Movatterモバイル変換


[0]ホーム

URL:


JPH06140206A - Method for manufacturing oxide resistor - Google Patents

Method for manufacturing oxide resistor

Info

Publication number
JPH06140206A
JPH06140206AJP4286010AJP28601092AJPH06140206AJP H06140206 AJPH06140206 AJP H06140206AJP 4286010 AJP4286010 AJP 4286010AJP 28601092 AJP28601092 AJP 28601092AJP H06140206 AJPH06140206 AJP H06140206A
Authority
JP
Japan
Prior art keywords
oxide
resistor
titanium oxide
rutile
oxide resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4286010A
Other languages
Japanese (ja)
Inventor
Koji Tohata
孝二 東畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba CorpfiledCriticalToshiba Corp
Priority to JP4286010ApriorityCriticalpatent/JPH06140206A/en
Publication of JPH06140206ApublicationCriticalpatent/JPH06140206A/en
Pendinglegal-statusCriticalCurrent

Links

Landscapes

Abstract

Translated fromJapanese

(57)【要約】【構成】 ZnOを主成分とし、90%以上ルチル型の結
晶構造のTiO2を添加することを特徴とする直線抵抗
体の製造方法。【効果】 抵抗体の発熱分布が均一になる。
(57) [Summary] [Structure] A method for producing a linear resistor, which comprises ZnO as a main component and contains 90% or more of TiO2 having a rutile crystal structure. [Effect] The heat distribution of the resistor becomes uniform.

Description

Translated fromJapanese
【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に遮断器などの開閉
サ―ジ吸収に好適な抵抗体で、酸化亜鉛を主成分とし他
の酸化物を添加含有させた焼結体を用いる酸化物抵抗体
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resistor suitable for absorption of switching surges such as circuit breakers, and an oxide using a sintered body containing zinc oxide as a main component and containing other oxides. The present invention relates to a method for manufacturing a resistor.

【0002】[0002]

【従来の技術】酸化物抵抗体はオ―ムの法則に従う電圧
−電流特性を有し、遮断器などの開閉時に発生するサ―
ジを吸収するのに大きな効果を示す。
2. Description of the Related Art Oxide resistors have a voltage-current characteristic according to Ohm's law and are a type of circuit that occurs when a circuit breaker is opened or closed.
It has a great effect on absorbing dice.

【0003】ところで、このような酸化物抵抗体のうち
代表的なものとしては酸化亜鉛を主成分とし、副成分と
して例えば酸化チタン,酸化ケイ素,酸化マグネシウ
ム,酸化アンチモンなどを含有する酸化亜鉛系抵抗体が
知られている(特公平 3-10205号公報)。この酸化物抵
抗体の特徴は抵抗温度係数が正の特性(PTC特性)を
示すことで、その特性を発揮するには少なくとも添加物
として酸化チタンを含む必要がある(Solid-State Elec
tronics,Vol,6 111-120(1963))。酸化チタン(Ti
2)の結晶構造にはルチル型,板チタン型,アナタ―
ゼ型の3種の変態があることが知られているが、それぞ
れが特性にどのように影響するかは検証されておらず、
酸化物抵抗体の特性上のバラツキを制御するのが困難で
あるという問題があった。
[0003] By the way, as a typical one of such oxide resistors, a zinc oxide type resistor containing zinc oxide as a main component and titanium oxide, silicon oxide, magnesium oxide, antimony oxide, etc. as a minor component is used. The body is known (Japanese Patent Publication No. 3-10205). The characteristic of this oxide resistor is that the temperature coefficient of resistance has a positive characteristic (PTC characteristic), and it is necessary to contain at least titanium oxide as an additive in order to exert the characteristic (Solid-State Elec
tronics, Vol, 6 111-120 (1963)). Titanium oxide (Ti
The crystal structure of O2 ) is rutile type, plate titanium type,
It is known that there are three types of Z-type transformations, but how each affects the properties has not been verified,
There is a problem that it is difficult to control the variation in the characteristics of the oxide resistor.

【0004】[0004]

【発明が解決しようとする課題】上記のように従来の酸
化物抵抗体においては、酸化チタンの結晶構造と酸化物
抵抗体の特性についての相関が明らかでなかったため特
性の向上が困難であるという問題があった。
As described above, in the conventional oxide resistor, it is difficult to improve the characteristic because the correlation between the crystal structure of titanium oxide and the characteristic of the oxide resistor is not clear. There was a problem.

【0005】そこで本発明の目的は使用する酸化チタン
の結晶構造を規定することにより、特性上のバラツキが
少なく、高エネルギ―の開閉サ―ジを安定して吸収でき
る酸化物抵抗体の製造方法を提供することにある。
Therefore, an object of the present invention is to provide a method for producing an oxide resistor by defining the crystal structure of titanium oxide to be used so that there is little variation in characteristics and stable absorption of high energy switching serge. To provide.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明においては酸化亜鉛を主成分とし、副成分とし
て少なくとも酸化チタンを含む、電圧−電流特性が直線
性を示す酸化物抵抗体の製造方法において、前記酸化チ
タンとして90%以上ルチル型結晶構造を有する酸化チタ
ンを用いることを特徴とする酸化物抵抗体の製造方法を
提供する。
In order to achieve the above object, in the present invention, an oxide resistor which contains zinc oxide as a main component and contains at least titanium oxide as a sub-component and which exhibits a linear voltage-current characteristic is disclosed. In the manufacturing method, there is provided a manufacturing method of an oxide resistor, characterized in that 90% or more of titanium oxide having a rutile type crystal structure is used as the titanium oxide.

【0007】[0007]

【作用】酸化チタンは焼結過程において酸化亜鉛と反応
し、Zn2TiO4からなるスピネル化合物を生成し、
抵抗値の制御と焼結密度の向上に寄与している。出発原
料に高温で安定なルチル型の結晶構造のものを多く含む
酸化チタンを用いることにより反応機構において結晶転
移がなく、均一な反応が期待でき、焼結後の微細組織は
均一になる。
[Function] Titanium oxide reacts with zinc oxide in the sintering process to form a spinel compound composed of Zn2 TiO4 ,
It contributes to control of resistance and improvement of sintered density. By using titanium oxide containing a large amount of rutile type crystal structure that is stable at high temperature as a starting material, there is no crystal transition in the reaction mechanism, a uniform reaction can be expected, and the microstructure after sintering becomes uniform.

【0008】[0008]

【実施例】以下に本発明の一実施例を図1及び図2を参
照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0009】酸化亜鉛(ZnO)80wt%,酸化チタン
(TiO2)10wt%,酸化ニッケル(NiO)10wt%の
組成比で秤量した原料粉末を用意し、ボ―ルミルで15時
間湿式混合する。酸化チタンはルチルの含有率が異なる
原料粉を用いた。混合粉は乾燥した後、5%ポリビニル
アルコ―ル水溶液を3wt%添加し造粒する。造粒粉はφ
100 ×20mmの円盤状に成形し、1400℃で焼成した。この
焼成体の上下面を研磨した後、Alを研磨面に溶射する
ことにより電極を形成する。次に作用について説明す
る。
A raw material powder, which is weighed in a composition ratio of 80 wt% zinc oxide (ZnO), 10 wt% titanium oxide (TiO2 ) and 10 wt% nickel oxide (NiO), is prepared and wet-mixed in a ball mill for 15 hours. For titanium oxide, raw material powders having different rutile contents were used. The mixed powder is dried and then granulated by adding 3 wt% of a 5% polyvinyl alcohol aqueous solution. Granulated powder is φ
It was molded into a disc shape of 100 × 20 mm and fired at 1400 ° C. After polishing the upper and lower surfaces of the fired body, Al is sprayed on the polished surface to form electrodes. Next, the operation will be described.

【0010】図1は得られた酸化物抵抗体の開閉サ―ジ
耐量特性を示しており、縦軸には開閉サ―ジ耐量のエネ
ルギ―量を、横軸には出発原料の酸化チタンのルチル化
率をそれぞれ採用している。ルチル化率はX線回折を用
いて、回折ピ―クの強度比(ルチル(2θ=27.5°)/
(ルチル+アナタ―ゼ)(2θ=25.4°))より求め
た。
FIG. 1 shows the switching surge resistance capability of the obtained oxide resistor, where the vertical axis represents the energy amount of the switching surge capability and the horizontal axis represents the starting titanium oxide. The rutile ratio is adopted for each. The rutile ratio was determined by X-ray diffraction using the intensity ratio of the diffraction peak (rutile (2θ = 27.5 °) /
(Rutile + anatase) (2θ = 25.4 °)).

【0011】図1に示すようにルチル型の結晶構造の酸
化チタンが90%以上のときに高い開閉サ―ジ耐量特性が
得られる。このような優れた特性を有することは特に遮
断器などのエネルギ―機器を作る上で重要である。
As shown in FIG. 1, when the titanium oxide having a rutile type crystal structure is 90% or more, a high switching surge resistance characteristic can be obtained. Having such excellent properties is particularly important for making energy devices such as circuit breakers.

【0012】図2には酸化物抵抗体に開閉サ―ジエネル
ギ―を印加し、発熱させ、その温度をサ―モグラフィ―
により観測した時の面分布と線分布の結果を示す。
(a)が本実施例のルチル化率が95%のものを用いた場
合、(b)がルチル化率が80%のものを用いた場合の結
果である。この結果からわかるように、ルチル化率が95
%である本実施例は面全体に発熱が均一で、ルチル化率
が80%のものは不均一である。発熱が不均一な酸化物抵
抗体は電流集中が起こりやすく、耐量特性の低下につな
がる。このように、本実施例において優れた特性が得ら
れるのは、焼結過程において均一な反応が起こり、焼結
後の組織も均一になるためであると考えられる。
In FIG. 2, switching serge energy is applied to the oxide resistor to generate heat, and the temperature is measured by thermography.
The results of surface distribution and line distribution when observed by are shown.
(A) is the result when the rutile ratio of this example is 95%, and (b) is the result when the rutile ratio is 80%. As can be seen from this result, the rutile conversion rate is 95%.
%, The heat generation is uniform over the entire surface, and the one having a rutile conversion rate of 80% is non-uniform. Oxide resistors with non-uniform heat generation tend to cause current concentration, leading to deterioration in withstand voltage characteristics. As described above, it is considered that the excellent characteristics are obtained in the present example because the uniform reaction occurs in the sintering process and the structure after sintering becomes uniform.

【0013】尚、亜鉛,チタン,ニッケルの組成は上記
実施例に限定されるものではなく、また、実施例に示し
た添加物以外に、酸化物抵抗体の特性を向上させる目的
で他の添加物を加えてもよい。
The composition of zinc, titanium and nickel is not limited to the above-mentioned examples, and other additives than those shown in the examples may be added for the purpose of improving the characteristics of the oxide resistor. You may add things.

【0014】[0014]

【発明の効果】以上のように本発明によれば副成分の酸
化チタンとして90%以上ルチル型の結晶構造のものを使
用することにより、高エネルギ―の開閉サ―ジを安定し
て吸収することができる酸化物抵抗体の製造方法を提供
することができる。
As described above, according to the present invention, by using 90% or more of rutile type crystal structure as titanium oxide as a sub-component, high energy switching serge can be stably absorbed. It is possible to provide a method for manufacturing an oxide resistor that can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】酸化物抵抗体の開閉サ―ジ耐量特性図。FIG. 1 is an opening / closing surge resistance characteristic diagram of an oxide resistor.

【図2】(a),(b)とも酸化物抵抗体の発熱分布
図。
FIG. 2A and FIG. 2B are heat generation distribution diagrams of oxide resistors.

Claims (1)

Translated fromJapanese
【特許請求の範囲】[Claims]【請求項1】 酸化亜鉛を主成分とし、副成分として少
なくとも酸化チタンを含む、電圧−電流特性が直線性を
示す酸化物抵抗体の製造方法において、 前記酸化チタンとして90%以上ルチル型結晶構造を有す
る酸化チタンを用いることを特徴とする酸化物抵抗体の
製造方法。
1. A method for producing an oxide resistor having zinc oxide as a main component and at least titanium oxide as an accessory component and having linear voltage-current characteristics, wherein 90% or more of the titanium oxide has a rutile crystal structure. A method for producing an oxide resistor, which comprises using titanium oxide having:
JP4286010A1992-10-231992-10-23 Method for manufacturing oxide resistorPendingJPH06140206A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP4286010AJPH06140206A (en)1992-10-231992-10-23 Method for manufacturing oxide resistor

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP4286010AJPH06140206A (en)1992-10-231992-10-23 Method for manufacturing oxide resistor

Publications (1)

Publication NumberPublication Date
JPH06140206Atrue JPH06140206A (en)1994-05-20

Family

ID=17698832

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP4286010APendingJPH06140206A (en)1992-10-231992-10-23 Method for manufacturing oxide resistor

Country Status (1)

CountryLink
JP (1)JPH06140206A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US11201007B2 (en)*2005-06-302021-12-14L. Pierre de RochemontModulated inductance module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US11201007B2 (en)*2005-06-302021-12-14L. Pierre de RochemontModulated inductance module

Similar Documents

PublicationPublication DateTitle
JPS63136603A (en)Manufacture of voltage nonlinear resistor
JPH11340009A (en) Non-linear resistor
US4184984A (en)High breakdown voltage varistor
WO2009116452A1 (en)Process for producing semiconductor porcelain composition and heater employing semiconductor porcelain composition
JPH06140206A (en) Method for manufacturing oxide resistor
JP2005145809A (en)Zinc oxide-based sintered compact, zinc oxide varistor, and lamination type zinc oxide varistor
JP3323701B2 (en) Method for producing zinc oxide based porcelain composition
JPH01289206A (en)Voltage-dependent nonlinear resistance element and manufacture thereof
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JP2005097070A (en)Zinc oxide-based sintered compact and zinc oxide varistor
JP5334636B2 (en) Voltage non-linear resistor, lightning arrester equipped with voltage non-linear resistor, and method of manufacturing voltage non-linear resistor
JPH08115805A (en) Voltage nonlinear resistor and method of manufacturing the same
JP2004269341A (en) Zinc oxide based sintered body, method for producing the same, and zinc oxide varistor
JP2985559B2 (en) Varistor
JPH06204006A (en)Manufacture of zinc oxide varistor
JP2003007512A (en)Nonlinear resistor element
JP2725405B2 (en) Voltage-dependent nonlinear resistor porcelain and method of manufacturing the same
CA1113191A (en)High breakdown voltage varistor
JP2558811B2 (en) Varistor manufacturing method
JPH05198408A (en) Method for manufacturing semiconductor porcelain varistor
JP2002097071A (en) Zinc oxide porcelain composition, method for producing the same, zinc oxide varistor and zinc oxide varistor device using the same
JPH03178101A (en)Voltage non-linear resistor
JPH04299504A (en)Manufacture of voltage dependent nonlinear resistor
JPH01189901A (en)Voltage dependent nonlinear resistor and manufacture thereof
JPH0744088B2 (en) Method for manufacturing voltage non-linear resistor

[8]ページ先頭

©2009-2025 Movatter.jp