【0001】[0001]
本考案は電子レンジなどの高周波加熱装置のマグネトロン駆動用に用いられる 電源の高圧トランスに関するもので、特に周波数変換を行ういわゆるインバータ 電源に用いる高圧トランスに関するものである。 The present invention relates to a high-voltage transformer of a power source used for driving a magnetron of a high-frequency heating device such as a microwave oven, and particularly to a high-voltage transformer used for a so-called inverter power source for frequency conversion.
【0002】[0002]
図6に従来及び本考案の高周波加熱装置に用いられるインバータ電源の回路図 を示す。 FIG. 6 shows a circuit diagram of an inverter power source used in the conventional and high frequency heating devices of the present invention.
【0003】 この図6において商用電源7は整流器8で直流に変換され、更にインダクタン ス12とコンデンサ13により平滑されて高圧トランス10の一次巻線と共振コ ンデンサ11の共振回路とスイッチング素子9に印加される。このインバータ回 路のスイッチング素子9はインバータ制御回路16によって高周波スイッチング を行ない、高圧トランス10の一次巻線の入力を高周波振動させる。高圧トラン ス10では一次巻線に供給される高周波電圧を昇圧して二次巻線に約2kVの高 電圧を発生する。この高電圧は高圧コンデンサ14と高圧ダイオード15からな る半波倍電圧整流回路により直流高電圧に変換され、マグネトロン17に印加さ れる。In FIG. 6, the commercial power supply 7 is converted into direct current by a rectifier 8, and further smoothed by an inductor 12 and a capacitor 13, and the primary winding of the high voltage transformer 10, the resonance circuit of the resonance capacitor 11 and a switching element 9 are connected. Applied to. The switching element 9 of the inverter circuit performs high frequency switching by the inverter control circuit 16 and vibrates the input of the primary winding of the high voltage transformer 10 at high frequency. The high voltage transformer 10 boosts the high frequency voltage supplied to the primary winding to generate a high voltage of about 2 kV in the secondary winding. This high voltage is converted into a DC high voltage by a half-wave voltage doubler rectifying circuit composed of a high voltage capacitor 14 and a high voltage diode 15, and applied to a magnetron 17.
【0004】 図4は従来の高周波加熱装置に用いられるインバータ電源用高圧トランスの断 面図を示すものである。この構造は例えば特開平3−57190号公報の第2図 に示される昇圧トランスとほぼ同様の構成を有し、高圧トランス10はコアの磁 気飽和を防ぐギャップGを設けた磁気コア3A、この磁気コア3Aに装着するボ ビン4A、ボビン4Aに巻回する入力一次巻線1A、高圧二次巻線2A及びマグ ネトロンへのヒータ電圧を発生するヒータ二次巻線5Aから構成されている。こ こで入力一次巻線1Aには高周波損失を低減するために約100本のエナメル線 をより合わせたリッツ線が用いられている。また高圧二次巻線2Aにはピークで 約4kVの高圧が発生することから巻線巻回部を4分割した構造のボビンに高圧 二次巻線2Aを巻回して段絶縁を行なっている。FIG. 4 is a sectional view of a high-voltage transformer for an inverter power supply used in a conventional high-frequency heating device. This structure has, for example, a configuration similar to that of the step-up transformer shown in FIG. 2 of JP-A-3-57190, and the high-voltage transformer 10 has a magnetic core 3A provided with a gap G for preventing magnetic saturation of the core. The magnetic core 3A includes a bobbin 4A, an input primary winding 1A wound around the bobbin 4A, a high voltage secondary winding 2A, and a heater secondary winding 5A for generating a heater voltage to the magnetron. Here, the input primary winding 1A uses a litz wire formed by twisting about 100 enameled wires in order to reduce high frequency loss. Further, since a high voltage of about 4 kV is generated at a peak in the high voltage secondary winding 2A, the high voltage secondary winding 2A is wound around a bobbin having a structure in which the winding winding portion is divided into four to perform stage insulation.
【0005】 図5は高圧二次巻線の要部断面図を示すものである。この図5において、直径 約0.4mmのエナメル線の高圧二次巻線2Aがボビン4Aの四つの分割巻回部に 約70ターンづつ整層巻きされ、一本のエナメル線としてはトータルで約300 ターン巻かれている。FIG. 5 is a cross-sectional view of a main part of the high voltage secondary winding. In FIG. 5, a high-voltage secondary winding 2A of an enameled wire having a diameter of about 0.4 mm is layered around each of four split winding portions of the bobbin 4A by about 70 turns, and a total of about one enameled wire is obtained. It has been wound for 300 turns.
【0006】[0006]
従来のインバータ電源の高圧トランスは、約30kHzのスイッチング周波数 で駆動されているために、商用周波電源で駆動される高圧トランスに比べて重量 が約1/10に小型化されているものの更に一層の小型化が望まれている。 Since the conventional inverter power supply high-voltage transformer is driven at a switching frequency of about 30 kHz, the weight is reduced to about 1/10 that of a commercial-frequency power supply-driven high-voltage transformer, but it is even more compact. Miniaturization is desired.
【0007】 いま共振コンデンサ11の容量と高圧トランス10の入力一次巻線1Aの一次 インダクタンスとの積はスイッチング周波数の二乗にほぼ反比例するという関係 があるので、スイッチング周波数を更に高周波化することによって高圧トランス 10のインダクタンスを更に一層小さく出来るのではないかと考えられる。しか しスイッチング周波数を高周波化した場合には、表皮効果が増進して巻線の高周 波抵抗がますます増加して高圧トランス10の高圧二次巻線2Aの損失が増加す るため、高圧二次巻線2Aの線径を太くして表面積を増やさなければならなくな る。このため高周波化によりインダクタンスを低減できても線径の増大により高 圧二次巻線2Aの巻線スペースが増加してしまい、結果的に高圧トランス10の 小型化が困難という問題があった。Since the product of the capacitance of the resonance capacitor 11 and the primary inductance of the input primary winding 1A of the high voltage transformer 10 is almost inversely proportional to the square of the switching frequency, it is possible to increase the switching frequency by increasing the high frequency. It is considered that the inductance of the transformer 10 can be further reduced. However, when the switching frequency is increased, the skin effect is enhanced, the high frequency resistance of the winding is further increased, and the loss of the high voltage secondary winding 2A of the high voltage transformer 10 is increased. The wire diameter of the secondary winding 2A must be increased to increase the surface area. For this reason, even if the inductance can be reduced by increasing the frequency, the winding space of the high voltage secondary winding 2A increases due to the increase in the wire diameter, and as a result, there is a problem that downsizing of the high voltage transformer 10 is difficult.
【0008】[0008]
本考案は上記の課題を解決するためになされたものであり、高周波電圧が入力 一次巻線、高圧二次巻線、コア、ボビンを備えたインバータ電源用高圧トランス において、高圧二次巻線に複数本の絶縁電線を用い、この絶縁電線の巻始めと巻 終わりを夫々短絡するようにしたものである。 The present invention has been made to solve the above-mentioned problems, and in a high-voltage transformer for an inverter power supply, which has a high-frequency voltage, an input primary winding, a high-voltage secondary winding, a core, and a bobbin, It uses multiple insulated wires and short-circuits the winding start and winding end of each insulated wire.
【0009】[0009]
上述のように高圧二次巻線を複数本の電線で構成するので、高圧二次巻線の聡 表面積は増大することとなり、ボビンに同じ巻数で巻回する場合、高周波抵抗を 変える必要がないのであれば巻線スペースを小さくすることが出来る。また、巻 線スペースを変える必要がないのであれば高周波抵抗を小さくできる。さらに線 径、線数を適当に選ぶことにより、高周波抵抗及び巻線スペースをともに小さく することも出来る。 Since the high-voltage secondary winding is composed of multiple wires as described above, the Satoshi surface area of the high-voltage secondary winding increases, and it is not necessary to change the high-frequency resistance when winding the bobbin with the same number of turns. If so, the winding space can be reduced. Also, if it is not necessary to change the winding space, the high frequency resistance can be reduced. Further, by appropriately selecting the wire diameter and the number of wires, both the high frequency resistance and the winding space can be reduced.
【0010】[0010]
以下本考案の一実施例を図面を用いて説明する。 An embodiment of the present invention will be described below with reference to the drawings.
【0011】 図1は高圧トランスの断面図、図2及び図3はいずれも高圧トランスに巻回さ れた高圧二次巻線の要部断面図で、これらのうち図2は巻数を2本とするととも に高周波抵抗を変えずに巻線スペースを小さくした例(線径と線数を適当に選ぶ ことにより、高周波抵抗及び巻線スペースをともに小さくした場合もこれにあた る)を示したものであり、図3は線数を2本とするとともに巻線スペースを変え ずに高周波抵抗が小さくなるようにした例を示したものである。FIG. 1 is a cross-sectional view of a high-voltage transformer, and FIGS. 2 and 3 are cross-sectional views of a main part of a high-voltage secondary winding wound around a high-voltage transformer. Of these, FIG. 2 has two turns. In addition, an example in which the winding space is made small without changing the high frequency resistance (this is also the case when both the high frequency resistance and the winding space are made small by appropriately selecting the wire diameter and number of wires) is shown. FIG. 3 shows an example in which the number of wires is two and the high frequency resistance is reduced without changing the winding space.
【0012】 図1において高圧トランス10は従来とほぼ同様の構成で、コアの磁気飽和を 防ぐギャップgを設けた磁気コア3、磁気コア3に装着されたボビン4、ボビン 4に巻回された入力一次巻線1、2本の絶縁電線2a、2bからなる高圧二次巻 線2及びマグネトロンのヒータ二次巻線5からなり、入力一次巻線1及びヒータ 二次巻線5以外は磁気コア3、ボビン4及び高圧二次巻線2の何れも従来より小 型化された寸法に形成されている。In FIG. 1, a high-voltage transformer 10 has a structure similar to that of a conventional one, and is wound around a magnetic core 3 provided with a gap g for preventing magnetic saturation of the core, a bobbin 4 mounted on the magnetic core 3, and a bobbin 4. Input primary winding 1, consists of high voltage secondary winding 2 consisting of two insulated wires 2a and 2b, and heater secondary winding 5 of magnetron, and magnetic core except for input primary winding 1 and heater secondary winding 5 3, the bobbin 4, and the high-voltage secondary winding 2 are each formed to have a size smaller than the conventional one.
【0013】 次に本実施例の主眼たる高圧二次巻線2について説明する。Next, the high-voltage secondary winding 2 which is the main point of this embodiment will be described.
【0014】 図2に示した高圧二次巻線2はエナメル線(絶縁電線)2aと斜線を施したエナ メル線(絶縁電線)2bの2本のエナメル線を図1のボビン4の巻回部位に並列か つ整層巻きに巻回したものである。The high-voltage secondary winding 2 shown in FIG. 2 has two enamel wires, an enamel wire (insulated wire) 2a and a shaded enamel wire (insulated wire) 2b, wound around the bobbin 4 of FIG. It is wound in parallel with the parts and in a layered winding.
【0015】 このエナメル線2a、2bは夫々エナメル被覆により相互に絶縁されており、 これらエナメル線2a、2bの巻始めと巻終わりにはエナメル被覆を剥離して接 合した短絡部2c、2dを夫々設けている。The enamel wires 2a and 2b are insulated from each other by an enamel coating. At the beginning and end of winding of the enamel wires 2a and 2b, short-circuited portions 2c and 2d are formed by peeling off the enamel coating and connecting them. They are provided respectively.
【0016】 そして2本の高圧二次巻線の巻数を変えずにエナメル線2a、2bの表面積を 従来のエナメル線の表面積と同等となるようにして高周波抵抗が同等になるよう にした場合には、エナメル線2a、2bが巻回部に占める断面積はほぼ1/2に 減少する。When the surface areas of the enamel wires 2a and 2b are made equal to the surface area of the conventional enamel wire without changing the number of turns of the two high-voltage secondary windings and the high frequency resistances are made equal, The cross-sectional area occupied by the enameled wires 2a and 2b in the winding portion is reduced to about 1/2.
【0017】 また2本の高圧二次巻線の巻数を変えずにエナメル線2a、2bの巻回部に占 める断面積が変わらないようにした場合には、エナメル線2a、2bの巻回部に 占める表面積は約40%増加してその分高周波抵抗が減少する。When the cross-sectional area occupied by the winding parts of the enamel wires 2a and 2b is not changed without changing the number of turns of the two high-voltage secondary windings, the winding of the enamel wires 2a and 2b is performed. The surface area occupied by the circular portion increases by about 40%, and the high frequency resistance decreases accordingly.
【0018】 なお本実施例では高圧二次巻線を2本で構成した場合を説明したが、3本以上 で構成することによって高周波抵抗の低減または高圧二次巻線部従って高圧トラ ンスのより一層の小型化が図れる。In this embodiment, the case where the high-voltage secondary winding is composed of two pieces has been described, but by forming three or more pieces, the high-frequency resistance can be reduced or the high-voltage secondary winding part, and hence the high-voltage transformer, can be improved. Further downsizing can be achieved.
【0019】[0019]
以上本考案による如く高圧トランスの高圧二次巻線として巻始め部と巻終わり 部が夫々短絡つまり同電位に接合されている複数本の絶縁電線を用いることによ り、高圧二次巻線の高周波損失を変える必要がなければ高圧二次巻線の巻回部に 占める断面積を減少させることが出来るので、ボビンが小型化出来るようになっ て高圧トランスを小型化して安価に作成出来、また高圧高圧二次巻線の巻回部に 占める表面積を変える必要がなければ高圧高圧二次巻線の表面積は増加するので その分表皮効果による高周波抵抗は減少することになり、発熱が低く抑えられた 信頼性の向上したインバータ電源用高圧トランスが提供できる。 As described above, according to the present invention, by using a plurality of insulated wires in which the winding start portion and the winding end portion are short-circuited, that is, joined at the same potential, as the high-voltage secondary winding of the high-voltage transformer, If it is not necessary to change the high-frequency loss, the cross-sectional area occupied by the winding part of the high-voltage secondary winding can be reduced, so that the bobbin can be made smaller and the high-voltage transformer can be made smaller and cheaper. If it is not necessary to change the surface area occupied by the winding part of the high-voltage high-voltage secondary winding, the surface area of the high-voltage high-voltage secondary winding will increase, so the high-frequency resistance due to the skin effect will decrease, and heat generation will be kept low. It is possible to provide a high-voltage transformer for inverter power supply with improved reliability.
【図1】本考案の一実施例であるインバータ電源用高圧
トランスの断面図である。FIG. 1 is a cross-sectional view of a high voltage transformer for an inverter power supply according to an embodiment of the present invention.
【図2】高圧二次巻線の表面積を変えずに巻回した高圧
二次巻線の要部断面図である。FIG. 2 is a sectional view of a main part of a high voltage secondary winding wound without changing the surface area of the high voltage secondary winding.
【図3】高圧二次巻線の巻回部断面積を変えずに巻回し
た高圧二次巻線の要部断面図である。FIG. 3 is a cross-sectional view of essential parts of a high-voltage secondary winding wound without changing the winding cross-sectional area of the high-voltage secondary winding.
【図4】従来のインバータ電源用高圧トランスの断面図
である。FIG. 4 is a sectional view of a conventional high-voltage transformer for an inverter power supply.
【図5】同高圧二次巻線の要部断面図である。FIG. 5 is a cross-sectional view of an essential part of the same high voltage secondary winding.
【図6】従来及び本考案共通のインバータ電源の回路図
である。FIG. 6 is a circuit diagram of an inverter power supply common to the related art and the present invention.
1 入力一次巻線 2 高圧二次巻線 2a 絶縁電線 2b 絶縁電線 2c 短絡部 2d 短絡部 3 コア 4 ボビン 1 Input primary winding 2 High voltage secondary winding 2a Insulated wire 2b Insulated wire 2c Short circuit part 2d Short circuit part 3 Core 4 Bobbin
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP380592UJPH0566943U (en) | 1992-02-05 | 1992-02-05 | High voltage transformer for inverter power supply |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP380592UJPH0566943U (en) | 1992-02-05 | 1992-02-05 | High voltage transformer for inverter power supply |
| Publication Number | Publication Date |
|---|---|
| JPH0566943Utrue JPH0566943U (en) | 1993-09-03 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP380592UPendingJPH0566943U (en) | 1992-02-05 | 1992-02-05 | High voltage transformer for inverter power supply |
| Country | Link |
|---|---|
| JP (1) | JPH0566943U (en) |
| Publication | Publication Date | Title |
|---|---|---|
| US4549130A (en) | Low leakage transformers for efficient line isolation in VHF switching power supplies | |
| KR20010079643A (en) | Magnetron drive step-up transformer and transformer of magnetron drive power supply | |
| KR20190141507A (en) | Coil winding structure and methed, high frequency transformer comprising the same | |
| EP1782441A1 (en) | Planar high voltage transformer device | |
| CN106536918A (en) | Winding scheme of a transformer for a step-up chopper and an ignition system for supplying electrical energy to the spark gap of an internal combustion engine | |
| JPH0530146B2 (en) | ||
| JPH0566943U (en) | High voltage transformer for inverter power supply | |
| JP3735490B2 (en) | microwave | |
| CN111668000B (en) | Reinforced insulation transformer and design method thereof | |
| JPS6342493Y2 (en) | ||
| JPH04338615A (en) | inverter transformer | |
| JP2000357617A (en) | Power supply transformer for magnetron drive | |
| JPH0624983Y2 (en) | Step-up transformer for high-frequency heating device | |
| JP2697166B2 (en) | High frequency heating equipment | |
| JP2737934B2 (en) | Switching power supply | |
| JP2006344469A (en) | Induction heating cooker | |
| JP2649429B2 (en) | Gas laser device | |
| JP3168838B2 (en) | High frequency heating equipment | |
| JPH06112063A (en) | Magnetron drive | |
| JP2697167B2 (en) | High frequency heating equipment | |
| JPH08115828A (en) | Magnetron drive power supply | |
| JPH10127054A (en) | High-insulation-type multiple-output dc-dc converter | |
| JP2886890B2 (en) | Power supply for magnetron | |
| JPH01258388A (en) | Inverter power supply for magnetron | |
| KR200211127Y1 (en) | full-wave double voltage circuit |