-05東レ株式会社Medical material and hollow fiber membrane module
JP5403444B1 (en)*2012-11-152014-01-29東洋紡株式会社 Porous hollow fiber membrane
JP2014073487A (en)*2012-09-112014-04-24Toray Ind IncPorous membrane, water purifier incorporating porous membrane and method for producing porous membrane
JP2015013228A (en)*2013-07-032015-01-22東レ株式会社Hollow fiber membrane and production method of the same
KR101489746B1 (en)*2013-04-302015-02-04주식회사 퓨어멤Preparation method of polysulfone hollow fiber membrane for removing virus
WO2015046411A1 (en)2013-09-302015-04-02東レ株式会社Porous membrane, blood purifying module incorporating porous membrane, and method for producing porous membrane
JP2015182060A (en)*2014-03-262015-10-22株式会社クラレ Hollow fiber membrane and method for producing hollow fiber membrane
WO2016031834A1 (en)*2014-08-252016-03-03旭化成メディカル株式会社Porous membrane
JP2017529238A (en)*2014-09-222017-10-05フレセニウス メディカル ケア ドイチェランド ゲーエムベーハー Use place water purifier with polysulfone hollow fiber
KR20190107685A (en)*2017-02-012019-09-20프레제니우스 메디칼 케어 도이칠란드 게엠베하 Hollow fiber membrane with improved biocompatibility and reduced hydrophilic polymer elution
JP2020151699A (en)*2019-03-182020-09-24東レ株式会社 Hollow fiber membrane for humidification and hollow fiber membrane module for humidification using this
US10953142B2 (en)2016-08-052021-03-23Toray Industries, Inc.Biological component adhesion-suppressing material
KR20210144131A (en)*2020-05-212021-11-30도레이첨단소재 주식회사Composition of Polyphenylene sulfide porous hollow fiber membrane having sponge like structure, PPS porous hollow fiber membrane containing the same and Manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2010029908A1 (en)*2008-09-102010-03-18東レ株式会社Hollow-fiber membrane and process for production of hollow-fiber membrane

Cited By (78)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH07289863A (en)*1994-04-271995-11-07Asahi Medical Co LtdPolysulfone hollow fiber membrane and its production
US5938929A (en)*1995-06-301999-08-17Toray Industries, Inc.Polysulfone hollow fiber semipermeable membrane
US6103117A (en)*1995-06-302000-08-15Toray Industries, Inc.Polysulfone hollow fiber semipermeable membrane
WO1997013575A1 (en)*1995-10-091997-04-17Asahi Kasei Kogyo Kabushiki KaishaPolysulfone membrane for purifying blood
EP2255866A1 (en)1997-05-192010-12-01Asahi Kasei Kuraray Medical Co., Ltd.Polysulfone type hollow fiber membrane for purifying blood and process for producing the same
US6432309B1 (en)1997-05-192002-08-13Asahi Medical Co, LtdPolysulfone-base hollow-fiber hemocathartic membrane and processes for the production thereof
EP1141699A4 (en)*1998-11-202002-11-20Bio Merieux IncDevices and methods for performing blood coagulation assays by piezoelectric sensing
JP2001314736A (en)*2000-05-122001-11-13Kuraray Co Ltd Manufacturing method of membrane forming stock solution and hollow fiber membrane
US7442302B2 (en)2003-08-292008-10-28Toyo Boseki Kabushiki KaishaHighly water-permeable blood purifier of hollow-fiber membrane type
EP1634611A4 (en)*2003-08-292008-09-03Toyo BosekiHighly water-permeable blood purifier of hollow-fiber membrane type
WO2005051460A1 (en)*2003-11-262005-06-09Toyo Boseki Kabushiki KaishaPolysulfone-based hollow-fiber membrane with selective permeability
US7638052B2 (en)2003-11-262009-12-29Toyo Boseki Kabushiki KaishaPolysulfone-based hollow-fiber membrane with selective permeability
JP2005230811A (en)*2004-01-192005-09-02Mitsubishi Rayon Co Ltd Method for producing porous membrane
JP2005214919A (en)*2004-02-022005-08-11Toray Ind IncSeparation membrane for pretreatment for protein and/or peptide analysis
WO2005089917A1 (en)*2004-03-222005-09-29Toyo Boseki Kabushiki KaishaSeparation membrane with selective permeability and process for producing the same
US7922007B2 (en)2004-03-222011-04-12Toyo Boseki Kabushiki KaishaSeparation membrane with selective permeability and process for producing the same
JP2005329087A (en)*2004-05-202005-12-02Toyobo Co LtdPolysulfone base permselective hollow fiber membrane excellent in hemocompatibility
JP2005334318A (en)*2004-05-272005-12-08Toyobo Co LtdHigh strength and high water permeability hollow fiber membrane type hemocatharsis apparatus
JP2005342102A (en)*2004-06-012005-12-15Toyobo Co LtdPolysulfone based permselective hollow yarn membrane with excellent blood compatibility
JP2005348874A (en)*2004-06-092005-12-22Toyobo Co Ltd Polysulfone permselective hollow fiber membrane
US7837042B2 (en)2004-08-102010-11-23Nipro CorporationPolysulfone type selectively permeable hollow fiber membrane module and process for manufacturing the same
JPWO2006025352A1 (en)*2004-08-302008-05-08東レ株式会社 Fractionation device
JP2006304827A (en)*2005-04-262006-11-09Toyobo Co Ltd Blood purifier
US8881915B2 (en)2006-04-262014-11-11Toyo Boseki Kabushiki KaishaPolymeric porous hollow fiber membrane
WO2007125943A1 (en)*2006-04-262007-11-08Toyo Boseki Kabushiki KaishaPolymeric porous hollow fiber membrane
KR101363304B1 (en)*2006-05-062014-02-18멤브라나 게엠베하Ultrafiltration membrane
JP2009536090A (en)*2006-05-062009-10-08メムブラーナ ゲゼルシャフト ミット ベシュレンクテル ハフツング Ultrafiltration membrane
JP2008110054A (en)*2006-10-302008-05-15Kuraray Medical IncHollow fiber membrane for blood purification and its manufacturing method
JP2007069017A (en)*2006-11-162007-03-22Toyobo Co LtdPreferential separation membrane for blood processing and its manufacturing method and module
US9616393B2 (en)2007-12-062017-04-11Asahi Kasei Medical Co., Ltd.Porous hollow fiber membrane for treating blood
JP5211071B2 (en)*2007-12-062013-06-12旭化成メディカル株式会社 Porous hollow fiber membrane for blood treatment
WO2009072548A1 (en)*2007-12-062009-06-11Asahi Kasei Kuraray Medical Co., Ltd.Porous hollow fiber membrane for treating blood
WO2009123088A1 (en)*2008-03-312009-10-08東レ株式会社Separation membrane, method of producing the same and separation membrane module using the separation membrane
US9561478B2 (en)2008-03-312017-02-07Toray Industries, Inc.Separation membrane, method of producing the same and separation membrane module using the separation membrane
KR101525642B1 (en)*2008-03-312015-06-03도레이 카부시키가이샤Separation membrane, method of producing the same and separation membrane module using the separation membrane
JP2014042913A (en)*2008-03-312014-03-13Toray Ind IncSeparation membrane and separation membrane module
JPWO2009123088A1 (en)*2008-03-312011-07-28東レ株式会社 Separation membrane for blood purification and separation membrane module for blood purification
JP2009262147A (en)*2008-03-312009-11-12Toray Ind IncPolysulfone-based separation membrane and method for manufacturing for polysulfone-based separation membrane module
US8613361B2 (en)2008-03-312013-12-24Toray Industries, Inc.Separation membrane, method of producing the same and separation membrane module using the separation membrane
JP4888559B2 (en)*2008-03-312012-02-29東レ株式会社 Separation membrane for blood purification, separation membrane module for blood purification, hollow fiber membrane for blood purification, and hollow fiber membrane module for blood purification
JP2011078974A (en)*2008-03-312011-04-21Toray Ind IncSeparation membrane, method of producing the same and separation membrane module using the separation membrane
JP2010104984A (en)*2008-09-302010-05-13Toray Ind IncPolysulfone-based hollow fiber membrane module and method of manufacturing the same
JP2012507393A (en)*2008-10-312012-03-29ゼネラル・エレクトリック・カンパニイ Method and apparatus for polysulfone membrane
WO2011021300A1 (en)*2009-08-212011-02-24東レ株式会社Water-vapor-permeable membrane, hollow-fiber membrane, and hollow-fiber membrane module
US8500871B2 (en)2009-08-212013-08-06Toray Industries, Inc.Water-vapor-permeable membrane, hollow-fiber membrane, and hollow-fiber membrane module
JP2011072987A (en)*2009-09-012011-04-14Toray Ind IncSeparation membrane, separation membrane module, method of manufacturing separation membrane, and method of manufacturing separation membrane module
JP2015163398A (en)*2009-09-012015-09-10東レ株式会社Separation membrane and separation membrane module, and method of producing separation membrane and method of manufacturing separation membrane module
JP2011092931A (en)*2009-09-302011-05-12Toray Ind IncHollow fiber membrane module and method of manufacturing the same
JP2011092928A (en)*2009-09-302011-05-12Toray Ind IncSeparation membrane and separation membrane module
JP2011173115A (en)*2010-01-292011-09-08Toray Ind IncHollow fiber membrane and method for producing hollow fiber membrane
JP2012019890A (en)*2010-07-132012-02-02Asahi Kasei Kuraray Medical Co LtdHollow fiber membrane for blood processing, and hollow fiber membrane type blood processing device
WO2012091028A1 (en)2010-12-282012-07-05東レ株式会社Medical material and hollow fiber membrane module
US9867917B2 (en)2010-12-282018-01-16Toray Industries, Inc.Medical material and hollow fiber membrane module
JP2012011221A (en)*2011-09-122012-01-19Asahi Kasei Kuraray Medical Co LtdHollow fiber membrane for blood purification and manufacturing method thereof
JP2014073487A (en)*2012-09-112014-04-24Toray Ind IncPorous membrane, water purifier incorporating porous membrane and method for producing porous membrane
JP5403444B1 (en)*2012-11-152014-01-29東洋紡株式会社 Porous hollow fiber membrane
WO2014077095A1 (en)*2012-11-152014-05-22東洋紡株式会社Porous hollow fiber membrane
US10577393B2 (en)2012-11-152020-03-03Toyobo Co., Ltd.Porous hollow fiber membrane
KR101489746B1 (en)*2013-04-302015-02-04주식회사 퓨어멤Preparation method of polysulfone hollow fiber membrane for removing virus
JP2015013228A (en)*2013-07-032015-01-22東レ株式会社Hollow fiber membrane and production method of the same
WO2015046411A1 (en)2013-09-302015-04-02東レ株式会社Porous membrane, blood purifying module incorporating porous membrane, and method for producing porous membrane
JPWO2015046411A1 (en)*2013-09-302017-03-09東レ株式会社 Porous membrane, blood purification module incorporating porous membrane, and method for producing porous membrane
KR20160065047A (en)2013-09-302016-06-08도레이 카부시키가이샤Porous membrane, blood purifying module incorporating porous membrane, and method for producing porous membrane
RU2667068C2 (en)*2013-09-302018-09-14Торэй Индастриз, Инк.Porous membrane, blood purifying module incorporating porous membrane and method for producing porous membrane
JP2015182060A (en)*2014-03-262015-10-22株式会社クラレ Hollow fiber membrane and method for producing hollow fiber membrane
JPWO2016031834A1 (en)*2014-08-252017-06-15旭化成メディカル株式会社 Porous membrane
WO2016031834A1 (en)*2014-08-252016-03-03旭化成メディカル株式会社Porous membrane
US11338248B2 (en)2014-08-252022-05-24Asahi Kasei Medical Co., Ltd.Porous membrane
US12364954B2 (en)2014-08-252025-07-22Asahi Kasei Medical Co., Ltd.Porous membrane
JP2017529238A (en)*2014-09-222017-10-05フレセニウス メディカル ケア ドイチェランド ゲーエムベーハー Use place water purifier with polysulfone hollow fiber
US10953142B2 (en)2016-08-052021-03-23Toray Industries, Inc.Biological component adhesion-suppressing material
KR20190107685A (en)*2017-02-012019-09-20프레제니우스 메디칼 케어 도이칠란드 게엠베하 Hollow fiber membrane with improved biocompatibility and reduced hydrophilic polymer elution
JP2020508869A (en)*2017-02-012020-03-26フレゼニウス メディカル ケア ドイッチェランド ゲゼルシャフト ミット ベシュレンクテル ハフツング Hollow fiber membrane with improved biocompatibility and reduced elution of hydrophilic polymer
US11484844B2 (en)2017-02-012022-11-01Fresenius Medical Care Deutschland GmbhHollow-fibre membrane with improved biocompatibility and reduced elution of hydrophilic polymers
US11872530B2 (en)2017-02-012024-01-16Fresenius Medical Care Deutschland GmbhHollow-fibre membrane with improved biocompatibility and reduced elution of hydrophilic polymers
JP2024137948A (en)*2017-02-012024-10-07フレゼニウス メディカル ケア ドイッチェランド ゲゼルシャフト ミット ベシュレンクテル ハフツング Hollow fiber membrane with improved biocompatibility and reduced leaching of hydrophilic polymers - Patents.com
JP2020151699A (en)*2019-03-182020-09-24東レ株式会社 Hollow fiber membrane for humidification and hollow fiber membrane module for humidification using this
KR20210144131A (en)*2020-05-212021-11-30도레이첨단소재 주식회사Composition of Polyphenylene sulfide porous hollow fiber membrane having sponge like structure, PPS porous hollow fiber membrane containing the same and Manufacturing method thereof

Also Published As

Publication numberPublication date
JP3117575B2 (en)2000-12-18

Similar Documents

PublicationPublication DateTitle
JP3117575B2 (en) Polysulfone-based hollow fiber membrane and method for producing the same
EP0568045B1 (en)Polysulfone-based hollow fiber membrane and process for manufacturing the same
US6432309B1 (en)Polysulfone-base hollow-fiber hemocathartic membrane and processes for the production thereof
US4906375A (en)Asymmetrical microporous hollow fiber for hemodialysis
JP2916446B2 (en) Method for producing asymmetric microporous hollow fiber
KR101007956B1 (en) Selective Permeable Membrane and Manufacturing Method Thereof
WO1995033549A1 (en)Porous polysulfone membrane and process for producing the same
RU2667068C2 (en)Porous membrane, blood purifying module incorporating porous membrane and method for producing porous membrane
WO1997034687A1 (en)Hollow yarn membrane used for blood purification and blood purifier
JP2007522929A (en) Dialysis membrane with improved removal of medium molecules
CA2202969C (en)Selectively permeable hollow fiber membrane and process for producing same
EP0598690B1 (en)High-flux hollow-fiber membrane with enhanced transport capability and process for making same
EP1134019B1 (en)Hollow fiber membrane and process for producing the same
JP3714686B2 (en) Polysulfone-based hollow fiber membrane and method for producing the same
EP0012630A1 (en)Process for producing a cellulose acetate-type permselective membrane, permselective membrane thus produced, and use of such membrane in artificial kidney
JP2703266B2 (en) Polysulfone hollow fiber membrane and method for producing the same
JPH11309355A (en)Polysulfone hollow fiber type blood purifying membrane and its production
JPH0929078A (en) Hollow fiber membrane manufacturing method
JPH09308685A (en)Hollow fiber membrane for blood purification and blood purifying device
JPS63130103A (en)Polyacrylonitrile-base semipermeable membrane and manufacturing thereof
JP3770145B2 (en) Method for producing semipermeable membrane and dialyzer using the semipermeable membrane
JP4093134B2 (en) Hollow fiber blood purification membrane
JP3334705B2 (en) Polysulfone-based selectively permeable hollow fiber membrane
JP4386607B2 (en) Polysulfone blood purification membrane production method and polysulfone blood purification membrane
JP4794716B2 (en) Hollow fiber membrane and method for producing the same

Legal Events

DateCodeTitleDescription
FPAYRenewal fee payment (prs date is renewal date of database)

Free format text:PAYMENT UNTIL: 20071006

Year of fee payment:7

FPAYRenewal fee payment (prs date is renewal date of database)

Year of fee payment:8

Free format text:PAYMENT UNTIL: 20081006

FPAYRenewal fee payment (prs date is renewal date of database)

Free format text:PAYMENT UNTIL: 20091006

Year of fee payment:9

LAPSCancellation because of no payment of annual fees

[8]ページ先頭

©2009-2025 Movatter.jp