Movatterモバイル変換


[0]ホーム

URL:


JPH06105797B2 - Semiconductor substrate and manufacturing method thereof - Google Patents

Semiconductor substrate and manufacturing method thereof

Info

Publication number
JPH06105797B2
JPH06105797B2JP27202889AJP27202889AJPH06105797B2JP H06105797 B2JPH06105797 B2JP H06105797B2JP 27202889 AJP27202889 AJP 27202889AJP 27202889 AJP27202889 AJP 27202889AJP H06105797 B2JPH06105797 B2JP H06105797B2
Authority
JP
Japan
Prior art keywords
substrate
epitaxial growth
semiconductor substrate
grown
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27202889A
Other languages
Japanese (ja)
Other versions
JPH03133182A (en
Inventor
頌 西永
圭一 松沢
文夫 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KKfiledCriticalShowa Denko KK
Priority to JP27202889ApriorityCriticalpatent/JPH06105797B2/en
Publication of JPH03133182ApublicationCriticalpatent/JPH03133182A/en
Publication of JPH06105797B2publicationCriticalpatent/JPH06105797B2/en
Anticipated expirationlegal-statusCritical
Expired - Lifetimelegal-statusCriticalCurrent

Links

Landscapes

Description

Translated fromJapanese

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、化合物半導体を用いた発光素子及びその製造
方法に係り、特に高出力化を実現できる発光素子及びそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device using a compound semiconductor and a method for manufacturing the same, and more particularly to a light emitting device capable of achieving high output and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

現在発光ダイオード(LED)は、ランプ、ディスプレ
イ、リモコン光源等に広く用いられているが、その応用
分野が拡大するに伴い、より高輝度、高出力のものが求
められている。
Currently, light emitting diodes (LEDs) are widely used in lamps, displays, remote control light sources, and the like, but as their application fields expand, higher brightness and higher output are required.

LEDについては、従来より様々な物質を用いたものが作
成されており、現在化合物半導体のGaP、GaAs、GaAlAs
等を用いた各種構造のものが市販されている。これらの
LEDは単結晶基板上に薄膜単結晶をエピタキシャル成長
させ、PN接合を形成することにより能動層を作成してい
る。発光効率に影響を与える要因として能動層中に存在
する転位等の各種結晶欠陥の存在があり、これらを低減
化することが、LEDの高効率化のキーポイントとなって
いる。
Conventionally, LEDs have been created using various materials.Currently, compound semiconductors such as GaP, GaAs, and GaAlAs are being produced.
Various structures using the above are commercially available. these
In the LED, an active layer is formed by epitaxially growing a thin film single crystal on a single crystal substrate and forming a PN junction. The existence of various crystal defects such as dislocations existing in the active layer is one of the factors that affect the luminous efficiency, and reducing these defects is the key to improving LED efficiency.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかし、上記工程で使用する単結晶基板は、通常LEC法
やHB法で作成されたものであり、エピタキシャル成長に
用いる温度より高温高圧で結晶成長が行なわれるため結
晶欠陥を多く含み、特にLEC法を用いた単結晶では転位
密度が大きく、転位密度の低減化には限界がある。液相
エピタキシャル成長では、結晶が成長する際に基板の転
位の多くをエピタキシャル成長層に引き継ぐため、エピ
タキシャル成長層内の能動層部分にも多くの転位が存在
してしまうという問題がある。こられらの転位は、非発
光センターとして働くことにより輝度を低下させたり、
通電中に増殖して信頼性を低下させる等LEC特性に好ま
しくない影響を与える。
However, the single crystal substrate used in the above step is usually produced by the LEC method or the HB method, and contains many crystal defects because the crystal growth is performed at a temperature and pressure higher than the temperature used for the epitaxial growth. The single crystal used has a large dislocation density, and there is a limit to reducing the dislocation density. In liquid phase epitaxial growth, most of the dislocations in the substrate are taken over by the epitaxial growth layer when the crystal grows, so there is a problem that many dislocations also exist in the active layer portion in the epitaxial growth layer. These dislocations reduce the brightness by acting as a non-radiative center,
It has an unfavorable influence on the LEC characteristics, such as proliferation during current application and a decrease in reliability.

例えば間接遷移のバンド構造を持つGaP緑色LEDにおいて
は、発光効率が転位の存在の影響を受け易く、第5図に
示す様に転位密度と輝度とに明確な相関が見られるた
め、転位密度の低い基板を用いれば、輝度を向上させる
ことができる。しかし、現状ではGaP基板はLEC法で作ら
れているので転位の低減化が困難であり、通常用いられ
ているものではEPDが104〜2×105個/cm2であり十分な
特性とは言えず、基板の低転位化が大きな課題となって
いる。
For example, in a GaP green LED having an indirect transition band structure, the luminous efficiency is easily affected by the presence of dislocations, and as shown in FIG. 5, there is a clear correlation between dislocation density and brightness. The brightness can be improved by using a low substrate. However, at present, it is difficult to reduce dislocations because the GaP substrate is made by the LEC method, and the EPD of the commonly used one is 104 to 2 × 105 pieces / cm2 and sufficient characteristics are obtained. However, dislocation reduction of the substrate is a major issue.

またInGaP等の混晶を液相エピタキシャル成長させる際
に、基板とエピタキシャル成長層の格子定数が厳密に一
致しない場合、基板とエピタキシャル成長層との界面に
ミスフィット転位が発生し、それがエピタキシャル成長
層中に伝播するため、特定の基板上に成長できる混晶の
組成に大きな制約があり、望む特性のものを作成できな
いという問題点がある。
When liquid crystal epitaxial growth of a mixed crystal such as InGaP is performed, if the lattice constants of the substrate and the epitaxial growth layer do not match exactly, misfit dislocations occur at the interface between the substrate and the epitaxial growth layer and they propagate into the epitaxial growth layer. Therefore, there is a large limitation on the composition of the mixed crystal that can be grown on a particular substrate, and there is a problem that it is not possible to produce a crystal having desired characteristics.

これらの課題を解決し、低転位密度の結晶基板を使用し
てLED特性の改善を図るのが本発明の目的である。
It is an object of the present invention to solve these problems and improve LED characteristics by using a crystal substrate having a low dislocation density.

結晶の低転位化をはかる方法として、最近化合物半導体
の液相エピタキシャル成長において、いわゆる横方向成
長を用いることにより無転位結晶が作成できることが報
告された。(T.Nishinagaet.ol.Japanese Journal of A
pplied PhysicsVol 27.NO.6 L964〜967(1988))。こ
れは論文中に記述がある様に、単結晶基板表面に特定方
向をもった絶縁物膜を形成し、その窓部の単結晶基板上
に選択的にエピタキシャル成長を行なう方法で、その際
結晶成長速度の結晶方位依存性を用いて単結晶を基板表
面に平行な方向に成長(以下横方向成長とよぶ)させる
ことにより、基板からの転位の伝播が遮断されるという
原理に基づいて無転位結晶を作成するというものであ
る。その原理を模式的に結晶の断面図として示したのが
第3図である。
As a method for lowering the dislocation of crystals, it has recently been reported that dislocation-free crystals can be produced by using so-called lateral growth in liquid phase epitaxial growth of compound semiconductors. (T.Nishinagaet.ol.Japanese Journal of A
pplied PhysicsVol 27.NO.6 L964-967 (1988)). As described in the paper, this is a method in which an insulator film with a specific direction is formed on the surface of a single crystal substrate, and epitaxial growth is selectively performed on the single crystal substrate at the window portion. A dislocation-free crystal based on the principle that dislocation propagation from the substrate is blocked by growing a single crystal in a direction parallel to the substrate surface (hereinafter referred to as lateral growth) using the crystal orientation dependence of the velocity. Is to create. FIG. 3 schematically shows the principle as a cross-sectional view of a crystal.

第3図において化合物半導体基板1上に絶縁物膜2を被
覆し、その一部分を除去して窓部7を設ける。このよう
にして基板上にエピタキシャル成長を行なうと、基板に
平行な方向に成長し、この際、基板中の転位6の大部分
が絶縁膜2によって遮断され、横方向に成長した結晶3b
中の転位を実質的に消滅させることができる。転位は窓
7上に成長した窓部成長層3aにしか存在しないので、こ
の方法によって得られる結晶成長層3の転位密度は多く
ても2×104個/cm2以下となる。
In FIG. 3, a compound semiconductor substrate 1 is covered with an insulator film 2 and a part thereof is removed to provide a window 7. When the epitaxial growth is performed on the substrate in this way, the crystal 3b grows in the direction parallel to the substrate, and at this time, most of the dislocations 6 in the substrate are blocked by the insulating film 2 and the crystal 3b grown in the lateral direction is grown.
The dislocations therein can be substantially eliminated. Since dislocations exist only in the window portion growth layer 3a grown on the window 7, the crystal growth layer 3 obtained by this method has a dislocation density of 2 × 104 / cm2 or less at most.

この無転位である横方向成長部分にLEDを作成すること
により欠陥が少なく特性の良いLEDが得られると考えら
れる。しかし論文の方法では、得られた横方向成長は幅
100μm程度の細長いものであり、この上に液相エピタ
キシャル法でLED用の結晶の成長を行なうこと、及びそ
の後のチップ化工程は著しく困難である。
It is considered that an LED with few defects and good characteristics can be obtained by forming an LED in this dislocation-free lateral growth portion. However, in the paper method, the lateral growth obtained is
It is a long thin film of about 100 μm, and it is extremely difficult to grow a crystal for an LED by a liquid phase epitaxial method on this and a subsequent chip forming process.

〔課題を解決するための手段〕[Means for Solving the Problems]

そこで我々はこの点を改善すべく、横方向成長同志を接
続させることを試み、隣接する種部から成長した横方向
成長同志をつなぎめなく接続させることが可能であるこ
と、さらにその接続部分には転位の発生はなく結晶学的
に完全に接続することを発見した。
Therefore, in order to improve this point, we tried to connect the lateral growth comrades, and it is possible to connect the lateral growth comrades grown from the adjacent seed part without connecting them, and further to the connecting part. Found that there were no dislocations and the crystals were completely connected crystallographically.

そしてこの横方向成長を行なった基板を通常の単結晶基
板と同様に用いて通常のエピタキシャル成長方法でPN接
合を形成し、LEDを形成することによりLED特性の大幅な
改善を容易に行なうことができた。
Then, by using this laterally grown substrate in the same way as an ordinary single crystal substrate to form a PN junction by an ordinary epitaxial growth method and forming an LED, it is possible to easily greatly improve the LED characteristics. It was

先ず、本発明による半導体発光素子の製造方法について
説明する。第1図にその工程を模式的に示す。
First, a method for manufacturing a semiconductor light emitting device according to the present invention will be described. The process is schematically shown in FIG.

先ず、化合物単結晶基板1の(111)面上に、スパッタ
法等を用いて厚さ200〜400nmのSiO2等膜2を作成する
(工程(b))。次にフォトリソ法を用いて例えば<2
>方向に幅d=2μm、間隔D=100μm程度に窓
部7をあける加工を行う(工程(c))。加工後の基板
を上から見ると第2図のとおりとなる。
First, a SiO2 film 2 having a thickness of 200 to 400 nm is formed on the (111) plane of the compound single crystal substrate 1 by a sputtering method or the like (step (b)). Next, using the photolithography method, for example, <2
The window 7 is processed to have a width d = 2 μm and a distance D = 100 μm in the> direction (step (c)). The top view of the processed substrate is as shown in FIG.

方向を<2>としたのは、この方向に窓を設けた場
合に最も横方向成長の伸びが大きくなるためであり、物
質や基板面方位が異なる場合は適宜方向を選択する。ま
た窓の幅dは狭いほど転位の伝播が少ないため、加工可
能な範囲でなるべく狭い方が望ましい。またD/dを大き
くすることで窓部に対する横方向成長部分の比を大きく
することにより、転位の低減効果をより大きくすること
ができるが、Dをあまり大きくすると隣接横方向成長同
志が接続しなくなるため、エピタキシャル成長条件に応
じて10〜500μmで適宜選択する必要がある。
The reason why the direction is set to <2> is that the growth in the lateral direction is maximized when the window is provided in this direction, and the direction is appropriately selected when the substance or the substrate plane orientation is different. Further, the smaller the width d of the window, the less the propagation of dislocations. Therefore, it is preferable that the width d is as narrow as possible in the processable range. Further, by increasing D / d to increase the ratio of the lateral growth portion to the window portion, the effect of reducing dislocations can be further increased. However, if D is too large, adjacent lateral growth com- pacts are connected. Since it disappears, it is necessary to appropriately select 10 to 500 μm according to the epitaxial growth conditions.

次にこの窓部を持つ膜をつけた単結晶基板上に、例えば
液相エピタキシャル成長法によって横方向成長を行って
横方向成長結晶3を得る(工程(d))。液相エピタキ
シャル成長は通常行われているいずれの方法でよい。
Next, lateral growth is carried out on the single crystal substrate provided with the film having the window by, for example, liquid phase epitaxial growth method to obtain a lateral growth crystal 3 (step (d)). Liquid phase epitaxial growth may be performed by any commonly used method.

この方法で作成した結晶3は、隣接する種部から伸びた
横方向成長部同志がつなぎめなく接続する。
In the crystal 3 produced by this method, the lateral growth portions extending from the adjacent seed portions are connected without a connection.

この基板上にさらに液相エピタキシャル法等を用いてLE
D用のPN接合を形成するエピタキシャル成長を行い(工
程(e))半導体エピタキシャルウエハを得る。横方向
成長部が接続した基板は、通常の単結晶基板と全く同様
に扱うことができるため、PN接合形成は従来から一般的
に行っている方法を用いればよい。
On this substrate, LE
Epitaxial growth for forming a D PN junction is performed (step (e)) to obtain a semiconductor epitaxial wafer. Since the substrate to which the lateral growth portion is connected can be handled in the same manner as a normal single crystal substrate, the PN junction can be formed by a method which is generally used in the past.

この様にして作成したLEDエピタキシャルウエハは、そ
のままチップ化を行ってもよいが、エッチングにより基
板部及びSiO2膜を除去した後に通常の方法で、電極形
成、素子分離を行い、LED素子を作成しても良い(工程
(f))。
The LED epitaxial wafer thus created may be directly made into chips, but after removing the substrate part and the SiO2 film by etching, the electrodes are formed and the devices are separated by the usual methods to prepare the LED device. You may do (process (f)).

以上の工程で作成したGaP純緑色LEDの発光効率は、基板
に直接LEDエピタキシャル成長を行ったものに比べて例
えば1.8倍にもなり明るさを大幅に向上させることがで
きる。
The luminous efficiency of the GaP pure green LED produced in the above process is 1.8 times as high as that obtained by directly performing LED epitaxial growth on the substrate, and the brightness can be significantly improved.

上記の例では基板上に窓部を作成する絶縁膜としてSiO2
を示したが、その上に横方向成長を行なおうとする化合
物半導体が成長しないものならば何でも良く、他にSi3N
4やAl2O3等を用いることができ、またW、Mo、Ta、Nb等
の高融点の金属を用いることも可能である。また膜作成
方法もスパッタ以外に、CVD法、蒸着法などを用いても
良い。
In the above example, SiO2 is used as an insulating film to create a window on the substrate.
Showed, whatever may if those compound semiconductor wishing to make the lateral growth thereon does not grow, other Si3 N
4 , Al2 O3 or the like can be used, and a high melting point metal such as W, Mo, Ta or Nb can also be used. Further, as the film forming method, a CVD method, a vapor deposition method or the like may be used other than the sputtering.

上記では横方向成長を1回行う例について説明したが、
横方向成長を2回くり返すことにより表面層が実質的に
無転位である半導体基板を得ることもできる。すなわ
ち、第6図に示すように、1回目の横方向成長によって
得られるエピタキシャル成長層3には、絶縁膜2の窓部
7の部分に転位6が存在する場合がある。そこでこの窓
部7に有る転位6の上部にさらに絶縁膜2′を置き、無
転位部分に新たな窓部7′を設けて再度横方向成長をさ
せると、得られるエピタキシャル成長層3′は基板1か
らの転位の伝播が完全に遮断され、実質的に無転位のエ
ピタキシャル成長層が得られる。このような欠陥の無い
結晶表面にPN接合を形成して得られた半導体ウエハは、
極めて優れた電気特性を有し、LEDとした場合は高い発
光効率が得られる。
The example in which the lateral growth is performed once has been described above, but
It is also possible to obtain a semiconductor substrate having a substantially dislocation-free surface layer by repeating the lateral growth twice. That is, as shown in FIG. 6, dislocations 6 may exist in the window portion 7 of the insulating film 2 in the epitaxial growth layer 3 obtained by the first lateral growth. Therefore, when an insulating film 2'is further placed on the dislocations 6 in the window 7 and a new window 7'is provided in the dislocation-free portion and lateral growth is performed again, the epitaxial growth layer 3'obtained is the substrate 1 Propagation of dislocations from is completely blocked, and a substantially dislocation-free epitaxial growth layer is obtained. The semiconductor wafer obtained by forming the PN junction on the crystal surface without such defects is
It has extremely excellent electrical characteristics, and when used as an LED, high luminous efficiency can be obtained.

本方法が適用できる化合物半導体はGaP、InP、InGaP等
があり、従来無転位の単結晶が得られないとされていた
化合物半導体に対して特に効果を発揮する。
Compound semiconductors to which the present method can be applied include GaP, InP, InGaP, etc., and are particularly effective for compound semiconductors that have hitherto been considered to be unable to obtain dislocation-free single crystals.

〔作用〕[Action]

本発明は低転位基板を用いることによりLED特性の向上
を図るという原理に基づき、低転位基板として横方向成
長層を有する基板を用いることを要旨とし、現実にLED
の作成を可能とするために無転位の隣接横方向成長部分
を接合させたエピタキシャル基板を作成し、LED用基板
として利用するということを特徴としている。
The gist of the present invention is to use a substrate having a lateral growth layer as the low dislocation substrate based on the principle of improving the LED characteristics by using the low dislocation substrate.
In order to enable the production of the above, an epitaxial substrate in which dislocation-free adjacent laterally grown portions are joined is created and used as a substrate for an LED.

〔実施例〕〔Example〕

本発明の発光素子の製造方法による実施例を、GaP純緑
色発光ダイオードの例を用いて説明する。
An embodiment of the method for manufacturing a light emitting device of the present invention will be described using an example of a GaP pure green light emitting diode.

先ず、GaP単結晶基板1の(111)面上に、スパッタ法を
用いて厚さ400nmのSiO2膜2を作成する(工程
(b))。フォトリソ法を用いて<2>方向に幅d
=2μm、間隔D=100μmに窓部7をあける加工を行
った(工程(c))。
First, a 400 nm thick SiO2 film 2 is formed on the (111) plane of the GaP single crystal substrate 1 by the sputtering method (step (b)). Width d in <2> direction using photolithography method
= 2 μm and the interval D = 100 μm, the window 7 was processed (step (c)).

方向を<2>としたのはGaP(111)B面を用いた場
合は、この方向に窓を設けた場合に最も横方向成長の伸
びが大きくなるためである。
The direction is set to <2> because when the GaP (111) B plane is used, the growth in the lateral direction becomes the largest when the window is provided in this direction.

次にこの窓部7を持つSiO2膜2をつけた単結晶基板上
に、液相エピタキシャル成長法によって横方向成長を行
って横方向成長結晶3を得た(工程(d))。液相エピ
タキシャル成長は通常行われているいずれの方法でもよ
いが、ここでは徐冷法を用いた例を示した。成長治具に
は黒鉛性スライドボートを用い、治具中に金属ガリウム
30g、GaP多結晶2g、N型のドーパントとしてSiを0.1mg
を入れ、上記SiO2膜付きのGaP単結晶基板を配置した。
この黒鉛性スライドボートを成長炉の均熱部に設置し、
真空置換後水素気流中で1020℃まで昇温した。1020℃で
120分保持し、ガリウム中にGaP多結晶を飽和させた後、
0.5℃/分の冷却速度で冷却を開始し、2℃冷却してガ
リウム溶液を過飽和にした状態でGaP基板に接触させエ
ピタキシャル成長を開始し、1時間経過後に再び基板と
ガリウム溶液を分離してエピタキシャル成長を終了させ
た。温度プロファイルを示せば第4図のとおりである。
Next, lateral growth was performed on the single crystal substrate provided with the SiO2 film 2 having the window 7 by a liquid phase epitaxial growth method to obtain a lateral growth crystal 3 (step (d)). Although liquid phase epitaxial growth may be performed by any of the commonly used methods, an example using the slow cooling method is shown here. A graphite slide boat was used as the growth jig, and metallic gallium was placed in the jig.
30g, GaP polycrystal 2g, Si 0.1mg as N type dopant
Then, the GaP single crystal substrate with the SiO2 film was placed.
This graphite slide boat was installed in the soaking section of the growth reactor,
After vacuum replacement, the temperature was raised to 1020 ° C in a hydrogen stream. At 1020 ° C
After holding for 120 minutes to saturate the GaP polycrystal in gallium,
Cooling is started at a cooling rate of 0.5 ° C / min, and the gallium solution is supersaturated by cooling at 2 ° C to bring it into contact with a GaP substrate to start epitaxial growth. After 1 hour, the substrate and gallium solution are separated again to perform epitaxial growth. Ended. The temperature profile is shown in FIG.

この方法で作成したGaPは、隣接する種部から伸びた横
方向成長部同志がつなぎめなく接続していた。この結晶
表面をRCエッチング液(AgNO3(mg):HNO3(cc):HF
(cc):H2O(cc)=4:3:2:4)でエッチングを行ない、
転位の観察を行ったところ、窓部分7の直上部3aには基
板から伝播した転位6が存在するものの、横方向成長部
3b及び接続部3cには転位は見られず、平均EPDは1000個
/cm2と基板の転位密度50,000個/cm2に比べ著しく低下
していた。
In the GaP produced by this method, the lateral growth regions extending from the adjacent seed region were connected without a joint. RC crystal solution (AgNO3 (mg): HNO3 (cc): HF)
(Cc): H2 O (cc) = 4: 3: 2: 4)
Observation of dislocations revealed that although dislocations 6 propagated from the substrate were present in the upper portion 3a of the window portion 7, the lateral growth portion was observed.
Dislocation was not observed in 3b and the connection portion 3c, the average EPD was significantly reduced compared to 1000 / cm2 and the dislocation density of the substrate 50,000 / cm2.

この基板上にさらに液相エピタキシャル法を用いて純緑
色LED用の成長を行った(工程(e))。横方向成長部
が接続した基板は通常の単結晶基板と全く同様に扱うこ
とができるため、従来から一般的に行っている方法を用
いればよい。我々の場合は、スライドボートを用いた徐
冷法を用い、N型ドーパントとしてH2Sを用いてSを、
P型ドーパントとしてZnをガス状で順冷添加するオーバ
ーコンペンセーション法を用いた。
On this substrate, a liquid crystal epitaxial method was further used to grow a pure green LED (step (e)). Since the substrate to which the lateral growth portion is connected can be treated in exactly the same manner as an ordinary single crystal substrate, a method generally used conventionally can be used. In our case, the slow cooling method using a slide boat was used, and S was added using H2 S as an N-type dopant.
An over-compensation method was used in which Zn was added as a P-type dopant in a state of normal cooling.

この様にして作成したLEDエピタキシャル基板は、その
ままチップ化を行ってもよいが、我々はエッチングによ
り基板部及びSiO2膜を除却した後に通常の方法で、電極
形成、素子分離を行い、LED素子を作成した(工程
(f))。
The LED epitaxial substrate prepared in this way may be directly made into chips, but we remove electrodes on the substrate and SiO2 film by etching, and then perform electrode formation and element isolation by the usual methods to create LED elements. Was prepared (step (f)).

以上の工程で作成したGaP純緑色LEDは、発光効率は基板
に直接LEDエピタキシャル成長を行ったものに比べて約
1.8倍になり大幅に明るさが向上した。
The GaP pure green LED produced in the above process has a luminous efficiency of about 10% compared to that obtained by directly performing LED epitaxial growth on the substrate.
It is 1.8 times higher and the brightness has improved significantly.

以上GaPの例で示したが、全く同様に液相エピタキシャ
ル成長で作成する他の化合物半導体LEDにも、本発明を
適用することができる。特に、InGaP等の混晶を用いる
場合、従来基板との格子定数の差が大きく、良質な結晶
成長層が得られなかった組成の混晶を、本発明を用いる
ことにより成長させることが可能となった。
Although the example of GaP has been shown above, the present invention can be applied to other compound semiconductor LEDs produced by liquid phase epitaxial growth. In particular, when a mixed crystal such as InGaP is used, it is possible to grow a mixed crystal having a composition in which the lattice constant difference from the conventional substrate is large and a good crystal growth layer cannot be obtained, by using the present invention. became.

〔発明の効果〕〔The invention's effect〕

以上説明した様に、本発明によれば次の様な効果が発揮
される。
As described above, according to the present invention, the following effects are exhibited.

(1)従来の単結晶基板より大幅に欠陥の少ない結晶上
にLEDを作成することにより、その特性、特に発光出力
を大幅に向上させることができる。
(1) By forming an LED on a crystal with significantly fewer defects than a conventional single crystal substrate, its characteristics, particularly the light emission output, can be greatly improved.

(2)従来高品質な結晶を得ることが困難であった格子
定数の異なる基板上への混晶成長が可能となり、利用で
きる混晶の範囲が広がる。
(2) It becomes possible to grow a mixed crystal on a substrate having a different lattice constant, which has been difficult to obtain a high quality crystal in the past, and the range of usable mixed crystals is expanded.

(3)横方向成長が接合した基板は、従来の単結晶基板
と全く同様に扱えるため、従来のLED作成のエピタキシ
ャル成長法やチップ化工程をそのまま適用することがで
きるため応用範囲が広く、かつ経済性が高い。
(3) Since the substrate bonded by lateral growth can be handled in the same way as a conventional single crystal substrate, the epitaxial growth method or chip formation process of conventional LED fabrication can be applied as it is, so the application range is wide and economical. It is highly likely.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例に係る発光素子形成方法を示
す工程図、第2図は第1図(c)工程で得られた基板を
上面から見た図で、皮膜の加工パターンを示し、第3図
は本発明で使用する横方向成長による基板を模式的に示
した図、第4図は、横方向成長工程の温度プログラム、
第5図は、n型GaP基板のEPDと発光効率の関係を示す
図、第6図は横方向成長層を2層有する基板を模式的に
示した図である。 図中、1は基板、2は皮膜、3は横方向成長結晶、4は
エピタキシャル成長層(N型)、5はエピタキシャル成
長層(P型)、6は転位を示す。
FIG. 1 is a process diagram showing a method for forming a light emitting device according to an embodiment of the present invention, and FIG. 2 is a plan view of the substrate obtained in the process of FIG. 1 (c). FIG. 3 is a diagram schematically showing a substrate by lateral growth used in the present invention, and FIG. 4 is a temperature program of a lateral growth process,
FIG. 5 is a diagram showing the relationship between EPD and luminous efficiency of an n-type GaP substrate, and FIG. 6 is a diagram schematically showing a substrate having two lateral growth layers. In the figure, 1 is a substrate, 2 is a film, 3 is a laterally grown crystal, 4 is an epitaxial growth layer (N type), 5 is an epitaxial growth layer (P type), and 6 is a dislocation.

Claims (7)

Translated fromJapanese
【特許請求の範囲】[Claims]【請求項1】化合物半導体基板表面に部分的に複数の窓
部を設けた絶縁物薄膜又は高融点金属薄膜を有し、該薄
膜上に上記窓部に露出した基板部分を種として、種部よ
り基板表面に平行な方向に連続してかつ隣接する種部よ
り成長したエピタキシャル成長部分と接合して一体化し
た化合物半導体エピタキシャル成長層を有することを特
徴とする半導体基板。
1. A seed portion having an insulator thin film or a refractory metal thin film in which a plurality of windows are partially provided on the surface of a compound semiconductor substrate, and the substrate portion exposed on the windows on the thin film is used as a seed. A semiconductor substrate having a compound semiconductor epitaxial growth layer that is continuous with a direction parallel to the substrate surface and is joined to and integrated with an epitaxial growth portion grown from an adjacent seed portion.
【請求項2】第1項記載の半導体基板上にPN接合を有す
るエピタキシャル成長層を具備してなることを特徴とす
る半導体エピタキシャルウエハ。
2. A semiconductor epitaxial wafer comprising an epitaxial growth layer having a PN junction on the semiconductor substrate according to claim 1.
【請求項3】化合物半導体エピタキシャル成長層が、転
位密度2×104個/cm2以下のリン化ガリウムであること
を特徴とする第1項記載の半導体基板。
3. The semiconductor substrate according to claim 1, wherein the compound semiconductor epitaxial growth layer is gallium phosphide having a dislocation density of 2 × 104 dislocations / cm2 or less.
【請求項4】化合物半導体基板表面に絶縁物薄膜又は高
融点金属薄膜を形成した後、該膜を部分的に除去して複
数の窓部を設け、エピタキシャル成長により上記窓部に
露出した基板部分を種として化合物半導体単結晶を成長
させ、種部より基板表面に平行な方向に成長した単結晶
が隣接する種部より成長した単結晶部分と接合するまで
成長させることを特徴とする半導体基板の成長方法。
4. After forming an insulator thin film or a refractory metal thin film on the surface of a compound semiconductor substrate, the film is partially removed to provide a plurality of windows, and the substrate portion exposed to the windows by epitaxial growth is formed. Growth of a semiconductor substrate characterized in that a compound semiconductor single crystal is grown as a seed and grown until a single crystal grown in a direction parallel to the substrate surface from a seed portion joins with a single crystal portion grown from an adjacent seed portion. Method.
【請求項5】第4項記載の方法により得られた半導体基
板上に、さらにエピタキシャル成長によりPN接合を形成
することを特徴とする半導体エピタキシャルウエハの製
造方法。
5. A method for manufacturing a semiconductor epitaxial wafer, which further comprises forming a PN junction by epitaxial growth on the semiconductor substrate obtained by the method according to claim 4.
【請求項6】第1項記載の半導体基板上に、さらに転位
のない部分を種として種部より基板表面に平行な方向に
連続して、かつ隣接する種部より成長したエピタキシャ
ル部分と接合して一体化した化合物半導体エピタキシャ
ル成長層を有することを特徴とする半導体基板。
6. A semiconductor substrate according to claim 1, further comprising a dislocation-free portion as a seed, which is bonded to an epitaxial portion which is continuous from the seed portion in a direction parallel to the substrate surface and which is grown from an adjacent seed portion. A semiconductor substrate having an integrated compound semiconductor epitaxial growth layer.
【請求項7】表面のエピタキシャル成長層が実質的に無
転位であることを特徴とする第6項記載の半導体基板。
7. The semiconductor substrate according to claim 6, wherein the epitaxial growth layer on the surface is substantially dislocation free.
JP27202889A1989-10-191989-10-19 Semiconductor substrate and manufacturing method thereofExpired - LifetimeJPH06105797B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP27202889AJPH06105797B2 (en)1989-10-191989-10-19 Semiconductor substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP27202889AJPH06105797B2 (en)1989-10-191989-10-19 Semiconductor substrate and manufacturing method thereof

Publications (2)

Publication NumberPublication Date
JPH03133182A JPH03133182A (en)1991-06-06
JPH06105797B2true JPH06105797B2 (en)1994-12-21

Family

ID=17508121

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP27202889AExpired - LifetimeJPH06105797B2 (en)1989-10-191989-10-19 Semiconductor substrate and manufacturing method thereof

Country Status (1)

CountryLink
JP (1)JPH06105797B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP3286920B2 (en)*1992-07-102002-05-27富士通株式会社 Method for manufacturing semiconductor device
US6348096B1 (en)1997-03-132002-02-19Nec CorporationMethod for manufacturing group III-V compound semiconductors
JP2008034862A (en)*1997-04-112008-02-14Nichia Chem Ind Ltd Nitride semiconductor growth method
JPH11163404A (en)*1997-11-251999-06-18Toyoda Gosei Co LtdGan-based semiconductor
JP3301601B2 (en)*1998-01-272002-07-15日亜化学工業株式会社 Nitride semiconductor light emitting device
US6368733B1 (en)1998-08-062002-04-09Showa Denko K.K.ELO semiconductor substrate
JP3201475B2 (en)1998-09-142001-08-20松下電器産業株式会社 Semiconductor device and method of manufacturing the same
JP3587081B2 (en)1999-05-102004-11-10豊田合成株式会社 Method of manufacturing group III nitride semiconductor and group III nitride semiconductor light emitting device
JP3555500B2 (en)1999-05-212004-08-18豊田合成株式会社 Group III nitride semiconductor and method of manufacturing the same
US6580098B1 (en)1999-07-272003-06-17Toyoda Gosei Co., Ltd.Method for manufacturing gallium nitride compound semiconductor
JP2001185493A (en)1999-12-242001-07-06Toyoda Gosei Co Ltd Method of manufacturing group III nitride compound semiconductor and group III nitride compound semiconductor device
JP2001267242A (en)2000-03-142001-09-28Toyoda Gosei Co Ltd Group III nitride compound semiconductor and method of manufacturing the same
WO2001069663A1 (en)2000-03-142001-09-20Toyoda Gosei Co., Ltd.Production method of iii nitride compound semiconductor and iii nitride compound semiconductor element
TW518767B (en)2000-03-312003-01-21Toyoda Gosei KkProduction method of III nitride compound semiconductor and III nitride compound semiconductor element
JP2001313259A (en)2000-04-282001-11-09Toyoda Gosei Co Ltd Method for manufacturing group III nitride compound semiconductor substrate and semiconductor device
US7619261B2 (en)2000-08-072009-11-17Toyoda Gosei Co., Ltd.Method for manufacturing gallium nitride compound semiconductor
WO2002064864A1 (en)2001-02-142002-08-22Toyoda Gosei Co., Ltd.Production method for semiconductor crystal and semiconductor luminous element
JP2002280314A (en)2001-03-222002-09-27Toyoda Gosei Co Ltd Method of manufacturing group III nitride compound semiconductor and group III nitride compound semiconductor device based thereon
JP3690326B2 (en)2001-10-122005-08-31豊田合成株式会社 Method for producing group III nitride compound semiconductor
JP2005286017A (en)*2004-03-292005-10-13Sumitomo Electric Ind Ltd Semiconductor light emitting device
JP4289203B2 (en)*2004-04-152009-07-01豊田合成株式会社 GaN-based semiconductor
JP5082278B2 (en)2005-05-162012-11-28ソニー株式会社 Light emitting diode manufacturing method, integrated light emitting diode manufacturing method, and nitride III-V compound semiconductor growth method

Also Published As

Publication numberPublication date
JPH03133182A (en)1991-06-06

Similar Documents

PublicationPublication DateTitle
JPH06105797B2 (en) Semiconductor substrate and manufacturing method thereof
JP3946427B2 (en) Epitaxial growth substrate manufacturing method and semiconductor device manufacturing method using this epitaxial growth substrate
US5239188A (en)Gallium nitride base semiconductor device
KR100401898B1 (en)Base substrate for crystal growth and manufacturing method of substrate by using the same
US7211337B2 (en)Compound crystal and method of manufacturing same
GB2338109A (en)Light emitting diode
JP2009505938A (en) Semiconductor substrate, method for manufacturing a self-supporting semiconductor substrate by hydride vapor phase epitaxy, and mask layer used therefor
JPH07273367A (en)Manufacture of semiconductor substrate and light-emitting device
US20040115937A1 (en)Production method for semiconductor substrate and semiconductor element
JP2002299253A5 (en)
JP2007246289A (en)Method for manufacturing gallium nitride semiconductor substrate
KR100296094B1 (en)Gallium phosphide green light-emitting device
CN107227490A (en)III nitride semiconductor and its manufacture method
JPH07273048A (en)Manufacture method of compound semiconductor single crystal and single crystal substrate using such method
JP3182346B2 (en) Blue light emitting device and method of manufacturing the same
JP4749584B2 (en) Manufacturing method of semiconductor substrate
JPH11274563A (en) Semiconductor device and semiconductor light emitting element
JP3324102B2 (en) Manufacturing method of epitaxial wafer
KR100210758B1 (en)Epitaxial wafer and process for producing the same
JP3142312B2 (en) Crystal growth method for hexagonal semiconductor
KR100454907B1 (en)Nitride Semiconductor substrate and method for manufacturing the same
JPH05190900A (en)Manufacture of semiconductor light-emitting device
KR100586959B1 (en) Nitride single crystal manufacturing method, nitride semiconductor light emitting device and manufacturing method
KR20050029735A (en)Method for manufacturing thick gan layer capable of reducing defects and easily separating
JP2001257432A (en) Method for manufacturing semiconductor substrate, semiconductor substrate, and semiconductor light emitting device

Legal Events

DateCodeTitleDescription
FPAYRenewal fee payment (prs date is renewal date of database)

Free format text:PAYMENT UNTIL: 20081221

Year of fee payment:14

FPAYRenewal fee payment (prs date is renewal date of database)

Free format text:PAYMENT UNTIL: 20091221

Year of fee payment:15

EXPYCancellation because of completion of term

[8]ページ先頭

©2009-2025 Movatter.jp