【発明の詳細な説明】[発明の技術分野]  この発明は燃料電池発電システムに係り、特に
燃料電池発電システムの主要構成要素であるとこ
ろの改質器の温度制御を行うためのシステム構成
に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel cell power generation system, and particularly to a system configuration for controlling the temperature of a reformer, which is a main component of the fuel cell power generation system.
[発明の技術的背景とその問題点]  従来の燃料電池発電システムの構成図を第1図
に示す。図において改質器2に流路Aを介して供
給された燃料ガスは改質器2で水素リツチな改質
ガスへと変換され、流路Bを通じてシフトコンバ
ータ4へと送られる。シフトコンバータ4では改
質ガス中に含まれる一酸化炭素を二酸化炭素と水
素に変換し、前記改質ガスはさらに水素リツチな
改質ガスとなり、流路Cを通つて燃料電池1の燃
料流入口へと供給され、ここで別途流路Xから燃
料電池1の空気流入口に供給された空気とから燃
料電池1で発電が行われる。なおYは、燃料電池
1からの空気の排気流路である。燃料電池1から
排出された使用済燃料ガスは流路Dを通り改質器
バーナ3へと導かれ、ここで別途流路Zから供給
された空気と燃焼させ燃料電池発電システムでは
負荷が急減した場合、改質器2へ供給される燃料
量を速やかに減少させ、燃料電池1へ供給する水
素リツチガス量を減少させる必要があるが、その
結果、改質器2で改質反応を進行させるのに必要
な熱量も少なくてすむ。従つて負荷が減少した場
合には改質器バーナ3の加熱量が少なくてよいこ
とになる。[Technical Background of the Invention and its Problems] A configuration diagram of a conventional fuel cell power generation system is shown in FIG. In the figure, the fuel gas supplied to the reformer 2 via the flow path A is converted into hydrogen-rich reformed gas by the reformer 2, and is sent to the shift converter 4 through the flow path B. The shift converter 4 converts carbon monoxide contained in the reformed gas into carbon dioxide and hydrogen, and the reformed gas becomes a hydrogen-rich reformed gas, which passes through the flow path C to the fuel inlet of the fuel cell 1. Here, the fuel cell 1 generates electricity from the air that is separately supplied from the flow path X to the air inlet of the fuel cell 1. Note that Y is an air exhaust flow path from the fuel cell 1. The spent fuel gas discharged from the fuel cell 1 is guided through the flow path D to the reformer burner 3, where it is combusted with air separately supplied from the flow path Z, resulting in a sudden load reduction in the fuel cell power generation system. In this case, it is necessary to quickly reduce the amount of fuel supplied to the reformer 2 and the amount of hydrogen-rich gas supplied to the fuel cell 1, but as a result, the reforming reaction in the reformer 2 cannot proceed. The amount of heat required is also small. Therefore, when the load decreases, the amount of heating of the reformer burner 3 may be reduced.
  しかしながら従来のシステムでは、改質器2へ
供給する燃料を減少させるまでに若干の遅れが生
じること、また改質反応に必要な熱を燃料電池1
の使用済燃料ガス即ち排ガス流中に含まれる残留
水素の燃焼から得る構成になつているため、負荷
を急減させた場合は、燃料電池1における水素消
費量が急減するのに伴い、燃料電池1の排ガス流
中の残留水素量が急増して、改質器バーナ3から
改質器2へ与えられる熱量が急増し、改質器2で
改質反応に必要な熱量を大きく上廻ることになる
等の問題点があり、その結果として一時的に改質
器2の温度が所定の温度よりも高くなることがあ
つた。改質器2の温度が必要以上に高くなると、
改質器の反応管の損傷や、触媒の劣化等を招き、
システムの健全性を著るしくそこなうことになる
のでそのような事態は極力回避されなければなら
ない。  However, in the conventional system, there is a slight delay before the fuel supplied to the reformer 2 is reduced, and the heat required for the reforming reaction is transferred to the fuel cell 2.
 Since the hydrogen is obtained from the combustion of the residual hydrogen contained in the spent fuel gas, that is, the exhaust gas stream, if the load is suddenly reduced, the amount of hydrogen consumed in the fuel cell 1 will decrease rapidly. The amount of residual hydrogen in the exhaust gas stream increases rapidly, and the amount of heat given from the reformer burner 3 to the reformer 2 increases rapidly, greatly exceeding the amount of heat required for the reforming reaction in the reformer 2. As a result, the temperature of the reformer 2 may temporarily become higher than a predetermined temperature. If the temperature of reformer 2 becomes higher than necessary,
 This may cause damage to the reformer reaction tube and deterioration of the catalyst.
 Such a situation must be avoided as much as possible since it will seriously damage the integrity of the system.
  したがつて、負荷減少は従来ではゆるやかに行
わざるを得なかつた。  Therefore, in the past, the load had to be reduced slowly.
[発明の目的]  本発明は上記の欠点を解決するためになされた
もので負荷急減時における負荷追従性に優れた燃
料電池発電システムを提供することを目的とする
ものである。[Object of the Invention] The present invention was made in order to solve the above-mentioned drawbacks, and an object of the present invention is to provide a fuel cell power generation system that has excellent load followability when the load suddenly decreases.
[発明の概要]  本発明は、燃料ガスを改質し、水素リツチガス
を製造する改質器と、この改質器に熱を供給する
改質器バーナと、前記改質器を経た後の水素リツ
チガスを含む燃料ガスおよび酸素を含む酸化剤ガ
スの供給を受けて発電を行う燃料電池と、この燃
料電池から排出される水素を含むガスを前記改質
器バーナへ供給する第1の系統と、前記改質器バ
ーナへ空気を供給する第2の系統とを具備する燃
料電池発電システムにおいて、  前記第2の系統の途中に設置される流量調節弁
と、前記改質器の内部に設置される温度検出器
と、この温度検出器からの出力信号と前記改質器
内部温度の予め設定された目標値信号とのズレを
演算する演算器と、この演算器からの出力信号に
基づいて前記流量調節弁の開度を調節する調節器
とを備え、前記改質器バーナに供給する空気の流
量を制御することによつて前記改質器内部温度を
制御することを特徴としている。[Summary of the Invention] The present invention provides a reformer for reforming fuel gas to produce hydrogen-rich gas, a reformer burner for supplying heat to the reformer, and a reformer for producing hydrogen-rich gas after passing through the reformer. a fuel cell that generates electricity by receiving a fuel gas containing rich gas and an oxidant gas containing oxygen; a first system that supplies gas containing hydrogen discharged from the fuel cell to the reformer burner; A fuel cell power generation system comprising a second system for supplying air to the reformer burner, comprising: a flow control valve installed in the middle of the second system; and a flow control valve installed inside the reformer. a temperature detector; a computing unit that computes the difference between the output signal from the temperature detector and a preset target value signal for the internal temperature of the reformer; The reformer is characterized in that it includes a regulator that adjusts the opening degree of the control valve, and controls the internal temperature of the reformer by controlling the flow rate of air supplied to the reformer burner.
[発明の効果]  本発明によれば負荷急減時においても改質器に
おける温度変動が平滑化されることにより、改質
器、触媒、反応管の耐久性が大幅に向上する。こ
の為、発電システムの合理的な運転が可能とな
る。[Effects of the Invention] According to the present invention, temperature fluctuations in the reformer are smoothed even when the load suddenly decreases, thereby significantly improving the durability of the reformer, catalyst, and reaction tube. Therefore, rational operation of the power generation system is possible.
[発明の実施例]  本発明の一実施例を第2図を用いて詳細に説明
する。なお図において第1図と同一部位は同符号
を付して説明を省略する。[Embodiment of the Invention] An embodiment of the present invention will be described in detail with reference to FIG. In the figure, the same parts as in FIG. 1 are designated by the same reference numerals, and the explanation will be omitted.
  図において符号5は改質器バーナ3の空気供給
流路Zに設けられた流量調節弁であつて、その開
度の調節は調節器6によつて行われる。また符号
7は演算器で改質器2の内部に設けられ、その内
部温度を検出する温度検出器8の温度検出信号と
改質器2内部温度のあらかじめ設定された目標値
の信号とのズレを演算するものであつて、この演
算器7の出力により、調節器6が以下のように流
量調節弁5の開度を調節制御する。つまり、調節
器6は、演算器7からの出力信号に基づいて、改
質器2の内部温度が目標値よりも高くなつた時に
は、改質器バーナ3に供給する空気の流量を増加
させるように流量調節弁5の開度を調節し、改質
器2の内部温度が所定の値に近づくように制御す
る。  In the figure, reference numeral 5 denotes a flow control valve provided in the air supply channel Z of the reformer burner 3, and its opening degree is controlled by a regulator 6. Reference numeral 7 is a computing unit that is provided inside the reformer 2 and is used to detect the difference between the temperature detection signal of a temperature detector 8 that detects the internal temperature and the signal of the preset target value of the reformer 2 internal temperature. The controller 6 adjusts and controls the opening degree of the flow rate control valve 5 as follows based on the output of the calculator 7. That is, the regulator 6 increases the flow rate of air supplied to the reformer burner 3 when the internal temperature of the reformer 2 becomes higher than the target value based on the output signal from the calculator 7. The opening degree of the flow control valve 5 is adjusted to control the internal temperature of the reformer 2 to approach a predetermined value.
  なお、改質器バーナ吸気供給流路zからは、改
質器バーナ3の安定燃焼状態を維持するために、
一般のシステムと同様に理論的に完全燃焼となる
空気:燃料の比率よりも空気流量が過剰となるよ
うに十分な量が供給されている。  In addition, from the reformer burner intake air supply flow path z, in order to maintain a stable combustion state of the reformer burner 3,
 As with general systems, a sufficient amount of air is supplied so that the air flow rate is in excess of the air:fuel ratio that would theoretically result in complete combustion.
  このように構成された本発明においては、シス
テムの運転途中において負荷変動等により改質器
2内の温度に目標値とのズレが生じると、温度検
出器8の検出信号と目標値の信号のズレを演算器
7で演算し、その出力により調節器6が動作し、
流量調節弁5の開度の調節が行われ流路Zの空気
流量を調節し、改質器2内温度が目標値に等しく
なるように調節される。これにより改質器2にお
ける温度変動が平滑化され、たとえ負荷の急減時
においても改質器の触媒、反応管等の劣化、損傷
は避けられ、システムの健全性が長期にわたり保
持される。  In the present invention configured in this manner, if the temperature within the reformer 2 deviates from the target value due to load fluctuations or the like during operation of the system, the detection signal of the temperature detector 8 and the signal of the target value are The deviation is calculated by the calculator 7, and the regulator 6 is operated based on the output.
 The opening degree of the flow rate control valve 5 is adjusted to adjust the air flow rate in the flow path Z, and the temperature inside the reformer 2 is adjusted to be equal to the target value. As a result, temperature fluctuations in the reformer 2 are smoothed out, and even when the load suddenly decreases, deterioration and damage to the catalyst, reaction tubes, etc. of the reformer are avoided, and the integrity of the system is maintained over a long period of time.
  第1図は従来の燃料電池発電システムの構成を
示す図、第2図は本発明の一実施例を示す図であ
る。  1……燃料電池、2……改質器、3……改質器
バーナー、4……シフトコンバーター、5……流
量調節弁、6……調節器、7……演算器、8……
温度検出器、A……燃料供給流路、B……改質ガ
ス流路、C……燃料電池供給ガス流路、D……燃
料電池排出ガス流路、X……燃料電池空気供給流
路、Y……燃料電池空気排出流路、Z……改質器
バーナ空気供給流路。  FIG. 1 is a diagram showing the configuration of a conventional fuel cell power generation system, and FIG. 2 is a diagram showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Fuel cell, 2... Reformer, 3... Reformer burner, 4... Shift converter, 5... Flow rate control valve, 6... Controller, 7... Arithmetic unit, 8...
 Temperature detector, A...Fuel supply channel, B...Reformed gas channel, C...Fuel cell supply gas channel, D...Fuel cell exhaust gas channel, X...Fuel cell air supply channel , Y...Fuel cell air discharge channel, Z...Reformer burner air supply channel.
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| JP57159630AJPS5951478A (en) | 1982-09-16 | 1982-09-16 | Fuel cell power generation system | 
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| JP57159630AJPS5951478A (en) | 1982-09-16 | 1982-09-16 | Fuel cell power generation system | 
| Publication Number | Publication Date | 
|---|---|
| JPS5951478A JPS5951478A (en) | 1984-03-24 | 
| JPH0556628B2true JPH0556628B2 (en) | 1993-08-20 | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| JP57159630AGrantedJPS5951478A (en) | 1982-09-16 | 1982-09-16 | Fuel cell power generation system | 
| Country | Link | 
|---|---|
| JP (1) | JPS5951478A (en) | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| JPS61227374A (en)* | 1985-03-30 | 1986-10-09 | Toshiba Corp | Fuel cell power generation system | 
| JPS6348774A (en)* | 1986-08-14 | 1988-03-01 | Fuji Electric Co Ltd | Fuel reformer combustion gas control device | 
| US6551733B2 (en)* | 2000-11-30 | 2003-04-22 | Plug Power Inc. | Controlling the temperature at which fuel cell exhaust is oxidized | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US3982962A (en)* | 1975-02-12 | 1976-09-28 | United Technologies Corporation | Pressurized fuel cell power plant with steam powered compressor | 
| US4098960A (en)* | 1976-12-27 | 1978-07-04 | United Technologies Corporation | Fuel cell fuel control system | 
| Publication number | Publication date | 
|---|---|
| JPS5951478A (en) | 1984-03-24 | 
| Publication | Publication Date | Title | 
|---|---|---|
| US3607419A (en) | Fuel cell system control | |
| JP2001023669A (en) | Combustor airflow control method for fuel cell device | |
| US6602628B2 (en) | Control system for fuel cell | |
| US20020081470A1 (en) | Control method for heating processing system | |
| JPH07296834A (en) | Fuel cell power generation plant and method for operating reformer of the plant | |
| JPH0129029B2 (en) | ||
| JPH0752649B2 (en) | Fuel reforming method for fuel cell | |
| JP2001165431A (en) | Air-fuel ratio controller for fuel cell reformer | |
| US20020160243A1 (en) | Control system for fuel cell | |
| JPS6229869B2 (en) | ||
| JPH0556628B2 (en) | ||
| JPS6356673B2 (en) | ||
| JP3061966B2 (en) | Fuel cell power generator | |
| JPS6318307B2 (en) | ||
| JPH03266367A (en) | Fuel system control unit of fuel cell system | |
| JPS6348774A (en) | Fuel reformer combustion gas control device | |
| JP3358227B2 (en) | Fuel cell power generation system | |
| JPS5951479A (en) | Power generation system of fuel battery | |
| JP3557904B2 (en) | Operating method of fuel reformer and fuel cell power generation system | |
| JPH0349185B2 (en) | ||
| JPH0547399A (en) | Temperature control method and device for reforming device of fuel cell power generating system | |
| JPH0789495B2 (en) | Fuel cell power plant | |
| JPH0824054B2 (en) | Fuel cell power plant and control method thereof | |
| JP2001338659A (en) | Fuel cell system and temperature control method for reformer | |
| JPS6135375B2 (en) |