Movatterモバイル変換


[0]ホーム

URL:


JPH06160525A - Distance/speed predicting device - Google Patents

Distance/speed predicting device

Info

Publication number
JPH06160525A
JPH06160525AJP4313487AJP31348792AJPH06160525AJP H06160525 AJPH06160525 AJP H06160525AJP 4313487 AJP4313487 AJP 4313487AJP 31348792 AJP31348792 AJP 31348792AJP H06160525 AJPH06160525 AJP H06160525A
Authority
JP
Japan
Prior art keywords
speed
base line
obstacle
distance
moving body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4313487A
Other languages
Japanese (ja)
Other versions
JP3214932B2 (en
Inventor
Masahiko Kato
加藤正彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co LtdfiledCriticalOlympus Optical Co Ltd
Priority to JP31348792ApriorityCriticalpatent/JP3214932B2/en
Publication of JPH06160525ApublicationCriticalpatent/JPH06160525A/en
Application grantedgrantedCritical
Publication of JP3214932B2publicationCriticalpatent/JP3214932B2/en
Anticipated expirationlegal-statusCritical
Expired - Fee Relatedlegal-statusCriticalCurrent

Links

Landscapes

Abstract

PURPOSE:To evaluate the degree of risk on collision with a constant threshold value even when the angle of the base line of collision against the normal line is large (oblique collision) by calculating the constituent of the relative speed perpendicular to the base line from the detected output of a sensor. CONSTITUTION:Distance/speed sensors 1, 2 having light projection sections and light reception sections are provided on a moving body 3 at an interval of the base line length, and light beams 4, 5 are emitted from the sensors 1, 2 to cross each other. An obstacle 6 approaches the moving body 3 at the speed vector V, and it gets into contact with the light beam 4 at a point P when it is moved to the position 7. The scattered light is received by the sensors 1, 2 at the point P, and distances of the point P from both ends of a base line AB and constituents V1, V2 of the speed vector V in the directions of the sensors 1, 2 are measured. When the relative speed constituent VY=Vcostheta2 perpendicular to the base line AB exceeds the preset value Vth, a life protecting device such as an air bag or a pre-tension must be activated. The speed constituent VY (degree of risk) is obtained from measured parameters.

Description

Translated fromJapanese
【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は距離・速度予知装置、例
えば自動車衝突予知センサに適した距離・速度予知装置
に関するものであり、特に衝突の危険性および衝突直前
の相対速度を検出し、生命防護装置の起動信号を発生さ
せるようにした距離・速度予知装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distance / speed predicting device, for example, a distance / speed predicting device suitable for a vehicle collision predicting sensor, and more particularly to detecting a danger of a collision and a relative speed immediately before the collision to detect life. The present invention relates to a distance / speed predicting device that generates a start signal for a protective device.

【0002】[0002]

【従来の技術】自動車衝突予知センサとしては、従来、
交通渋滞時の追突防止や後退時のバックセンサなどが知
られているが、一般に衝突が運転者あるい同乗者の生命
に危険なものかどうかは障害物との相対速度、障害物の
重量、衝突の仕方等に依存し、これらを衝突以前に知る
ことは困難が多い。衝突後の衝撃の強さを測定する従来
の方法としてはメカニカルな加速度センサが知られてい
る。この測定値があるしきい値を越えた時にエアバッ
グ、プリテンションなどの生命防護装置を起動させて衝
突の際の衝撃を緩和している。
2. Description of the Related Art Conventionally, as a vehicle collision prediction sensor,
It is known to prevent rear-end collisions during traffic jams and back sensors when retreating, but in general whether a collision is dangerous to the life of the driver or passengers, the relative speed with the obstacle, the weight of the obstacle, It depends on the collision method, etc., and it is often difficult to know these before the collision. A mechanical acceleration sensor is known as a conventional method for measuring the strength of impact after a collision. When this measured value exceeds a certain threshold, life protection devices such as airbags and pretensions are activated to reduce the impact in the event of a collision.

【0003】衝突前に衝突の危険性を予知する方法は従
来多くの提案がなされており、その多くは追突防止装置
に見られるように車間距離が大きい場合を想定してい
る。しかし、衝突直前の近接した状態での移動体と障害
物の衝突の危険性および相対速度の検出は、生命防護装
置を起動すべきか否かを決定する上で重要な役割を有し
ている。
Many methods have been proposed in the past for predicting the risk of a collision before a collision, and most of them have assumed a large inter-vehicle distance as seen in a rear-end collision prevention device. However, the detection of the risk of collision and the relative speed of a moving object and an obstacle in a close state immediately before a collision has an important role in deciding whether or not to activate the life protection device.

【0004】本出願人は既に特願平4─8531の衝突
予知装置に於いて衝突の危険性に関する評価量および衝
突直前の速度を求める方法を示している。この原理説明
図を図8に示す。図において、点Pを障害物とし、A、
Bを移動物体の両端に設けられた距離・速度測定手段と
する。Vを移動物体と障害物との相対速度、V1、V2
を距離・速度測定手段A、B方向への速度成分、θを点
PがA、Bに対して張る角度、θ1をVとV1とがなす
角度、Lを基線ABの長さ、A、Bから点Pまでの距離
をL1、L2とする。衝突の危険性はθ1≦θの時高
く、θ1>θの程度に従って低くなる。これを実測され
るパラメータで表現すると以下のようになる。
The applicant of the present invention has already shown a method of obtaining an evaluation amount relating to the risk of collision and a speed immediately before the collision in the collision predicting apparatus of Japanese Patent Application No. 4-8531. FIG. 8 shows this principle explanatory diagram. In the figure, point P is an obstacle, and A,
Let B be distance / velocity measuring means provided at both ends of the moving object. V is the relative velocity between the moving object and the obstacle, V1 , V2
Is the velocity component in the direction of the distance / velocity measuring means A, B, θ is the angle that the point P extends with respect to A and B, θ1 is the angle formed by V and V1 , L is the length of the baseline AB, A , B to the point P are L1 and L2 . The risk of collision is high when θ1 ≤ θ, and becomes low as θ1 > θ. This can be expressed by the measured parameters as follows.

【0005】V1=Vcosθ1、V2=Vcos(θ
1−θ)から、 V2+V1=2Vcos(θ1−θ/2)cos(θ/
2) V2−V1=2Vsin(θ1−θ/2)sin(θ/
2) (V2−V1)/(V2+V1)=Kとおくと、 θ1=tan-1{K/tan(θ/2)}+θ/2 したがって、θ1≦θの条件はK≦tan2(θ/2)
と表される。あるいは、符号を考慮して、 |K|≦tan2(θ/2) ・・・(1) ただし、 θ=cos-1(L12+L22−L2)/2L12 ・・・(2) K=(V2−V1)/(V2+V1) ・・・(3) また、真の相対速度Vは次式で与えられる。
V1 = Vcos θ1 , V2 = Vcos (θ
1− θ), V2 + V1 = 2V cos (θ1 −θ / 2) cos (θ /
2) V2 −V1 = 2V sin (θ1 −θ / 2) sin (θ /
2) If (V2 −V1 ) / (V2 + V1 ) = K, θ1 = tan−1 {K / tan (θ / 2)} + θ / 2 Therefore, the condition of θ1 ≦ θ is K ≦ tan2 (θ / 2)
Is expressed as Alternatively, considering the sign, | K | ≦ tan2 (θ / 2) (1) where θ = cos−1 (L12 + L22 −L2 ) / 2L1 L2 ... · (2) K = the(V 2 -V 1) / ( V 2 + V 1) ··· (3), the true relative velocity V is given by the following equation.

【0006】 V=(V12+V22−2V12cosθ)1/2/sinθ・・・(4) この相対速度Vがある設定値Vthを越えると、エアバッ
グ、プリテンション等の生命防護装置を起動させる必要
性が生じる。すなわち、 V≧Vth ・・・(5) 言い換えると、既知の量L、及び、測定される距離・速
度のパラメータL1 、L2 、V1、V2から、(2)、
(3)、(4)式を用いてθ、K、Vを計算し、
(1)、(5)の不等式を満たすか否かをみることによ
り、衝突の危険性を判断することができる。これらの情
報と、衝突後の衝撃センサの情報を利用し、不図示の論
理回路手段を通して生命防護装置を起動させる信号を得
ることにより、生命防護装置を起動させるべきか否かに
つき、確度の高い情報を得ることができる。
V = (V12 + V22 -2V1 V2 cos θ)1/2 / sin θ (4) When this relative speed V exceeds a certain set value Vth , an airbag, pretension, etc. The need arises to activate the life protection device of. That is, V ≧ Vth (5) In other words, from the known amount L and the measured distance / speed parameters L1 , L2 , V1 , and V2 , (2),
Calculate θ, K, and V using equations (3) and (4),
The risk of collision can be determined by checking whether or not the inequalities of (1) and (5) are satisfied. By using these information and the information of the impact sensor after the collision, and obtaining a signal for activating the life protection device through a logic circuit means (not shown), it is possible to determine whether or not the life protection device should be activated. You can get information.

【0007】[0007]

【発明が解決しようとする課題】ところで、既出願のも
のでは次に述べるような不都合がある。前記しきい値V
thは速度Vの基線ABに垂直な成分に対して定められ
る。このため基線ABに垂直に近い角度での衝突に関し
ては、しきい値Vthはほぼ一定となるが、基線の法線に
対する角度が大きい斜めの衝突の場合には、角度の大き
さに対応してVthを変える必要がある。
By the way, the prior application has the following inconveniences. The threshold value V
th is defined for the component of the velocity V perpendicular to the baseline AB. Therefore, the threshold value Vth is almost constant for a collision at an angle close to the base line AB, but in the case of an oblique collision with a large angle with respect to the normal line of the base line, it corresponds to the magnitude of the angle. It is necessary to change Vth .

【0008】本発明はこのような状況に鑑みてなされた
ものであり、衝突直前の近接した状態での移動体と障害
物の衝突の、基線の法線に対する角度が大きい場合にも
一定のしきい値により、衝突の危険度を評価し、生命防
護装置の起動信号を発生するようにした距離・速度予知
装置を提供することを目的とする。
The present invention has been made in view of such a situation, and it is fixed even when the angle of the collision of the moving body and the obstacle in the close state immediately before the collision with the normal line of the base line is large. An object of the present invention is to provide a distance / speed predicting device which evaluates the risk of collision based on a threshold value and generates an activation signal of a life protection device.

【0009】[0009]

【課題を解決するための手段】そのために本発明は、移
動体に基線長だけ隔たってそれぞれ配置された障害物探
査用投・受光部を有し、投光部から互いに交差するよう
に光ビームを放射して障害物からの反射光を受光部で受
光し、移動体と障害物との距離及び両者の相対速度を検
出する位置・速度検出手段と、該位置・速度検出手段の
検出出力から前記相対速度の基線に垂直な成分を算出す
る算出手段とを具備することを特徴とする。また、本発
明は、移動体に基線長だけ隔たってそれぞれ配置された
障害物探査用投・受光部を有し、投光部から互いに交差
するように光ビームを放射して障害物からの反射光を受
光部で受光し、移動体と障害物との距離及び両者の相対
速度を検出する位置・速度検出手段と、該位置・速度検
出手段の検出出力から前記相対速度の基線に垂直な成分
を算出する算出手段と、基線に垂直な相対速度成分をあ
らかじめ定められた閾値と比較する比較手段と、比較結
果に応じて生命防護装置の起動信号を発生させるか否か
を判別する演算手段とを具備することを特徴とする。
To this end, the present invention has an obstacle-searching projection / reception unit which is arranged on a moving body at a distance of a base line, and a light beam intersects with each other from the projection unit. The position / speed detecting means for detecting the distance between the moving body and the obstacle and the relative speed between the moving body and the obstacle, and the detection output of the position / speed detecting means. And a calculating means for calculating a component of the relative velocity perpendicular to the baseline. Further, the present invention has an obstacle-searching projecting / receiving unit which is arranged on the moving body with a distance of the base line, and emits light beams from the projecting unit so as to intersect with each other and reflects from the obstacle. Position / speed detecting means for detecting the distance between the moving body and the obstacle and relative speed between the moving body and the obstacle, and a component perpendicular to the base line of the relative speed from the detection output of the position / speed detecting means. A calculating means for calculating, a comparing means for comparing the relative velocity component perpendicular to the base line with a predetermined threshold value, and a calculating means for determining whether or not to generate the activation signal of the life protection device according to the comparison result. It is characterized by including.

【0010】[0010]

【作用】本発明においては、2つの位置・速度検出手段
を用いて検出した移動体と障害物との距離及び両者の相
対速度から移動体と障害物との間の基線に垂直な相対速
度成分VYを算出し、VYと一定のしきい値Vthとを比
較するようにしたものであり、移動体の基線に対する角
度が大きい斜め衝突の場合であっても一定のしきい値V
thを採用することが可能となり、VYがVthを越えたと
きに生命防護装置を起動させることが可能となる。
In the present invention, the relative velocity component perpendicular to the base line between the moving body and the obstacle is calculated from the distance between the moving body and the obstacle detected by the two position / velocity detecting means and the relative velocity between the two. VY is calculated and VY is compared with a constant threshold value Vth. Even in the case of an oblique collision where the angle of the moving body with respect to the base line is large, the constant threshold value Vth is obtained.
It becomes possible to adoptth, and it becomes possible to activate the life protection device when VY exceeds Vth .

【0011】[0011]

【実施例】図1に本発明の概念図を示す。図1に於いて
ABを基線とし、点Pを障害物として、2点A,Bに距
離・速度センサ1、2を配置する。V,V1,V2
θ,θ1を図8にならって図1のように定め、点Pから
基線ABに垂線PHを下ろし、速度ベクトルVの代わり
に基線ABに垂直な相対速度成分Vcos θ2を評価量と
するもので、このように選ぶことにより、該基線の法線
に対する角度が大きい場合にもほぼ一定のしきい値Vth
との比較が可能となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a conceptual diagram of the present invention. In FIG. 1, with AB as a base line and point P as an obstacle, distance / speed sensors 1 and 2 are arranged at two points A and B. V, V1 , V2 ,
Determine θ and θ1 as shown in FIG. 1 according to FIG. 8, draw a perpendicular line PH from the point P to the baseline AB, and use the relative velocity component Vcos θ2 perpendicular to the baseline AB instead of the velocity vector V as the evaluation amount. Therefore, by selecting in this way, a substantially constant threshold value Vth is obtained even when the angle of the base line with respect to the normal line is large.
It becomes possible to compare with.

【0012】本発明の第一実施例を図2に示す。図2に
おいて、基線長Lの間隔をおいて移動体3に投光部及び
受光部を有する距離・速度センサ1,2が設けられ、該
距離・速度センサ1,2から、コリメートされたコヒー
レント光ビーム4、5が互いに交差するように放出され
ている。該基線長Lとしては1〜2m 位比較的長い距離
が用いられる。6は障害物を表し、速度ベクトルVで移
動体3に接近し、7で表す位置に移動して点Pで光ビー
ム4に接触するものとし、V1,V2,θ1,θ2は図
1のように定める。点Pでの散乱光を基線ABの両端の
距離・速度センサ1,2で受け、点Pの基線ABの両端
からの距離L1,L2と速度ベクトルVの距離・速度セ
ンサ1,2の方向への成分V1,V2が測定される。点
Pが基線ABの両端に対して張る角度をα、βとする
と、基線ABに垂直な相対速度成分VY=Vcos θ2
次式で表される。
A first embodiment of the present invention is shown in FIG. In FIG. 2, distance / velocity sensors 1 and 2 having a light projecting portion and a light receiving portion are provided on a moving body 3 at intervals of a base line length L, and collimated coherent light from the distance / velocity sensors 1 and 2 is provided. The beams 4, 5 are emitted so that they intersect each other. As the base line length L, a relatively long distance of about 1 to 2 m is used. Reference numeral 6 represents an obstacle, which approaches the moving body 3 with the velocity vector V, moves to the position represented by 7 and contacts the light beam 4 at the point P, and V1 , V2 , θ1 and θ2 are Determine as shown in FIG. The scattered light at the point P is received by the distance / speed sensors 1 and 2 at both ends of the base line AB, and the distances / speed sensors 1 and2 between the distances L1 and L2 from both ends of the base line AB of the point P and the speed vector V are received. The components V1 , V2 in the direction are measured. Assuming that the angles formed by the point P with respect to both ends of the base line AB are α and β, the relative velocity component VY = V cos θ2 perpendicular to the base line AB is expressed by the following equation.

【0013】 VY=Vcosθ2 ・・・(6) 但し、θ2=θ1+α−π/2 α=sin-1(L2sinθ/L) θ1=tan-1(K/tan(θ/2))+θ/2 K=(V2−V1)/(V2+V1) θ=cos-1(L12+L22−L2)/2L12 V=(V12+V22−2V12cosθ)1/2/s
inθ この相対速度VYがある設定値Vthを越えると、エアバ
ッグ、プリテンション等の生命防護装置を起動させる必
要性が生じる。すなわち、 VY≧Vth ・・・(7) したがって、既知の量L、及び、測定される距離・速度
のパラメータL1 、L2 、V1、V2からθ、K、V求
めてθ1、θ2、αを算出し、(6)式よりVYを求め
て(7)の不等式を満たすか否かをみることにより、衝
突の危険性を判断することができる。
[0013]V Y = Vcosθ 2 ··· (6 )However, θ 2 = θ 1 + α -π / 2 α = sin -1 (L 2 sinθ / L) θ 1 = tan -1 (K / tan (θ / 2)) + θ / 2 K = (V2 −V1 ) / (V2 + V1 ) θ = cos−1 (L12 + L22 −L2 ) / 2L1 L2 V = (V12 + V22 -2V1 V2 cos θ)1/2 / s
in θ When the relative speed VY exceeds a certain set value Vth , it becomes necessary to activate a life protection device such as an airbag and pretension. That is, VY ≧ Vth (7) Therefore, θ, K, and V are obtained from the known quantity L and the measured distance / speed parameters L1 , L2 , V1 , and V2 and θ The risk of collision can be determined by calculating1 , θ2 and α, obtaining VY from the equation (6) and checking whether or not the inequality of (7) is satisfied.

【0014】図3は本発明の第1実施例の機能ブロック
を示すとともに、処理フローを示す図である。図3にお
いて、20は距離・速度測定手段、21は(θ,K,
V)算出手段、23は(θ1,θ2,α)算出手段、2
4は垂直相対速度成分(VY)算出手段、22,30は
判別手段、25は論理回路、26は衝撃センサ、27は
警告信号発生手段、28は生命防護装置への起動信号発
生手段をそれぞれ表す。
FIG. 3 is a diagram showing the functional blocks of the first embodiment of the present invention and the processing flow. In FIG. 3, 20 is a distance / speed measuring means, and 21 is (θ, K,
V) calculating means, 23 indicates (θ1 , θ2 , α) calculating means, 2
Reference numeral 4 is a vertical relative velocity component (VY ) calculating means, 22 and 30 are determining means, 25 is a logic circuit, 26 is an impact sensor, 27 is a warning signal generating means, and 28 is a starting signal generating means for the life protection device. Represent

【0015】距離・速度測定手段20により、測定値L
1,L2,V1,V2が検出され、該測定値から(θ,
K,V)算出手段21により評価量θ,K,Vが算出さ
れ、さらに(θ1,θ2,α)算出手段23により、θ
1,α,θ2が算出される。次いで、垂直相対速度成分
(VY)算出手段24により、(6)式に基づいて基線
ABに垂直な相対速度成分VY=Vcos θ2が算出さ
れ、算出されたVYは、判別手段30によりあらかじめ
定められたしきい値Vthと比較される。これを越えれば
衝撃センサ26の出力信号および判別手段22による、
評価量KとC=tan2(θ/2)との比較結果とを参考に
して、論理回路25による論理演算に従って起動信号発
生手段28を通して生命防護装置の起動信号をONとす
る。
The measured value L is measured by the distance / speed measuring means 20.
1 , L2 , V1 and V2 are detected, and (θ,
(K, V) calculating means 21 calculates the evaluation amounts θ, K, V, and (θ1 , θ2 , α) calculating means 23 calculates θ.
1 , α, θ2 are calculated. Next, the vertical relative velocity component (VY ) calculating means 24 calculates the relative velocity component VY = V cos θ2 perpendicular to the base line AB based on the equation (6), and the calculated VY is the discriminating means 30.Is compared with a predetermined threshold Vth . If it exceeds this, the output signal of the impact sensor 26 and the discrimination means 22
With reference to the comparison result of the evaluation amount K and C = tan2 (θ / 2), the activation signal of the life protection device is turned on through the activation signal generation means 28 according to the logical operation by the logic circuit 25.

【0016】論理回路25の論理演算について図4、図
5により説明する。図4において、判別手段22、30
で判別した結果、両者共満足する場合、その結果の論理
積をとり、その結果と、衝突後の衝撃センサ出力信号α
の時刻t1での経時変化予測値α1との比較判断α≧α
1がYESならば、これとの論理積をとり、生命防護装
置の起動信号をONとする。また、比較判断α≧α1
NOならば、αの時刻t2での経時変化予測値α2との
比較判断α≧α2をして、YESならば、これとK≦
C、VY≧Vthの比較判断信号の論理和との後記するよ
うな論理演算を論理演算回路RCにより行い、生命防護
装置の起動信号をONするか否かを決定する。この結果
が否定的な場合には、さらに、αの時刻t3での経時変
化予測値α3との比較判断α≧α3を待つ。この結果が
YESならば、K≦C、VY≧Vthの比較判断信号がと
もにNOであっても、生命防護装置の起動信号をONと
する。α<α3ならば、起動信号は出さない。図5に衝
突後の衝撃センサ出力信号αの初期の経時変化を模式的
に示す。具体的には、t3は、衝撃センサ単独で生命防
護装置を起動できる最短の時間を表し、通常20ms以
内に選ばれる。また、t1、t2は、それぞれ例えば1
0ms、15ms以内に選ばれるのが好ましい。衝撃セ
ンサ出力信号α3は、例えばエアバックでは、12mp
h(約20km/h)の速度での衝突における衝撃力に
対応している。
The logical operation of the logic circuit 25 will be described with reference to FIGS. In FIG. 4, the discrimination means 22, 30
If both are satisfied as a result of the determination in step 1, the logical product of the results is taken, and the result and the impact sensor output signal α after the collision
Comparison determination alpha ≧ alpha with aging predicted value alpha1 at time t1
If 1 is YES, the logical product is calculated with this and the activation signal of the life protection device is turned ON. Further, if the comparison determining alpha ≧ alpha1 is NO, then the comparison and determination alpha ≧ alpha2 with aging predicted value alpha2 at time t2 of the alpha, YES if, this and K ≦
C, VY ≧ Vth and the logical sum of the comparison judgment signals, which will be described later, are performed by the logical operation circuit RC to determine whether to turn on the activation signal of the life protection device. If this result is negative, the process waits for the comparison judgment α ≧ α3 with the predicted change value α3 of α at time t3 . If the result is YES, the activation signal of the life protection device is turned ON even if the comparison judgment signals of K ≦ C and VY ≧ Vth are both NO. If α <α3 , no start signal is issued. FIG. 5 schematically shows an initial change with time of the impact sensor output signal α after the collision. Specifically, t3 represents the shortest time that can start life protection device by the impact sensor itself, chosen usually within 20 ms. Further, t1 and t2 are, for example, 1 each.
It is preferably selected within 0 ms and 15 ms. The impact sensor output signal α3 is 12 mp for an airbag, for example.
It corresponds to the impact force in a collision at a speed of h (about 20 km / h).

【0017】論理演算回路RCは、衝突後の衝撃センサ
出力信号αの時刻t2での測定値α2m、及び、K、VY
の同時刻における測定値K2m、V2mの一種の重み付き平
均値と、予め定められた設定値とを比較するものであ
る。例えば、f(α2m)、g(K2m)、h(V2m)を各
測定値に対応した評価関数として、評価値εを、 ε=a1f(α2m)+a2g(K2m)+a3h(V2m) により計算し、得られたεを予め定められた設定値ε0
と比較する。ここに、a1、a2、a3は重み付き平均
値をとるための係数で、 a1+a2+a3=1 のように選ばれる。評価関数f(α2m)、g(K2m)、
h(V2m)の具体例は、 f(α2m)=f(α2m/α2)=1 if 0.9≦α2m/α2<1.0 0.5 if 0.8≦α2m/α2<0.9 0 if α2m/α2<0.8 g(K2m)=g(K/C) =1 if 1.0≦K/C<3.0 0.5 if 3.0≦K/C<6.0 0 if 6.0≦K/C h(V2m)=h(V2m/Vth)=1 if 0.9≦V2m/Vth<1.0 0.5 if 0.8≦V2m/Vth<0.9 0 if V2m/Vth<0.8 また、係数a1、a2、a3の数値例としては、 a1=0.5、a2=0.2、a3=0.3 上記のように定めた評価関数及び係数により評価値ε求
め、予め定められた設定値ε0と比較する。ε0≦εな
らば、生命防護装置の起動信号をONとする。ε0とし
ては、例えば0.85から1.0程度の数値が選ばれ
る。
The logical operation circuit RC uses the measured value α2m of the impact sensor output signal α after the collision at time t2 and K, VY.
Is to compare a kind of weighted average value of measured values K2m and V2m at the same time with a predetermined set value. For example, with f (α2m ), g (K2m ), h (V2m ) as an evaluation function corresponding to each measurement value, the evaluation value ε is expressed as ε = a1 f (α2m ) + a2 g (K2m ) + A3 h (V2m ), and the obtained ε is set to a predetermined set value ε0
Compare with. Here, a1 , a2 and a3 are coefficients for taking a weighted average value, and are selected as a1 + a2 + a3 = 1. Evaluation functions f (α2m ), g (K2m ),
A specific example of h (V2m ) is f (α2m ) = f (α2m / α2 ) = 1 if 0.9 ≦ α2m / α2 <1.0 0.5 if 0.8 ≦ α2m / Α2 <0.9 0 if α2m / α2 <0.8 g (K2m ) = g (K / C) = 1 if 1.0 ≦ K / C <3.0 0.5 if 3. 0 ≦ K / C <6.0 0 if 6.0 ≦ K / C h (V2m ) = h (V2m / Vth ) = 1 if 0.9 ≦ V2m / Vth <1.0. 5 if 0.8 ≦ V2m / Vth <0.9 0 if V2m / Vth <0.8 As numerical examples of the coefficients a1 , a2 and a3 , a1 = 0.5, a2 = 0.2, a3 = 0.3 The evaluation value ε is obtained by the evaluation function and coefficient defined as described above, and the evaluation value ε is compared with a predetermined set value ε0 . If ε0 ≦ ε, the activation signal of the life protection device is turned on. Avalue of, for example, about 0.85 to 1.0 is selected as ε0 .

【0018】本実施例は、移動体の基線ABから1m以
内といった最近接の距離で障害物との相対速度の基線A
Bに垂直な成分を求める場合を念頭においているが、光
ビームの交差角を適当に選んでより遠方まで障害物を探
査することは可能である。また、2つの同じ光ビームを
同時に放射していることを念頭において説明したが、時
系列的に交代に点灯したり、同時に放射するが、異なる
周波数で振幅変調し、それぞれに対応したバンドパスフ
ィルタを設けて並列に上記のフローに示した信号処理を
行ったりする変更が可能である。
In the present embodiment, the base line A of the relative velocity with the obstacle at the closest distance such as within 1 m from the base line AB of the moving body
Although the case where the component perpendicular to B is obtained is kept in mind, it is possible to appropriately search the intersection angle of the light beams to search the obstacle further away. Also, it was explained that two identical light beams were emitted at the same time, but they are alternately turned on in time series, or they are emitted at the same time, but they are amplitude-modulated at different frequencies, and band pass filters corresponding to each are provided. It is possible to make a change by providing the above and performing the signal processing shown in the above flow in parallel.

【0019】本実施例の特徴は互いに交差する単一の光
ビームといった簡単な構成で、最近接の距離で障害物と
の相対速度の基線ABに垂直な成分を正確に測定できる
ことにある。
The feature of this embodiment is that it has a simple structure such as a single light beam intersecting with each other, and can accurately measure the component of the relative velocity with respect to the obstacle perpendicular to the base line AB at the closest distance.

【0020】なお、障害物の存在が確認され、距離・速
度のパラメータの測定がなされた場合衝突が起こる可能
性が極めて高いが、障害物の質量が生命防護装置の起動
を必要とする程大きいか否かが不明で、距離・速度パラ
メータの測定手段として公知の光、あるいはマイクロ
波、超音波を用いるものでは、障害物の質量の予測が困
難なため、衝突後の衝撃センサ出力信号αにこの予測を
依存している。そして、K≦C、VY≧Vthの判断基準
を利用して、衝突後の生命防護装置の起動信号を生命維
持に必要な最大時間t3以内のできるだけ早い時期に出
力が可能であり、最も早い場合には、衝突後10ms以
内に起動信号を発すること、エアバックのインフレーシ
ョンの時間をより長くとることが可能となり、安全性の
向上に寄与することができる。
When the presence of an obstacle is confirmed and the parameters of distance and velocity are measured, the possibility of collision is extremely high, but the mass of the obstacle is large enough to require activation of the life protection device. It is unclear whether or not it is difficult to predict the mass of an obstacle with a known light, microwave, or ultrasonic wave as the distance / speed parameter measuring means. Relies on this prediction. Then, by utilizing the judgment criteria of K ≦ C and VY ≧ Vth , it is possible to output the activation signal of the life protection device after the collision at the earliest possible time within the maximum time t3 required for life support. In the earliest case, the activation signal can be issued within 10 ms after the collision, and the inflation time of the airbag can be made longer, which can contribute to the improvement of safety.

【0021】図6に本発明の第2の実施例を示す。第1
の実施例では基線ABの両端から互いに交差する単一光
ビームを放出したが、この実施例では基線ABの両端か
ら互いに交差する光ビームを放出するもので、図6にお
いて、光ビーム10,11と光ビーム12,13のペア
がこれにあたる。また点線で示した直線は基線ABから
予め定められた距離Ythを監視距離とすることを意味す
る。言い換えると、光ビーム10,11のいずれかに障
害物6が最初に接触した位置Pが距離Yth以内にあれ
ば、光ビームを同じ距離・速度センサから放射されてい
る他方の光ビームに切り換えて再度その危険性を確認す
るものである。例えば、光ビーム10が最初に光ビーム
に接触した点が監視距離Yth以内にあったならば、光ビ
ーム10を11に切りかかて、再度測定を試みることを
意味する。
FIG. 6 shows a second embodiment of the present invention. First
In this embodiment, single light beams intersecting with each other are emitted from both ends of the base line AB, but in this embodiment, light beams intersecting with each other are emitted from both ends of the base line AB. In FIG. And a pair of light beams 12 and 13 correspond to this. The straight line indicated by the dotted line means that a predetermined distance Yth from the base line AB is used as the monitoring distance. In other words, if the position P at which the obstacle 6 first contacts one of the light beams 10 and 11 is within the distance Yth , the light beam is switched to the other light beam emitted from the same distance / speed sensor. To confirm the danger again. For example, if the point at which the light beam 10 first contacts the light beam is within the monitoring distance Yth , it means that the light beam 10 is cut to 11 and the measurement is tried again.

【0022】具体的な構成及び処理フローを図7に示
す。図7は図3の処理フローを一部変更したものであ
り、変更部分のみを説明する。障害物が光ビームに接触
すると、距離・速度測定手段20によりL1,L2,V
1,V2が測定され、(θ,K,V)算出手段21によ
り評価量θ,K,Vが算出され、さらに(θ1,θ2
α)算出手段23により、θ1,α,θ2が算出され、
算出手段24により基線ABに垂直な相対速度成分VY
が算出され、判別手段30によりあらかじめ定められた
しきい値Vthと比較される。同時に判別手段32によ
り、接触点Pの基線ABからの距離Yと監視距離Yth
の大小の判断がなされ、この結果がYESならば光ビー
ム切り換え回路33を働かせて再度上記処理を繰り返
す。この結果から再度、算出手段24によるVYの算
出、しきい値Vthとの比較までの処理が行われ、光ビー
ム切り換え前後の判別手段30の判断結果、衝撃センサ
26、判別手段23の結果を勘案して生命防護信号を起
動すべきか否か論理回路31で決定する。
FIG. 7 shows a specific configuration and processing flow. FIG. 7 is a partial modification of the processing flow of FIG. 3, and only the modified part will be described. When an obstacle comes into contact with the light beam, the distance / velocity measuring means 20 causes L1 , L2 , V
1 , V2 are measured, the evaluation amounts θ, K, V are calculated by the (θ, K, V) calculating means 21, and further (θ1 , K 2, V2
α) calculating means 23 calculates θ1 , α, θ2 ,
The relative velocity component VY perpendicular to the baseline AB is calculated by the calculating means 24.
Is calculated and compared with a predetermined threshold value Vth by the discrimination means 30. At the same time, the discriminating means 32 discriminates between the distance Y of the contact point P from the base line AB and the monitoring distance Yth, and if the result is YES, the light beam switching circuit 33 is activated to repeat the above processing. From this result, the process of calculating VY by the calculating means 24 and comparing with the threshold value Vth is performed again, and the judgment result of the judging means 30 before and after the light beam switching, the result of the impact sensor 26, and the judging means 23. In consideration of the above, the logic circuit 31 determines whether or not the life protection signal should be activated.

【0023】決定機構は種々考えられるが、1例として
は、 (Vy1+Vy2)/2≧Vth ・・・(8) といった2回の測定の相加平均をとることである。な
お、距離Yの算出は、例えば次式でなされる。
Various determination mechanisms are conceivable, but one example is to take an arithmetic mean of two measurements such as (Vy1 + Vy2 ) / 2 ≧ Vth (8). The distance Y is calculated by the following equation, for example.

【0024】 Y=(L12sinθ)/L ・・・(9) 次に本実施例の特徴を述べる。図6において、2本の光
ビーム10,11を切り換えることにより2重の光バリ
ヤを形成し、予め設定された監視距離Ythに障害物が接
近したことを検知すると共に、(8)式で表されるよう
に、測定の確度を2倍に高めること可能である。
Y = (L1 L2 sin θ) / L (9) Next, the features of this embodiment will be described. In FIG. 6, a double light barrier is formed by switching the two light beams 10 and 11, and it is detected that an obstacle approaches a preset monitoring distance Yth , As shown, it is possible to double the accuracy of the measurement.

【0025】本実施例は次の変更が可能である。図6に
おいて、光ビームは基線ABのそれぞれから放射状に2
本出射しているが、この本数を増加したり、あるいは単
一の光ビームを放射角を可変とし、等価的に複数光ビー
ムと同等の役割を持たせることが可能である。
The present embodiment can be modified as follows. In FIG. 6, the light beam is projected radially from each of the baselines AB.
Although the main light is emitted, it is possible to increase the number or to make the radiation angle of a single light beam variable so as to equivalently have a role equivalent to that of a plurality of light beams.

【0026】[0026]

【発明の効果】以上のように本発明によれば、衝突直前
の障害物の速度、特に基線に垂直な速度成分を測定する
ことにより、評価量の判断基準Vthを基線の法線に対し
て大きな角度を有する斜めの衝突の場合にもほぼ一定の
値を採用することを可能にすると共に、簡単な構成で正
確にリアルタイムで測定し、速度成分が予め定められた
しきい値を越えた場合には生命防護装置の起動信号を提
供することができる。
As described above, according to the present invention, by measuring the velocity of the obstacle immediately before the collision, particularly the velocity component perpendicular to the base line, the criterion Vth of the evaluation amount is set to the normal line of the base line. It is possible to use a nearly constant value even in the case of an oblique collision with a large angle, and the speed component exceeds a predetermined threshold value by accurately measuring in real time with a simple configuration. In some cases, a life protector activation signal may be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理説明図である。FIG. 1 is a diagram illustrating the principle of the present invention.

【図2】第1実施例を説明する図である。FIG. 2 is a diagram illustrating a first embodiment.

【図3】第1実施例の構成及び処理フローを説明する図
である。
FIG. 3 is a diagram illustrating a configuration and a processing flow of the first embodiment.

【図4】第1実施例における論理回路を説明する図であ
る。
FIG. 4 is a diagram illustrating a logic circuit according to the first embodiment.

【図5】衝撃センサ出力信号を説明する図である。FIG. 5 is a diagram illustrating an impact sensor output signal.

【図6】第2実施例を説明する図である。FIG. 6 is a diagram illustrating a second embodiment.

【図7】第2実施例の構成及び処理フローを説明する図
である。
FIG. 7 is a diagram illustrating a configuration and a processing flow of a second embodiment.

【図8】既出願の衝突予知装置の原理説明図である。FIG. 8 is a diagram illustrating the principle of the collision prediction device of the already filed application.

【符号の説明】[Explanation of symbols]

1,2…距離・速度センサ 4,5…光ビーム 3…移動体 6,7…障害物 20…距離・速度測定手段 21…(θ,K,V)算出手段 23…(θ1,θ2,α)算出手段 24…垂直相対速度成分(VY)算出手段 22,30,32…判別手段 25,31…論理回路 26…衝撃センサ 27…警告信号発生手段 28…起動信号発生手段 33…光ビーム切り換え回路1, 2 ... Distance / speed sensor 4, 5 ... Optical beam 3 ... Moving body 6, 7 ... Obstacle 20 ... Distance / speed measuring means 21 ... (?, K, V) calculating means 23 ... (?1 ,?2) , Α) calculating means 24 ... Vertical relative velocity component (VY ) calculating means 22, 30, 32 ... Discriminating means 25, 31 ... Logic circuit 26 ... Impact sensor 27 ... Warning signal generating means 28 ... Start signal generating means 33 ... Optical Beam switching circuit

Claims (2)

Translated fromJapanese
【特許請求の範囲】[Claims]【請求項1】 移動体に基線長だけ隔たってそれぞれ配
置された障害物探査用投・受光部を有し、投光部から互
いに交差するように光ビームを放射して障害物からの反
射光を受光部で受光し、移動体と障害物との距離及び両
者の相対速度を検出する位置・速度検出手段と、該位置
・速度検出手段の検出出力から前記相対速度の基線に垂
直な成分を算出する算出手段とを具備することを特徴と
する距離・速度予知装置。
1. A reflected light from an obstacle, which has a projection / light reception unit for obstacle search, which is arranged on a moving body and spaced apart by a base line length, and which emits a light beam so as to intersect with each other from the projection unit. The position / speed detecting means for detecting the distance between the moving body and the obstacle and the relative speed between the moving body and the obstacle, and a component perpendicular to the base line of the relative speed from the detection output of the position / speed detecting means. A distance / speed predicting device comprising a calculating means for calculating.
【請求項2】 移動体に基線長だけ隔たってそれぞれ配
置された障害物探査用投・受光部を有し、投光部から互
いに交差するように光ビームを放射して障害物からの反
射光を受光部で受光し、移動体と障害物との距離及び両
者の相対速度を検出する位置・速度検出手段と、該位置
・速度検出手段の検出出力から前記相対速度の基線に垂
直な成分を算出する算出手段と、基線に垂直な相対速度
成分をあらかじめ定められた閾値と比較する比較手段
と、比較結果に応じて生命防護装置の起動信号を発生さ
せるか否かを判別する演算手段とを具備することを特徴
とする距離・速度予知装置。
2. A reflected light from an obstacle, which has a light emitting / receiving unit for obstacle exploration, which is arranged at a distance of a base line on a moving body, and emits a light beam from the light emitting unit so as to intersect with each other. The position / speed detecting means for detecting the distance between the moving body and the obstacle and the relative speed between the moving body and the obstacle, and a component perpendicular to the base line of the relative speed from the detection output of the position / speed detecting means. A calculating means for calculating, a comparing means for comparing the relative velocity component perpendicular to the base line with a predetermined threshold value, and an operating means for determining whether or not to generate the activation signal of the life protection device according to the comparison result. A distance / speed prediction device characterized by being provided.
JP31348792A1992-11-241992-11-24 Distance / speed prediction deviceExpired - Fee RelatedJP3214932B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP31348792AJP3214932B2 (en)1992-11-241992-11-24 Distance / speed prediction device

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP31348792AJP3214932B2 (en)1992-11-241992-11-24 Distance / speed prediction device

Publications (2)

Publication NumberPublication Date
JPH06160525Atrue JPH06160525A (en)1994-06-07
JP3214932B2 JP3214932B2 (en)2001-10-02

Family

ID=18041908

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP31348792AExpired - Fee RelatedJP3214932B2 (en)1992-11-241992-11-24 Distance / speed prediction device

Country Status (1)

CountryLink
JP (1)JP3214932B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
EP0709255A1 (en)*1994-10-251996-05-01Toyota Jidosha Kabushiki KaishaOccupant restraint system actuated by a simple operation using a feature value
WO1997033775A1 (en)*1996-03-131997-09-18Robert Bosch GmbhArrangement for detecting motor-vehicle roll-overs
WO1997033774A1 (en)*1996-03-111997-09-18Robert Bosch GmbhMethod and arrangement for detecting a vehicle roll-over
JP2009041981A (en)*2007-08-072009-02-26Nissan Motor Co Ltd Object detection apparatus and method, and vehicle equipped with object detection apparatus
JP2009276195A (en)*2008-05-142009-11-26Nissan Motor Co LtdObstacle detector

Cited By (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
EP0709255A1 (en)*1994-10-251996-05-01Toyota Jidosha Kabushiki KaishaOccupant restraint system actuated by a simple operation using a feature value
US5740041A (en)*1994-10-251998-04-14Toyota Jidosha Kabushiki KaishaVehicle occupant restraint system responsive to accelleration
WO1997033774A1 (en)*1996-03-111997-09-18Robert Bosch GmbhMethod and arrangement for detecting a vehicle roll-over
US6141604A (en)*1996-03-112000-10-31Robert Bosch GmbhMethod and arrangement for detecting a vehicle roll-over
WO1997033775A1 (en)*1996-03-131997-09-18Robert Bosch GmbhArrangement for detecting motor-vehicle roll-overs
JP2009041981A (en)*2007-08-072009-02-26Nissan Motor Co Ltd Object detection apparatus and method, and vehicle equipped with object detection apparatus
JP2009276195A (en)*2008-05-142009-11-26Nissan Motor Co LtdObstacle detector

Also Published As

Publication numberPublication date
JP3214932B2 (en)2001-10-02

Similar Documents

PublicationPublication DateTitle
US6012008A (en)Method and apparatus for predicting a crash and reacting thereto
JP3213706B2 (en) Sensor device for vehicle impact detection
US6326887B1 (en)Vehicle parking aid system
KR960701761A (en) ADJUSTABLE CRASH DISCRIMINATION SYSTEM WITH OCCUPANT POSITION DETECTION
CN113492786A (en)Vehicle safety system and method implementing weighted active-passive collision mode classification
JP3519617B2 (en) Control target sorting device
JPH0377560B2 (en)
JP3214932B2 (en) Distance / speed prediction device
JP2005044167A (en)Device for reporting information on vehicle collision accident
US20050060117A1 (en)Method and device for determination of the distance of a sensor device to an object
CN107458337A (en)The control of motor vehicle protection device
JPH07223505A (en)Operation control device for occupant protective device
JP2005069739A (en)On-vehicle obstacle detection device
JP3253336B2 (en) Life defense device activation device
JP2789437B2 (en) Inter-vehicle distance alarm
JPH0680436B2 (en) Airborne particle detector
JP2748064B2 (en) Reflector detector
JPH08160132A (en) Vehicle radar detector
WO1999010803A1 (en)Method and apparatus for perimeter sensing for vehicles
JP2594482B2 (en) Reflector detector
JP3134275B2 (en) Distance measuring device and collision warning system
JPH0867223A (en)Measurememt of inter-vehicle distance
KR960010158B1 (en) Anti-collision device and method using automatic switching of sensors
JPH11167698A (en) Vehicle obstacle warning device
KR960000640A (en) Airbag driving device using vehicle stopping device and method

Legal Events

DateCodeTitleDescription
A01Written decision to grant a patent or to grant a registration (utility model)

Free format text:JAPANESE INTERMEDIATE CODE: A01

Effective date:20010710

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20080727

Year of fee payment:7

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20090727

Year of fee payment:8

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20100727

Year of fee payment:9

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20100727

Year of fee payment:9

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20110727

Year of fee payment:10

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20120727

Year of fee payment:11

LAPSCancellation because of no payment of annual fees

[8]ページ先頭

©2009-2025 Movatter.jp