【0001】[0001]
【産業上の利用分野】本発明は、光通信システムの主構
成要素となるInP/InGaAsP半導体レーザに関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an InP / InGaAsP semiconductor laser which is a main constituent element of an optical communication system.
【0002】[0002]
【従来の技術】光通信技術の進歩にともない、その適用
分野は基幹伝送系から、加入者系・LAN・データリン
ク等のシステムへ急速に広がりつつある。これらの分野
で用いられる半導体レーザは、さまざまな環境でかつ大
量に使われることから、耐環境性能に優れ、かつ低価格
であることが要請されており、活発な研究開発が行われ
ている。2. Description of the Related Art With the progress of optical communication technology, its applicable fields are rapidly expanding from backbone transmission systems to subscriber systems, LANs, data links, and other systems. Since semiconductor lasers used in these fields are used in various environments and in large amounts, they are required to have excellent environmental resistance performance and low cost, and active research and development are being carried out.
【0003】図2は水戸ら(I.MITO et a
l.)が論文誌(IEEE JOURNAL OF L
IGHTWAVE TECHNOLOGY,VOL.L
T−1,NO1,pp.195−202,1983)に
報告している半導体レーザの斜視図である。この従来例
の製造方法は、バッファー層3、活性層4、クラッド層
5からなるダブルヘテロ結晶を成長後、フォトリソグラ
フィーとエッチング技術を用いて活性層ストライプ13
を形成し、液相成長法によって活性層ストライプ13を
埋め込む方法である。なお図中、6は2重チャンネル、
7は第1のブロック層、8は第2のブロック層、9は埋
め込み層、10はキャップ層、11はp電極、12はn
電極である。FIG. 2 is a schematic diagram of Mito et al.
l. ) Is a journal (IEEE JOURNAL OF L
IGHTWAVE TECHNOLOGY, VOL. L
T-1, NO1, pp. 195-202, 1983) is a perspective view of a semiconductor laser. In this conventional manufacturing method, after growing a double heterocrystal composed of a buffer layer 3, an active layer 4 and a cladding layer 5, the active layer stripe 13 is formed by using photolithography and etching technology.
Is formed and the active layer stripe 13 is embedded by a liquid phase growth method. In the figure, 6 is a dual channel,
7 is a first block layer, 8 is a second block layer, 9 is a buried layer, 10 is a cap layer, 11 is a p-electrode, and 12 is n.
It is an electrode.
【0004】[0004]
【発明が解決しようとする課題】この従来例において
は、活性層ストライプをエッチングによって形成するた
め、活性層ストライプの側壁に凹凸が発生する結果、導
波路散乱が多くなりレーザの動作電流が増大するという
問題がある。また液相成長法を用いているため、成長ウ
エハが小型の矩形に限定され、かつウエハ周辺部の異常
成長のためその均一性も悪い。したがって、従来例では
耐環境性能に優れた高性能な半導体レーザを低価格で大
量に作製することが困難であった。In this conventional example, since the active layer stripes are formed by etching, irregularities are generated on the side walls of the active layer stripes, and as a result, waveguide scattering increases and the operating current of the laser increases. There is a problem. Further, since the liquid phase growth method is used, the growth wafer is limited to a small rectangular shape, and its uniformity is poor due to abnormal growth in the peripheral portion of the wafer. Therefore, in the conventional example, it was difficult to manufacture a large number of high-performance semiconductor lasers having excellent environmental resistance at a low price.
【0005】本発明の目的は、上記の原因を除去し、耐
環境性能に優れた高性能な半導体レーザを低価格で大量
に作製する半導体レーザの製造方法を提供することにあ
る。An object of the present invention is to eliminate the above-mentioned causes and to provide a semiconductor laser manufacturing method for manufacturing a large number of high-performance semiconductor lasers excellent in environmental resistance at low cost.
【0006】[0006]
【課題を解決するための手段】本発明の半導体レーザの
製造方法は、有機金属気相成長法を用いる半導体レーザ
の製造方法において、n−InPからなる半導体基板の
(100)面上に〈011〉方向に接近した2本のスト
ライプマスクを形成する工程と、前記ストライプマスク
を選択マスクとして用いn−InPからなるバッファー
層とInGaAsまたはInGaAsPからなる活性層
と、p−InPからなる第2のクラッド層とを成長させ
ることで2重チャンネルを形成する工程と、前記ストラ
イプマスクを除去しp−InPからなる第1のブロック
層と、n−InPからなる第2のブロック層と、p−I
nPからなる埋め込み層と、p−InGaAsPからな
るキャップ層とを成長させる工程とを含むことを特徴す
る。The method of manufacturing a semiconductor laser according to the present invention is a method of manufacturing a semiconductor laser using a metal organic chemical vapor deposition method, wherein <011 is formed on a (100) plane of a semiconductor substrate made of n-InP. A step of forming two stripe masks close to each other in the <> direction, a buffer layer made of n-InP, an active layer made of InGaAs or InGaAsP, and a second clad made of p-InP using the stripe masks as selection masks. A step of forming a double channel by growing a layer, a first block layer made of p-InP by removing the stripe mask, a second block layer made of n-InP, and p-I.
It is characterized by including a step of growing a buried layer made of nP and a cap layer made of p-InGaAsP.
【0007】本発明では、結晶成長法として有機金属気
相成長法を用いているため、本質的に2インチ以上の円
形ウエハを用いた大面積・均一成長が可能である。さら
に、基板上に形成したマスクを用いる選択成長法によっ
て活性層ストライプを形成する本発明の製造方法は、活
性層の側壁を原子層オーダーで平滑にできるため、半導
体レーザの導波路散乱を抑制し導波路損失を小さくする
ことが可能である。その結果、発振しきい値電流を低減
でき、半導体レーザの動作電流を低減できる。したがっ
て、耐環境性能に優れた高性能な半導体レーザを低価格
で大量に供給できる。In the present invention, since the metal organic chemical vapor deposition method is used as the crystal growth method, large area and uniform growth using a circular wafer of essentially 2 inches or more is possible. Further, the manufacturing method of the present invention in which the active layer stripes are formed by the selective growth method using the mask formed on the substrate, the side wall of the active layer can be smoothed in atomic layer order, so that the waveguide scattering of the semiconductor laser is suppressed. It is possible to reduce the waveguide loss. As a result, the oscillation threshold current can be reduced and the operating current of the semiconductor laser can be reduced. Therefore, a large number of high-performance semiconductor lasers having excellent environmental resistance can be supplied at a low price.
【0008】[0008]
【実施例】次に図面を参照して本発明の実施例を詳細に
説明する。Embodiments of the present invention will now be described in detail with reference to the drawings.
【0009】図1は本発明の実施例を示す半導体レーザ
の製造方法を示す工程図である。FIG. 1 is a process chart showing a method for manufacturing a semiconductor laser showing an embodiment of the present invention.
【0010】先ず、図1(a)に示すように、厚さ35
0μmのn−InPからなる半導体基板1の(100)
面上に、CVD法とフォトリソグラフィーの手法を用い
て〈011〉方向に間隔2μm、幅6μm、厚さ150
nmの2本のSiO2からなるストライプマスク2を形
成する。First, as shown in FIG. 1A, the thickness 35
(100) of the semiconductor substrate 1 made of 0 μm n-InP
On the surface, a distance of 2 μm, a width of 6 μm, and a thickness of 150 in the <011> direction by using the CVD method and the photolithography method.
A stripe mask 2 made oftwo SiO2 of 2 nm is formed.
【0011】次に、図1(b)に示すように、ストライ
プマスク2を選択マスクとして用い、有機金属気相成長
法によりn−InPからなるバッファー層3(厚さ0.
5μm、キャリア濃度5×1017cm-2)、InGaA
sまたはInGaAsPからなる活性層4(厚さ0.2
μm)、p−InPからなるクラッド層5(厚さ1μ
m、キャリア濃度1×1018cm-2)を成長させる。こ
の場合、ストライプマスク2上には結晶成長しないか
ら、活性層ストライプ13の両脇に2重チャンネル6を
形成することができる。Next, as shown in FIG. 1 (b), the buffer layer 3 (thickness: 0.
5 μm, carrier concentration 5 × 1017 cm-2 ), InGaA
s or InGaAsP active layer 4 (thickness 0.2
μm), a clad layer 5 made of p-InP (thickness 1 μm
m, carrier concentration 1 × 1018 cm−2 ). In this case, since the crystal does not grow on the stripe mask 2, the double channel 6 can be formed on both sides of the active layer stripe 13.
【0012】次に、図1(c)に示すように、ストライ
プマスク2をフッ酸で除去した後、p−InPからなる
第1のブロック層7(厚さ0.5μm、キャリア濃度1
×1018cm-2)と、n−InPからなる第2のブロッ
ク層8(厚さ0.5μm、キャリア濃度5×1017cm
-2)と、p−InP埋め込み層9(厚さ0.5μm、キ
ャリア濃度1×1018cm-2)と、p−InGaAsP
からなるキャップ層10(厚さ0.5μm、キャリア濃
度5×1018cm-2)とを成長させる。2回目の成長で
は、その断面構造が成長条件で大きく変化するが、成長
温度を650℃成長圧力を25Torrとすることによ
って、図1のように活性層ストライプ13の上部には第
1及び第2のブロック層がない電流閉じ込め構造をつく
ることができる。Next, as shown in FIG. 1C, the stripe mask 2 is removed by hydrofluoric acid, and then the first block layer 7 made of p-InP (thickness: 0.5 μm, carrier concentration: 1).
X 1018 cm-2 ) and the second block layer 8 made of n-InP (thickness 0.5 μm, carrier concentration 5 × 1017 cm 2
-2 ), the p-InP buried layer 9 (thickness 0.5 μm, carrier concentration 1 × 1018 cm-2 ), and p-InGaAsP
And a cap layer 10 (having a thickness of 0.5 μm and a carrier concentration of 5 × 1018 cm−2 ) made of In the second growth, the cross-sectional structure greatly changes depending on the growth conditions, but by setting the growth temperature to 650 ° C. and the growth pressure to 25 Torr, the first and second layers are formed above the active layer stripe 13 as shown in FIG. It is possible to create a current confinement structure that does not have a block layer.
【0013】次に、図1(d)に示すように、AuZn
からなるp電極11を形成する。半導体基板1の裏面を
100μm程度の厚さになるまで研磨した後、裏面側に
AuGeNiからなるn電極12を形成する。最後に、
へき開によって長さ300μmの共振器を形成すること
によって本実施例による半導体レーザが完成する。Next, as shown in FIG. 1 (d), AuZn
The p-electrode 11 made of is formed. After polishing the back surface of the semiconductor substrate 1 to a thickness of about 100 μm, the n-electrode 12 made of AuGeNi is formed on the back surface side. Finally,
The semiconductor laser according to the present embodiment is completed by forming a resonator having a length of 300 μm by cleavage.
【0014】このように本実施例では、結晶成長法とし
て有機金属気相成長法を用いているため、本質的に2イ
ンチ以上の円形ウエハを用いた大面積・均一成長が可能
である。さらに、マスクを用いる選択成長によって活性
層ストライプを形成するため、活性層ストライプの側壁
を原子層オーダーで平滑にできる。その結果、半導体レ
ーザの導波路散乱が無くなり、導波路損失を小さくする
ことができるため、半導体レーザの発振しきい値電流・
動作電流を低減でき、85℃以上の高温で5mW光出力
時の動作電流として約25mAが得られる。したがっ
て、耐環境性能に優れた高性能な半導体レーザを低価格
で大量に供給できる。As described above, in this embodiment, since the metal organic chemical vapor deposition method is used as the crystal growth method, a large area and uniform growth can be essentially performed using a circular wafer of 2 inches or more. Furthermore, since the active layer stripes are formed by selective growth using a mask, the side walls of the active layer stripes can be smoothed in atomic layer order. As a result, since the waveguide scattering of the semiconductor laser is eliminated and the waveguide loss can be reduced, the oscillation threshold current
The operating current can be reduced, and about 25 mA can be obtained as an operating current at the time of light output of 5 mW at a high temperature of 85 ° C. or higher. Therefore, a large number of high-performance semiconductor lasers having excellent environmental resistance can be supplied at a low price.
【0015】なお、上記実施例においては寸法例も示し
たが、結晶成長やエッチングの様子は成長法・条件など
で大幅に変化するから、それらと共に適切な寸法を採用
すべきことは言うまでもない。電極金属・マスクの種類
に関して制限はない。活性層に関しては、InGaAs
PまたはInGaAsであれば制限はなく、さらに量子
井戸構造でも良いことは改めて詳細に説明するまでもな
く明らかなことである。It should be noted that, although examples of dimensions are also shown in the above-mentioned embodiments, it is needless to say that appropriate dimensions should be adopted together with them because the state of crystal growth and etching greatly changes depending on the growth method and conditions. There are no restrictions on the type of electrode metal or mask. For the active layer, InGaAs
There is no limitation as long as it is P or InGaAs, and it is obvious that a quantum well structure may be used without further detailed explanation.
【0016】[0016]
【発明の効果】以上詳細に説明したように、本発明によ
れば、結晶成長法として有機金属気相成長法を用いてい
るため、本質的に2インチ以上の円形ウエハを用いた大
面積・均一成長が可能である。さらに、マスクを用いる
選択成長法によって活性層ストライプを形成するため、
活性層ストライプの側壁を原子層オーダーで平滑にでき
る。その結果、半導体レーザの導波路散乱が無くなり導
波路損失を小さくすることができるため、半導体レーザ
の発振しきい値電流・動作電流を低減できる。したがっ
て、耐環境性能に優れた高性能な半導体レーザを低価格
で大量に供給できる。As described in detail above, according to the present invention, since the metal organic chemical vapor deposition method is used as the crystal growth method, a large area using a circular wafer of essentially 2 inches or more is used. Uniform growth is possible. Further, since the active layer stripe is formed by the selective growth method using a mask,
The side wall of the active layer stripe can be smoothed on the atomic layer order. As a result, since the waveguide scattering of the semiconductor laser is eliminated and the waveguide loss can be reduced, the oscillation threshold current and operating current of the semiconductor laser can be reduced. Therefore, a large number of high-performance semiconductor lasers having excellent environmental resistance can be supplied at a low price.
【図1】本発明の実施例を示す半導体レーザの製造方法
を示す工程図である。FIG. 1 is a process drawing showing a method for manufacturing a semiconductor laser showing an embodiment of the present invention.
【図2】従来例の構造図である。FIG. 2 is a structural diagram of a conventional example.
1 n−InPからなる半導体基板 2 ストライプマスク 3 n−InPからなるバッファー層 4 InGaAsまたはInGaAsPからなる活性層 5 p−InPからなるクラッド層 6 2重チャンネル 7 p−InPからなる第1のブロック層 8 n−InPからなる第2のブロック層 9 p−InPからなる埋め込み層 10 p−InGaAsPからなるキャップ層 11 AuZnからなるp電極 12 AuGeNiからなるn電極 13 活性層ストライプ 1 semiconductor substrate made of n-InP 2 stripe mask 3 buffer layer made of n-InP 4 active layer made of InGaAs or InGaAsP 5 clad layer made of p-InP 6 double channel 7 first block layer made of p-InP 8 Second block layer made of n-InP 9 Buried layer made of p-InP 10 Cap layer made of p-InGaAsP 11 P electrode made of AuZn 12 n electrode made of AuGeNi 13 Active layer stripe
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP10948692AJPH05304334A (en) | 1992-04-28 | 1992-04-28 | Fabrication of semiconductor laser |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP10948692AJPH05304334A (en) | 1992-04-28 | 1992-04-28 | Fabrication of semiconductor laser |
| Publication Number | Publication Date |
|---|---|
| JPH05304334Atrue JPH05304334A (en) | 1993-11-16 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP10948692APendingJPH05304334A (en) | 1992-04-28 | 1992-04-28 | Fabrication of semiconductor laser |
| Country | Link |
|---|---|
| JP (1) | JPH05304334A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6855368B1 (en) | 2000-06-28 | 2005-02-15 | Applied Materials, Inc. | Method and system for controlling the presence of fluorine in refractory metal layers |
| US6878206B2 (en) | 2001-07-16 | 2005-04-12 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
| US6911391B2 (en) | 2002-01-26 | 2005-06-28 | Applied Materials, Inc. | Integration of titanium and titanium nitride layers |
| US6916398B2 (en) | 2001-10-26 | 2005-07-12 | Applied Materials, Inc. | Gas delivery apparatus and method for atomic layer deposition |
| US6936906B2 (en) | 2001-09-26 | 2005-08-30 | Applied Materials, Inc. | Integration of barrier layer and seed layer |
| US6951804B2 (en) | 2001-02-02 | 2005-10-04 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
| US6998579B2 (en) | 2000-12-29 | 2006-02-14 | Applied Materials, Inc. | Chamber for uniform substrate heating |
| US7022948B2 (en) | 2000-12-29 | 2006-04-04 | Applied Materials, Inc. | Chamber for uniform substrate heating |
| US7049226B2 (en) | 2001-09-26 | 2006-05-23 | Applied Materials, Inc. | Integration of ALD tantalum nitride for copper metallization |
| US7085616B2 (en) | 2001-07-27 | 2006-08-01 | Applied Materials, Inc. | Atomic layer deposition apparatus |
| US7101795B1 (en) | 2000-06-28 | 2006-09-05 | Applied Materials, Inc. | Method and apparatus for depositing refractory metal layers employing sequential deposition techniques to form a nucleation layer |
| US7115499B2 (en) | 2002-02-26 | 2006-10-03 | Applied Materials, Inc. | Cyclical deposition of tungsten nitride for metal oxide gate electrode |
| US7201803B2 (en) | 2001-03-07 | 2007-04-10 | Applied Materials, Inc. | Valve control system for atomic layer deposition chamber |
| US7208413B2 (en) | 2000-06-27 | 2007-04-24 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
| US7211144B2 (en) | 2001-07-13 | 2007-05-01 | Applied Materials, Inc. | Pulsed nucleation deposition of tungsten layers |
| US7262133B2 (en) | 2003-01-07 | 2007-08-28 | Applied Materials, Inc. | Enhancement of copper line reliability using thin ALD tan film to cap the copper line |
| US7405158B2 (en) | 2000-06-28 | 2008-07-29 | Applied Materials, Inc. | Methods for depositing tungsten layers employing atomic layer deposition techniques |
| US7439191B2 (en) | 2002-04-05 | 2008-10-21 | Applied Materials, Inc. | Deposition of silicon layers for active matrix liquid crystal display (AMLCD) applications |
| US7595263B2 (en) | 2003-06-18 | 2009-09-29 | Applied Materials, Inc. | Atomic layer deposition of barrier materials |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7501343B2 (en) | 2000-06-27 | 2009-03-10 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
| US7208413B2 (en) | 2000-06-27 | 2007-04-24 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
| US7501344B2 (en) | 2000-06-27 | 2009-03-10 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
| US7405158B2 (en) | 2000-06-28 | 2008-07-29 | Applied Materials, Inc. | Methods for depositing tungsten layers employing atomic layer deposition techniques |
| US7465666B2 (en) | 2000-06-28 | 2008-12-16 | Applied Materials, Inc. | Method for forming tungsten materials during vapor deposition processes |
| US7033922B2 (en) | 2000-06-28 | 2006-04-25 | Applied Materials. Inc. | Method and system for controlling the presence of fluorine in refractory metal layers |
| US6855368B1 (en) | 2000-06-28 | 2005-02-15 | Applied Materials, Inc. | Method and system for controlling the presence of fluorine in refractory metal layers |
| US7235486B2 (en) | 2000-06-28 | 2007-06-26 | Applied Materials, Inc. | Method for forming tungsten materials during vapor deposition processes |
| US7101795B1 (en) | 2000-06-28 | 2006-09-05 | Applied Materials, Inc. | Method and apparatus for depositing refractory metal layers employing sequential deposition techniques to form a nucleation layer |
| US7115494B2 (en) | 2000-06-28 | 2006-10-03 | Applied Materials, Inc. | Method and system for controlling the presence of fluorine in refractory metal layers |
| US6998579B2 (en) | 2000-12-29 | 2006-02-14 | Applied Materials, Inc. | Chamber for uniform substrate heating |
| US7022948B2 (en) | 2000-12-29 | 2006-04-04 | Applied Materials, Inc. | Chamber for uniform substrate heating |
| US6951804B2 (en) | 2001-02-02 | 2005-10-04 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
| US7781326B2 (en) | 2001-02-02 | 2010-08-24 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
| US7094680B2 (en) | 2001-02-02 | 2006-08-22 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
| US7201803B2 (en) | 2001-03-07 | 2007-04-10 | Applied Materials, Inc. | Valve control system for atomic layer deposition chamber |
| US7211144B2 (en) | 2001-07-13 | 2007-05-01 | Applied Materials, Inc. | Pulsed nucleation deposition of tungsten layers |
| US10280509B2 (en) | 2001-07-16 | 2019-05-07 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
| US6878206B2 (en) | 2001-07-16 | 2005-04-12 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
| US7085616B2 (en) | 2001-07-27 | 2006-08-01 | Applied Materials, Inc. | Atomic layer deposition apparatus |
| US7049226B2 (en) | 2001-09-26 | 2006-05-23 | Applied Materials, Inc. | Integration of ALD tantalum nitride for copper metallization |
| US7352048B2 (en) | 2001-09-26 | 2008-04-01 | Applied Materials, Inc. | Integration of barrier layer and seed layer |
| US6936906B2 (en) | 2001-09-26 | 2005-08-30 | Applied Materials, Inc. | Integration of barrier layer and seed layer |
| US7494908B2 (en) | 2001-09-26 | 2009-02-24 | Applied Materials, Inc. | Apparatus for integration of barrier layer and seed layer |
| US6916398B2 (en) | 2001-10-26 | 2005-07-12 | Applied Materials, Inc. | Gas delivery apparatus and method for atomic layer deposition |
| US7732325B2 (en) | 2002-01-26 | 2010-06-08 | Applied Materials, Inc. | Plasma-enhanced cyclic layer deposition process for barrier layers |
| US7473638B2 (en) | 2002-01-26 | 2009-01-06 | Applied Materials, Inc. | Plasma-enhanced cyclic layer deposition process for barrier layers |
| US6911391B2 (en) | 2002-01-26 | 2005-06-28 | Applied Materials, Inc. | Integration of titanium and titanium nitride layers |
| US7094685B2 (en) | 2002-01-26 | 2006-08-22 | Applied Materials, Inc. | Integration of titanium and titanium nitride layers |
| US7429516B2 (en) | 2002-02-26 | 2008-09-30 | Applied Materials, Inc. | Tungsten nitride atomic layer deposition processes |
| US7115499B2 (en) | 2002-02-26 | 2006-10-03 | Applied Materials, Inc. | Cyclical deposition of tungsten nitride for metal oxide gate electrode |
| US7439191B2 (en) | 2002-04-05 | 2008-10-21 | Applied Materials, Inc. | Deposition of silicon layers for active matrix liquid crystal display (AMLCD) applications |
| US7262133B2 (en) | 2003-01-07 | 2007-08-28 | Applied Materials, Inc. | Enhancement of copper line reliability using thin ALD tan film to cap the copper line |
| US7595263B2 (en) | 2003-06-18 | 2009-09-29 | Applied Materials, Inc. | Atomic layer deposition of barrier materials |
| Publication | Publication Date | Title |
|---|---|---|
| JPH05304334A (en) | Fabrication of semiconductor laser | |
| JP2004179274A (en) | Optical semiconductor device | |
| JP4151043B2 (en) | Manufacturing method of optical semiconductor device | |
| JP2917950B2 (en) | Tunable semiconductor laser and method of manufacturing the same | |
| JPH08162706A (en) | Manufacture of integrated semiconductor optical element | |
| US5360763A (en) | Method for fabricating an optical semiconductor device | |
| JP3047049B2 (en) | Method of manufacturing buried semiconductor laser | |
| JPH09312437A (en) | Semiconductor laser and manufacturing method thereof | |
| JPH0661587A (en) | Manufacture of semiconductor laser | |
| JPH0316288A (en) | Semiconductor laser element and manufacture thereof | |
| JP2710248B2 (en) | Manufacturing method of semiconductor laser | |
| JPH10117045A (en) | Optical semiconductor device | |
| JP3159914B2 (en) | Selectively grown waveguide type optical control element and method of manufacturing the same | |
| JP2626570B2 (en) | Method for manufacturing semiconductor laser device | |
| JPH10117038A (en) | Method for manufacturing optical semiconductor device | |
| JPS59127892A (en) | Semiconductor laser and manufacture thereof | |
| JP2750180B2 (en) | Edge emitting light emitting diode and method of manufacturing the same | |
| JP3108789B2 (en) | Embedded semiconductor laser and method of manufacturing the same | |
| JP2996221B2 (en) | Semiconductor laser and method of manufacturing the same | |
| JPS61220389A (en) | Integrated type semiconductor laser | |
| JP3887733B2 (en) | Method for manufacturing optical semiconductor element | |
| JP2002124731A (en) | Method for manufacturing optical semiconductor device | |
| JPH06188507A (en) | Quantum wire semiconductor laser and manufacturing method thereof | |
| JPH06177482A (en) | Manufacture of semiconductor laser | |
| JPH08293640A (en) | Semiconductor light emitting device and method of manufacturing the same |