【発明の詳細な説明】 〔産業上の利用分野〕 この発明は,例えば半導体材料などの結晶成長を宇宙で
行う微小重力材料製造実験に使用される静電浮遊炉の改
良に関するものである。Description: TECHNICAL FIELD The present invention relates to an improvement in an electrostatic levitation furnace used in a microgravity material manufacturing experiment in which crystals of semiconductor materials or the like are grown in space.
 第6図は例えば米国特許公報に示された4521854(JUN.
4.1985)CLOSED LOOP ELECTROSTATIC LEVITATION SYSTE
Mに示された従来の静電浮遊炉を示す構成ブロツク図で
ある。図において,(1)は下にへこんだ皿状の電極で
同じ物が対向して置かれる。,(2)は電極(1)の中
間位置に置かれた供試体,(3)はこの供試体(2)に
重点位置を計測するためのCCDカメラ,(4)はこのCCD
カメラに接続された制御回路,(5)はこの制御回路と
電極(1)に接続された高圧電源である。FIG. 6 shows, for example, 4521854 (JUN.
 4.1985) CLOSED LOOP ELECTROSTATIC LEVITATION SYSTE
 It is a block diagram showing a conventional electrostatic levitation furnace shown in M. In the figure, (1) is a dish-shaped electrode that is recessed downward, and the same objects are placed facing each other. , (2) is a sample placed at the intermediate position of the electrode (1), (3) is a CCD camera for measuring the focused position on the sample (2), and (4) is this CCD
 A control circuit (5) connected to the camera is a high voltage power source connected to the control circuit and the electrode (1).
 従来の静電浮遊炉は以上のように構成されていたので,
供試体の位置検出はCCDカメラの位置分解能とその重心
位置計算速度によつて供試体の位置制御の安定性が決ま
り,供試体の振動を引き起こす事になる。この事は微小
重力実験に於て致命的な欠陥となる。Since the conventional electrostatic levitation furnace was configured as above,
 When detecting the position of the specimen, the stability of the position control of the specimen is determined by the position resolution of the CCD camera and the calculation speed of its center of gravity, which causes vibration of the specimen. This is a fatal defect in microgravity experiments.
さらに,供試体の位置計測を画像データに二値化で処理
するのであるが背景の影響を受け検出不能になると言う
重大な問題がある。Furthermore, although the position measurement of the specimen is processed by binarizing the image data, there is a serious problem that it becomes undetectable due to the influence of the background.
さらに,供試体の位置をデイジタルで計算するので部品
点数が増加しシステムの信頼性を下げることになる。Furthermore, since the position of the test piece is calculated digitally, the number of parts increases and the reliability of the system decreases.
この発明は上記のような問題点を解決するためになされ
たものであり、上記CCDカメラの代わりにアナログ方式
の位置検出部(PSD)を用いてアナログ信号で高速に位
置検出を行い,供試体の位置の安定度をきわめて向上さ
せ,供試体の表面の光源の投射を安定させ、もつて表面
の温度分布を均一にする事を目的とする。The present invention has been made to solve the above problems, and the position detection unit (PSD) of an analog method is used instead of the CCD camera to perform position detection at high speed with an analog signal, The aim is to improve the stability of the position of the slab, stabilize the projection of the light source on the surface of the specimen, and even the temperature distribution on the surface.
また、この発明の別の発明は上記目的に加え光源を2個
用いた双回転楕円鏡イメージ加熱を行うことを目的とす
る。Another object of the present invention is, in addition to the above object, an object of the present invention is to perform twin spheroidal mirror image heating using two light sources.
 この発明に係わる静電浮遊炉は回転楕円鏡の内側につく
られた空胴共振器の中に卵形プラズマランプを置き電波
を注入してこれを発光させ,球形の焦点像の中に供試体
を入れ,これを電極の間で浮遊させ,供試体の位置制御
をアナログ方式の位置検出器で行うものである。In the electrostatic levitation furnace according to the present invention, an egg-shaped plasma lamp is placed in a cavity resonator formed inside a spheroidal mirror to inject a radio wave to cause it to emit light, and the sample is placed in a spherical focus image. The position of the test piece is controlled by an analog position detector by inserting a probe into the electrode.
 この発明においては,回転楕円鏡の第1焦点に置かれた
卵形プラズマランプが発光し、その像が回転楕円鏡の特
性上、歪んで球形となつて第2焦点に置かれた供試体の
集光して加熱する。供試体の位置制御はアナログ位置検
出器で位置検出しアナログ的に制御を行い安定させる。In the present invention, the egg-shaped plasma lamp placed at the first focus of the spheroidal mirror emits light, and the image is distorted into a spherical shape due to the characteristics of the spheroidal mirror, and the image of the specimen placed at the second focus. Focus and heat. The position control of the test piece is stabilized by detecting the position with an analog position detector and performing analog control.
 以下,この発明の一実施例による静電浮遊炉を図につい
て説明する。第1図はこの発明の一実施例を示す構成ブ
ロツク図であり、(2)と(5)は上記従来装置とまつ
たく同じである。An electrostatic levitation furnace according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, and (2) and (5) are the same as those of the conventional device.
図において(6)は回転楕円体の反射面を内側に有する
回転楕円鏡,(7)はこの回転楕円鏡(6)の第1焦点
に置かれた卵形プラズマランプ,(8)はこの卵形プラ
ズマランプ(7)を支持する支持具,(9)は回転楕円
鏡(6)の第1焦点側端部において、その内面に円周状
の縁が接するように取りつけられた円盤状の電波遮蔽
板,(10)はこの電波遮蔽板(9)と回転楕円鏡(6)
とで形成された空胴共振器,(11)は卵型プラズマラン
プを収納する空洞共振器(10)に高周波電流を注入する
高周波発信器,(12)は同心円状の2個のリング型の導
電板を2対対向して並べたリング電極,(13)は供試体
(2)に対向して回転楕円鏡(6)に設けられた観測窓
(14)を通して供試体(2)の位置を計測する位置検出
器,(15)はこの位置検出器(13)と高圧電源(5)に
接続される制御回路である。第3図はリング電極(12)
と供試体(2)の関係を示す図で,(12a)と(12c)と
外側のリング電極,(12b)と(12d)は内側のリング電
極でこれらの間に供試体(2)が浮遊される。第3図は
位置検出器(13)と制御回路(15)の構成を示すブロツ
ク図で,シリコン半導体でpn接合を形成した5cm角ぐら
いの板状の位置検出器(13)の2辺からXとY方向の位
置信号が位置検出回路(15a)に接続される,この位置
信号を入出力インタフエース(15b)経由計算機(15c)
に送り込む。In the figure, (6) is a spheroidal mirror having a spheroidal reflecting surface inside, (7) is an egg-shaped plasma lamp placed at the first focal point of the spheroidal mirror (6), and (8) is this egg. A supporter (9) for supporting the plasma lamp (7) is a disc-shaped radio wave attached so that a circular edge is in contact with the inner surface of the spheroidal mirror (6) at the first focal point side end. Shield plate (10) is the radio wave shield plate (9) and spheroidal mirror (6)
 A cavity resonator formed by and, (11) is a high-frequency oscillator that injects a high-frequency current into a cavity resonator (10) that houses an egg-shaped plasma lamp, and (12) is two concentric ring-shaped resonators. The ring electrode (2) is a pair of conductive plates facing each other, and the position of the test piece (2) is fixed through the observation window (14) provided on the spheroid mirror (6) facing the test piece (2). A position detector (15) for measurement is a control circuit connected to the position detector (13) and the high voltage power supply (5). Figure 3 shows the ring electrode (12)
 And (12) are the ring electrodes on the outside, (12b) and (12d) are the ring electrodes on the inside, and the sample (2) floats between them. To be done. Fig. 3 is a block diagram showing the configuration of the position detector (13) and the control circuit (15). It is X from the two sides of the plate-like position detector (13) with a pn junction formed of silicon semiconductor. And the position signal in the Y direction is connected to the position detection circuit (15a). This position signal is transferred to the input / output interface (15b) Computer (15c)
 Send to.
上記のように構成された静電浮遊炉において,供試体
(2)が加熱される前は規定の位置に置いて卵形プラズ
マランプ(7)で加熱し500度程度になったらリング電
極(12)に高圧電源(5)から電圧を与え静電界で供試
体(2)を浮遊させる。この原理は第4図に於てリング
電極(12)が谷型の電界を作りその谷間に供試体(2)
をクーロン力が浮遊させる。この様にして浮遊すると位
置を位置検出器(13)が検出しアナログ信号で制御回路
(15)に送信する。ここで制御演算を行い制御量を高圧
電源(5)へ送出する。In the electrostatic levitation furnace configured as described above, before the specimen (2) is heated, it is placed in the specified position and heated by the egg-shaped plasma lamp (7) and when it reaches about 500 degrees, the ring electrode (12 ) Is applied with a voltage from a high-voltage power supply (5), and the specimen (2) is suspended in an electrostatic field. This principle is shown in Fig. 4. In Fig. 4, the ring electrode (12) creates a valley-shaped electric field and the specimen (2) is formed in the valley.
 The Coulomb force will float. When floating in this way, the position detector (13) detects the position and transmits it to the control circuit (15) as an analog signal. Here, control calculation is performed and the control amount is sent to the high voltage power supply (5).
さて、この発明は以上説明した通り,一つの回転楕円鏡
(6)を用いているが,第5図の別の発明のように第2
焦点の回転楕円鏡(16)をその長軸方向に第2焦点を共
有して取り付け,第2の回転楕円鏡(16)の端部に卵形
プラズマランプ(7)と支持具(8),及び電波遮蔽板
(9)をとりつける,双方の卵形プラズマランプ(7)
の発した光が供試体(2)の全表面に均等に照射される
ので,さらに良い効果を得ることが出来る。As described above, the present invention uses one spheroidal mirror (6).
 The spheroidal mirror (16) of the focal point is attached in the direction of its long axis so as to share the second focus, and the egg-shaped plasma lamp (7) and the support (8) are attached to the end of the second spheroidal mirror (16). And an egg-shaped plasma lamp (7) on both sides, to which a radio wave shield (9) is attached
 Since the light emitted by is evenly applied to the entire surface of the specimen (2), a better effect can be obtained.
 以上のように、この発明によれば供試体の位置をCCDを
用いた場合に比べて高速で検出でき,供試体の振動をな
くし、安定した浮遊を得ることが出来る。また,供試体
の位置が安定するからプラズマランプによる加熱も均一
に行え,供試体の表面の温度を均一に出来る。As described above, according to the present invention, the position of the sample can be detected at a higher speed than in the case where the CCD is used, vibration of the sample can be eliminated, and stable floating can be obtained. Moreover, since the position of the specimen is stable, the heating by the plasma lamp can be performed uniformly, and the surface temperature of the specimen can be made uniform.
この事は微小重力実験を行う上ではきわめて重要であ
り、外乱の無い理想的な材料の微小重力処理が可能とな
る。This is extremely important for conducting microgravity experiments, and enables microgravity processing of ideal materials without disturbance.
 第1図はこの発明の一実施例による静電浮遊炉の構成
図,第2図はリング電極と供試体の関係を示す図,第3
図は位置検出器と制御回路と高圧電源の構成ブロツク
図,第4図は供試体の浮遊原理を説明する図,第5図は
別の発明の静電浮遊炉の構成図,第6図は従来の静電浮
遊炉の構成ブロツク図である。図において、(1)は電
極,(2)は供試体,(3)はCCDカメラ,(4)は制
御回路,(5)は高圧電源,(6)は回転楕円鏡,
(7)は卵形プラズマランプ、(8)は支持具,(9)
は電波遮蔽板,(10)は空胴共振器,(11)は高周波発
信器,(12)はリング電極,(12a)と(12c)は外側の
リング電極,(12b)と(12d)は内側のリング電極,
(13)は位置検出器,(14)は観測窓,(15)は制御回
路,(15a)は位置検出回路,(15b)は入出力インタフ
エース,(15c)は計算機,(16)は第2の回転楕円鏡
である。 なお,図中同一符号は同一または相当部分を示す。FIG. 1 is a configuration diagram of an electrostatic levitation furnace according to an embodiment of the present invention, FIG. 2 is a diagram showing a relationship between a ring electrode and a specimen, and FIG.
 Figure is a block diagram of the position detector, control circuit, and high-voltage power supply. Figure 4 is a diagram for explaining the floating principle of the sample. Figure 5 is a block diagram of the electrostatic levitation furnace of another invention. It is a block diagram of a conventional electrostatic levitation furnace. In the figure, (1) is an electrode, (2) is a specimen, (3) is a CCD camera, (4) is a control circuit, (5) is a high voltage power supply, (6) is a spheroidal mirror,
 (7) is an egg-shaped plasma lamp, (8) is a support, (9)
 Is a radio wave shield, (10) is a cavity resonator, (11) is a high-frequency oscillator, (12) is a ring electrode, (12a) and (12c) are outer ring electrodes, and (12b) and (12d) are Inner ring electrode,
 (13) is a position detector, (14) is an observation window, (15) is a control circuit, (15a) is a position detection circuit, (15b) is an input / output interface, (15c) is a computer, and (16) is a It is a second spheroidal mirror. The same reference numerals in the drawings indicate the same or corresponding parts.
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| JP17622489AJPH06102586B2 (en) | 1989-07-07 | 1989-07-07 | Electrostatic levitation furnace | 
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| JP17622489AJPH06102586B2 (en) | 1989-07-07 | 1989-07-07 | Electrostatic levitation furnace | 
| Publication Number | Publication Date | 
|---|---|
| JPH0340988A JPH0340988A (en) | 1991-02-21 | 
| JPH06102586B2true JPH06102586B2 (en) | 1994-12-14 | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| JP17622489AExpired - LifetimeJPH06102586B2 (en) | 1989-07-07 | 1989-07-07 | Electrostatic levitation furnace | 
| Country | Link | 
|---|---|
| JP (1) | JPH06102586B2 (en) | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| JPH07275690A (en)* | 1994-04-05 | 1995-10-24 | Mitsubishi Electric Corp | Flotation apparatus | 
| CN109561523B (en)* | 2018-10-11 | 2022-06-07 | 东莞材料基因高等理工研究院 | A high temperature heating device based on double combined reflector | 
| CN109561522B (en)* | 2018-10-11 | 2022-01-25 | 东莞材料基因高等理工研究院 | High-temperature heating device based on three combination bowl | 
| Publication number | Publication date | 
|---|---|
| JPH0340988A (en) | 1991-02-21 | 
| Publication | Publication Date | Title | 
|---|---|---|
| JPH0754249B2 (en) | Method and device for inspecting surface of sample | |
| CN107702705B (en) | Laser heated NMR gyroscope | |
| CN115291149B (en) | Linear array scanning device and control method | |
| EP0407894B1 (en) | Electrostatic levitation furnace | |
| CN113484620B (en) | Method and system for rapidly measuring amplitude and phase distribution of optical scanning electromagnetic wave | |
| US5247144A (en) | Levitation heating method and levitation heating furnace | |
| JPH06102586B2 (en) | Electrostatic levitation furnace | |
| WO2013162187A1 (en) | Floating device and floating method | |
| JP2014534424A (en) | Equipment for measuring substrate temperature | |
| JPH03129288A (en) | Dodecahedral arrangement spherical electrode type AC electrostatic levitation furnace | |
| JP2912616B1 (en) | Plate heating device | |
| JPH11354526A (en) | Plate body heating device | |
| JPH073272Y2 (en) | Microwave discharge image heating electrostatic levitation furnace | |
| JPS6215817A (en) | Light and heat processing method and light-intensity measuring apparatus | |
| JPH0383885A (en) | Icosahedral arrangement globular electrode type alternating current electrostatic floating furnace | |
| JPH03129287A (en) | Regular dodecahedron arrangement spherical electrode type dc electrostatic floating furnace | |
| TW201025404A (en) | Method and system for heating substrate in vacuum environment and method and system for identifying defects on substrate | |
| JPH03121506A (en) | Valve electrode type ac electrostatic floating furnace arranged in octahedron | |
| JPH11121320A (en) | Surface position detection method and surface position detection device | |
| US5533567A (en) | Method and apparatus for uniform heating and cooling | |
| JP2000260839A (en) | Low temperature test equipment | |
| JPH02180784A (en) | electrostatic levitation furnace | |
| JP3540648B2 (en) | Gap measuring device used for plasma reactor | |
| JPH0268486A (en) | image heating device | |
| JPS63294685A (en) | microwave heating device |