Movatterモバイル変換


[0]ホーム

URL:


JPH05234945A - Plasma equipment - Google Patents

Plasma equipment

Info

Publication number
JPH05234945A
JPH05234945AJP4032328AJP3232892AJPH05234945AJP H05234945 AJPH05234945 AJP H05234945AJP 4032328 AJP4032328 AJP 4032328AJP 3232892 AJP3232892 AJP 3232892AJP H05234945 AJPH05234945 AJP H05234945A
Authority
JP
Japan
Prior art keywords
plasma
reaction chamber
chamber
electron
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4032328A
Other languages
Japanese (ja)
Inventor
Yoichi Araki
陽一 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron LtdfiledCriticalTokyo Electron Ltd
Priority to JP4032328ApriorityCriticalpatent/JPH05234945A/en
Priority to US08/004,066prioritypatent/US5397956A/en
Publication of JPH05234945ApublicationCriticalpatent/JPH05234945A/en
Pendinglegal-statusCriticalCurrent

Links

Landscapes

Abstract

PURPOSE:To obtain an equipment wherein plasma treatment is enabled with high efficiency, the equipment is simplified, the number of parts can be reduced, and miniaturization is possible, by installing a path connecting a reaction chamber with a linkage part around an introducing port of an electron acceleration electrode which is arranged between the linkage part and the reaction chamber and has an atom introducing hole in the central part. CONSTITUTION:The title equipment is provided with the following; a plasma generating chamber 24 which turns gas G1 introduced into a space surrounded by a cathode electrode 28 for discharge into plasma, a reaction chamber 26 which turns reaction gas G2 into plasma by irradiation of electrons extracted from plasma and treats an object 7 to be treated, and a linkage part 25 which links the plasma generating chamber 24 with the reaction chamber 26. A path connecting the reaction chamber 26 with the linkage part 25 is installed around an introducing port 42b of an electron acceleration electrode 42 which is arranged between the linkage part 25 and the reaction chamber 26 and has the introducing port 42b of electrons at the central part. The path is installed in order to assist neutral particles existing in the reaction chamber 26 in moving into the reverse direction without disturbing an electron flow.

Description

Translated fromJapanese
【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はプラズマ装置に関し、特
に小型化できるプラズマ装置に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma device, and more particularly to a plasma device which can be miniaturized.

【0002】[0002]

【従来の技術】従来から、半導体ウェハ製造工程では、
反応ガスをプラズマ化してプラズマ処理を行なうプラズ
マ装置が用いられている。プラズマ処理は高温を要せず
低温処理できるため、ドーピング、酸化膜形成、エッチ
ング、洗浄等広く採用されている。
2. Description of the Related Art Conventionally, in a semiconductor wafer manufacturing process,
2. Description of the Related Art A plasma device is used that converts a reaction gas into plasma and performs plasma processing. Since the plasma treatment does not require a high temperature and can be performed at a low temperature, it is widely adopted for doping, oxide film formation, etching, cleaning and the like.

【0003】しかし、近年ますます半導体素子が微細化
されるに伴い、プラズマ処理においても微細化が要求さ
れ、真空処理室内の真空度をより高くした状態で、反応
ガスのプラズマ化をより効果的に行なうことが求められ
ている。このようなプラズマ装置1は、図5に示すよう
に、主にプラズマ生成用の放電ガスを噴射する導入孔3
にカソード電極2を取着したプラズマ発生室4と、プラ
ズマ発生室4で発生したプラズマから電子を引出し加速
させる加速室5と、加速室5で加速された電子により、
反応ガスをプラズマ化してウェハホルダー6に支持され
た半導体ウェハ7をプラズマ処理する反応室8とから構
成される。
However, in recent years, as semiconductor elements have been further miniaturized, miniaturization is required also in plasma processing, and it is more effective to make reaction gas into plasma in a state where the degree of vacuum in the vacuum processing chamber is higher. Is required to do so. As shown in FIG. 5, such a plasma device 1 has an introduction hole 3 for mainly injecting a discharge gas for plasma generation.
The plasma generation chamber 4 having the cathode electrode 2 attached thereto, the acceleration chamber 5 for extracting and accelerating electrons from the plasma generated in the plasma generation chamber 4, and the electrons accelerated in the acceleration chamber 5
A reaction chamber 8 for plasma-converting the reaction gas to plasma-process the semiconductor wafer 7 supported by the wafer holder 6.

【0004】更に詳述すると、プラズマ発生室4には同
軸状に中央に電子の導入孔を有する第1及び第2の中間
電極9及び10と、アノード電極11とが設けられ、カ
ソード電極2及びアノード電極11間に放電電圧V1を
印加し放電することにより、放電領域12であるプラズ
マ発生室4に導入される放電用ガスがプラズマ化される
ようになっている。プラズマ発生室4で発生されたプラ
ズマが導入される加速室5は電子加速電極13が設けら
れ、加速電極13に電子加速電圧V2を印加させること
によりプラズマから引出された電子を加速する加速領域
14を構成するようになっている。そして、加速された
電子が導入される処理室8は反応ガスが導入される反応
ガス導入孔15を備え、電子の照射により反応ガスをプ
ラズマ化し、半導体ウェハの処理を行なうプラズマ処理
領域16を構成するものである。
More specifically, the plasma generating chamber 4 is provided with first and second intermediate electrodes 9 and 10 coaxially having an electron introduction hole in the center thereof, and an anode electrode 11, and the cathode electrode 2 and By applying a discharge voltage V1 between the anode electrodes 11 to cause discharge, the discharge gas introduced into the plasma generation chamber 4, which is the discharge region 12, is turned into plasma. An electron acceleration electrode 13 is provided in the acceleration chamber 5 into which the plasma generated in the plasma generation chamber 4 is introduced, and an acceleration region 14 for accelerating electrons extracted from the plasma by applying an electron acceleration voltage V2 to the acceleration electrode 13. Is configured. The processing chamber 8 into which the accelerated electrons are introduced has a reaction gas introduction hole 15 into which the reaction gas is introduced, and forms a plasma processing region 16 in which the reaction gas is turned into plasma by the irradiation of the electrons and the semiconductor wafer is processed. To do.

【0005】尚、反応室8、加速室5及びプラズマ発生
室4はそれぞれ排気孔17、18及び19が設けられ、
反応ガス及び放電用ガスが導入される前に室内を真空に
する真空装置(図示せず)に接続される。また、第1及
び第2の中間電極9、10、アノード電極11、電子加
速電極13の設置される部位の外側には、それぞれ磁場
形成のためのソレノイド20、21、22、23が巻装
される。
The reaction chamber 8, the acceleration chamber 5 and the plasma generation chamber 4 are provided with exhaust holes 17, 18 and 19, respectively.
It is connected to a vacuum device (not shown) that evacuates the chamber before the reaction gas and the discharge gas are introduced. Solenoids 20, 21, 22 and 23 for forming a magnetic field are respectively wound around the portions where the first and second intermediate electrodes 9 and 10, the anode electrode 11 and the electron acceleration electrode 13 are installed. It

【0006】この種のプラズマ装置には、放電ガスをプ
ラズマ化し、これより電子を加速してエッチングガスに
照射するもの(特開昭64−53422号公報)、反応
ガスをプラズマ化する領域に形成される磁場を打消すた
めに逆磁場コイルを配置するもの(特開平1−1055
40号公報)、反応ガスをプラズマ化する領域に入って
くる電子を偏向、拡散させるため電場を配置するもの
(特開平1−105539号公報)等がある。
In this type of plasma device, a discharge gas is made into plasma, and electrons are accelerated by this to irradiate the etching gas (Japanese Patent Laid-Open No. 64-53422). In which a reverse magnetic field coil is arranged to cancel the generated magnetic field (Japanese Patent Laid-Open No. 1055/1989)
No. 40), a device for arranging an electric field for deflecting and diffusing the electrons that enter the region where the reaction gas is made into plasma (Japanese Patent Laid-Open No. 105539).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うなプラズマ装置においては、加速室5のソレノイド2
2及び23により形成される磁力線が電子の加速に最適
な空間を形成するためには、ソレノイド中心間は数10
0mm程度であり、加速室5に設置可能な排気孔18の
口径は電子移動方向に100mm、その直交方向に20
0mmと小さく、加速室5の容積に対して真空装置の排
気効率も低下してしまう。しかし、隣接する反応室8は
高度に真空な、例えば10-5〜10-3Torrであり、同程
度の真空度が要求される加速室5内を所定の真空度、例
えば3×10-4Torrに維持するために時間がかかってし
まうと同時に、最悪の場合はプラズマ発生室4にまで反
応室8で生成される腐食性の反応ガスが侵入してしまう
おそれがあった。
However, in such a plasma apparatus, the solenoid 2 of the acceleration chamber 5 is used.
In order for the magnetic field lines formed by 2 and 23 to form an optimal space for accelerating electrons, the distance between the solenoid centers is several tens.
The diameter of the exhaust hole 18 which can be installed in the acceleration chamber 5 is 100 mm in the electron moving direction and 20 mm in the orthogonal direction.
It is as small as 0 mm, and the exhaust efficiency of the vacuum device also decreases with respect to the volume of the acceleration chamber 5. However, the adjacent reaction chambers 8 are highly vacuumed, for example, 10−5 to 10−3 Torr, and the inside of the acceleration chamber 5 that requires a similar vacuum degree has a predetermined vacuum degree, for example, 3 × 10−4. It takes a long time to maintain the pressure at Torr, and in the worst case, the corrosive reaction gas generated in the reaction chamber 8 may enter the plasma generation chamber 4.

【0008】そのため、この腐食性の反応ガスの侵入に
対して、加速室5と、加速室5の排気孔15に接続する
真空装置を耐腐食性部材で形成すると伴に、加速室5に
隣接されるプラズマ発生室4に腐食性の反応ガスが侵入
するのを防止するため加速室5を電子の移動方向に長く
形成し、加速室5に設けられる排気孔18の口径を大口
径化して対処する方法も考えられる。しかし、加速室5
を電子移動方向に長く形成すると、装置自体が大きくな
ると共に、電子の移動距離も長くなるため、ソレノイド
22及び23により形成される磁力線が電子の加速に最
適な空間を形成するためには、アノード電極11、加速
電極13のソレノイド22及び23を極端に大径にしな
ければならず、装置の大型化は免れ得なかった。
Therefore, in response to the intrusion of the corrosive reaction gas, the acceleration chamber 5 and the vacuum device connected to the exhaust hole 15 of the acceleration chamber 5 are formed of a corrosion-resistant member and are adjacent to the acceleration chamber 5. In order to prevent the corrosive reaction gas from entering the generated plasma generation chamber 4, the acceleration chamber 5 is formed to be long in the electron moving direction, and the diameter of the exhaust hole 18 provided in the acceleration chamber 5 is increased to cope with the problem. A method of doing it is also possible. However, acceleration room 5
If the magnetic field lines formed by the solenoids 22 and 23 form an optimal space for accelerating the electrons, the anode itself becomes large as the device itself becomes large and the moving distance of the electrons also becomes long if the magnetic field lines are made longer in the electron moving direction. The solenoids 22 and 23 of the electrode 11 and the accelerating electrode 13 had to be extremely large in diameter, which inevitably led to an increase in size of the device.

【0009】本発明は上記事情に鑑みなされたもので、
効率よくプラズマ処理を行なえ、しかも装置を簡略化し
て、部品数を減少でき、小型化を図ったプラズマ装置を
提供することを目的とする。
The present invention has been made in view of the above circumstances.
An object of the present invention is to provide a plasma device that can perform plasma processing efficiently, simplify the device, reduce the number of parts, and downsize.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明のプラズマ装置は、カソード電極に囲まれた
空間を通って導入される放電用ガスをプラズマ化させる
プラズマ発生室と、前記プラズマから引出される電子の
照射により反応ガスをプラズマ化して被処理体の処理を
行なう反応室とを備え、前記プラズマ発生室と前記反応
室とを連結する連結部を設け、前記連結部と前記反応室
の間に設置され中央に前記電子の導入孔を有した電子加
速電極の前記導入孔周囲に、前記反応室と前記連結部を
結ぶ通路を備えたものである。
To achieve the above object, a plasma device of the present invention comprises a plasma generating chamber for converting a discharge gas introduced into a space surrounded by a cathode electrode into a plasma, and the plasma. A reaction chamber for converting the reaction gas into plasma by irradiation of electrons extracted from the reaction chamber for treating the object to be processed, and providing a connection portion for connecting the plasma generation chamber and the reaction chamber, and the connection portion and the reaction A passage connecting the reaction chamber and the connecting portion is provided around the introduction hole of the electron accelerating electrode installed between the chambers and having the introduction hole of the electron in the center.

【0011】[0011]

【作用】上記のように構成される本発明のプラズマ装置
によれば、カソード電極に囲まれた空間を通って導入さ
れる放電用ガスをプラズマ化するプラズマ発生室と、プ
ラズマ化された反応ガスで被処理体のプラズマ処理を行
なう反応室を連結部で接続する。連結部にはアノード電
極と電子加速電極が設置され、アノード電極と電子加速
電極にソレノイドを巻装させる。そのため連結部は電子
の移動方向に対して短く形成され、プラズマ発生室で発
生された放電用ガスのプラズマから電子を効率よく引出
し、加速して反応室に導入し、反応ガスをプラズマ化で
き、容積も小さいために、反応室に接続される真空装置
により充分排気される。また、反応室と連結部を区切る
ように設けられる電子加速電極の電子の導入孔の周囲に
通路が設けられ、反応室に存在する中性粒子が連結部に
逆流する通路を確保できるため、真空装置に接続されな
い連結部も反応室と同等の真空度を維持できると伴に、
電子が加速室から反応室に効率よく導入されるのを維持
する。従って、連結部に接続される真空装置は必要もな
く、排気孔も不要なため、従来必要であった加速室を排
除できる。このため、部品数も減少でき、装置自体も簡
略化され、小型化が図れる。
According to the plasma apparatus of the present invention configured as described above, the plasma generation chamber for converting the discharge gas introduced through the space surrounded by the cathode electrode into the plasma, and the reaction gas converted into the plasma The reaction chamber for plasma processing of the object is connected by the connecting part. An anode electrode and an electron acceleration electrode are installed at the connecting portion, and a solenoid is wound around the anode electrode and the electron acceleration electrode. Therefore, the connecting portion is formed short with respect to the moving direction of the electrons, and the electrons can be efficiently extracted from the plasma of the discharge gas generated in the plasma generation chamber, accelerated and introduced into the reaction chamber, and the reaction gas can be turned into plasma. Since the volume is also small, it is sufficiently evacuated by the vacuum device connected to the reaction chamber. Further, a passage is provided around the electron introduction hole of the electron accelerating electrode that is provided so as to separate the reaction chamber and the connecting portion, and it is possible to secure a passage in which neutral particles existing in the reaction chamber flow back to the connecting portion. The connection part that is not connected to the device can maintain the same degree of vacuum as the reaction chamber,
Maintaining the efficient introduction of electrons from the acceleration chamber into the reaction chamber. Therefore, a vacuum device connected to the connecting portion is not required, and an exhaust hole is not required, so that the acceleration chamber, which is conventionally required, can be eliminated. Therefore, the number of parts can be reduced, the device itself can be simplified, and the size can be reduced.

【0012】[0012]

【実施例】本発明のプラズマ装置をプラズマエッチング
装置に適用した一実施例を図面を参照して説明する。図
1に示すプラズマエッチング装置Sは、主として、放電
ガスG1をプラズマ化させるプラズマ発生室24と、プ
ラズマ発生室24で発生された放電用ガスのプラズマか
ら引出し加速した電子を反応室26に導入する連結部2
5と、連結部25から導入される電子により反応ガスG
2をプラズマ化させて被処理体である半導体ウェハ7を
エッチングする反応室26から成る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the plasma device of the present invention is applied to a plasma etching device will be described with reference to the drawings. The plasma etching apparatus S shown in FIG. 1 mainly introduces into the reaction chamber 26 a plasma generating chamber 24 for converting the discharge gas G1 into plasma, and electrons accelerated by being drawn out from the plasma of the discharge gas generated in the plasma generating chamber 24. Connection part 2
5 and the reaction gas G due to the electrons introduced from the connecting portion 25.
It is composed of a reaction chamber 26 in which the semiconductor wafer 7 to be processed is etched by converting 2 into plasma.

【0013】更に詳述すると、プラズマ発生室24は例
えばステンレス鋼等で円筒状に形成された密封容器であ
り、一方の端部の中央にアルゴン等の放電用ガスG1が
導入される導入孔27を有し、導入孔27と同一に構成
されるカソード電極28が設けられる。更に、カソード
電極28と同軸状に中央に電子の導入孔を有する第1及
び第2の中間電極29及び30が配置される。第1の中
間電極29はその電子の導入孔の径の大きさを選択でき
るようになっており、最初の放電用ガスのプラズマ化が
効率よく行なえるようにカソード電極28間の真空度を
調整されるようになっている。第1及び第2の中間電極
29及び30の外周の密閉容器の外側にそれぞれ磁場形
成のためのソレノイド31及び32が巻装される。この
ような電極はそれぞれ、第1の中間電極29は直径3m
m、長さ15mm、第2の中間電極30は直径15m
m、長さ60mmに設定され、第2の中間電極30のソ
レノイド32により形成される磁場は395ガウスであ
る。更に、プラズマ発生室24には図示しない真空装置
に開閉弁33を介して接続された排気孔34が設けられ
る。また、カソード電極28が取着される端部の対向面
に連結孔35が同軸状に設けられ、Oリング36により
気密に連結部25が連結される。
More specifically, the plasma generating chamber 24 is a sealed container formed of, for example, stainless steel in a cylindrical shape, and has an introduction hole 27 into which a discharge gas G1 such as argon is introduced at the center of one end. And a cathode electrode 28 having the same structure as the introduction hole 27 is provided. Further, first and second intermediate electrodes 29 and 30 having an electron introduction hole in the center are arranged coaxially with the cathode electrode 28. The diameter of the electron introduction hole of the first intermediate electrode 29 can be selected, and the degree of vacuum between the cathode electrodes 28 is adjusted so that the first discharge gas can be efficiently turned into plasma. It is supposed to be done. Solenoids 31 and 32 for forming a magnetic field are wound around the outer circumference of the closed container around the outer circumferences of the first and second intermediate electrodes 29 and 30, respectively. In each of such electrodes, the first intermediate electrode 29 has a diameter of 3 m.
m, length 15 mm, diameter of the second intermediate electrode 30 is 15 m
The magnetic field formed by the solenoid 32 of the second intermediate electrode 30 is set to m and the length is 60 mm, and the magnetic field is 395 gauss. Further, the plasma generation chamber 24 is provided with an exhaust hole 34 connected to a vacuum device (not shown) through an opening / closing valve 33. Further, a connecting hole 35 is coaxially provided on the opposing surface of the end portion to which the cathode electrode 28 is attached, and the connecting portion 25 is airtightly connected by the O-ring 36.

【0014】プラズマ発生室24の連結孔35に連結さ
れる連結部25は、例えばステンレス鋼等で円筒状に形
成され、プラズマ発生室24と、反応室26とを連結す
る密閉空間を形成するものであり、プラズマ発生室24
と同様に反応室26の連結孔37とOリング38により
気密に接続される。連結部25には、中央に電子の導入
孔を有し、プラズマ発生装置24のカソード電極28と
の間に印加されて放電領域39を形成するアノード電極
40を備える。更に、アノード電極40と同軸状に設置
され、中央に電子の導入孔42bを有し、アノード電極
40との間にV2電圧が印加されて電子を加速する加速
領域41を形成する電子加速電極42が設けられる。電
子加速電極42は連結部25と反応室26を区切るよう
に連結部25と反応室26との間に設けられる。これら
のアノード電極40と電子加速電極42の外周の連結部
25の外側には、1のソレノイド43が巻装される。ア
ノード電極40の孔の直径は8mm、長さ20mm、電
子加速電極42の孔の直径は10mm、長さ20mmに
設定され、ソレノイド43の外径は245mmであり、
400ガウスの磁場が形成される。
The connecting portion 25 connected to the connecting hole 35 of the plasma generating chamber 24 is formed of, for example, stainless steel in a cylindrical shape and forms a closed space for connecting the plasma generating chamber 24 and the reaction chamber 26. And the plasma generation chamber 24
Similarly to the above, the connection hole 37 of the reaction chamber 26 and the O-ring 38 are connected airtightly. The connecting portion 25 is provided with an anode electrode 40 having an electron introduction hole in the center thereof and applied between the cathode electrode 28 of the plasma generator 24 and the discharge electrode 39 to form a discharge region 39. Further, the electron accelerating electrode 42 is installed coaxially with the anode electrode 40, has an electron introducing hole 42b in the center thereof, and forms an accelerating region 41 for accelerating the electrons by applying a V2 voltage between the same and the anode electrode 40. Is provided. The electron accelerating electrode 42 is provided between the connecting portion 25 and the reaction chamber 26 so as to partition the connecting portion 25 and the reaction chamber 26. A single solenoid 43 is wound around the outer periphery of the connecting portion 25 on the outer circumference of the anode electrode 40 and the electron acceleration electrode 42. The diameter of the hole of the anode electrode 40 is set to 8 mm and the length is 20 mm, the diameter of the hole of the electron acceleration electrode 42 is set to 10 mm and the length is 20 mm, and the outer diameter of the solenoid 43 is 245 mm.
A magnetic field of 400 Gauss is created.

【0015】また、連結部25の長さは、図2に示す電
子透過率と電子透過距離の関係からもわかるように、ア
ノード電極40と電子加速電極42間に放電が生じない
範囲で短い方が好ましい。連結部25の長さとしては5
0mmである。更に、連結部25に同軸状に接続される
反応室26は、例えばステンレス鋼等で円筒状に形成さ
れ、気密に保持されるようになっている。そして、半導
体ウェハ7を連結部25と同軸状に支持する支持体44
と、支持体44上の半導体ウェハ7を処理するための例
えば塩素や、アルゴン等の反応ガスG2の導入孔45と
が備えられる。連結部25の電子加速電極42と支持体
44との間は、反応ガスG2が連結部25から導入され
る加速電子によりプラズマ化されるプラズマ領域46を
構成する。また、反応室26内を真空にする真空装置
に、開閉弁47を介して接続される排気孔48が備えら
れる。
Further, as can be seen from the relationship between the electron transmittance and the electron transmission distance shown in FIG. 2, the length of the connecting portion 25 is as short as possible within the range in which no discharge occurs between the anode electrode 40 and the electron acceleration electrode 42. Is preferred. The length of the connecting portion 25 is 5
It is 0 mm. Further, the reaction chamber 26 coaxially connected to the connecting portion 25 is formed of, for example, stainless steel in a cylindrical shape and is hermetically held. Then, a support body 44 that supports the semiconductor wafer 7 coaxially with the connecting portion 25.
And a hole 45 for introducing a reaction gas G2 such as chlorine or argon for processing the semiconductor wafer 7 on the support 44. A plasma region 46 is formed between the electron accelerating electrode 42 of the connection part 25 and the support 44 so that the reaction gas G2 is turned into plasma by the accelerated electrons introduced from the connection part 25. Further, a vacuum device for evacuating the reaction chamber 26 is provided with an exhaust hole 48 connected through an opening / closing valve 47.

【0016】このようなプラズマ装置Sの連結部25の
電子加速電極42及びアノード電極40は、図3に示す
ようにそれぞれ支持体49に支持されている。そして電
子加速電極42の支持体49には連結部25と反応室2
6とを結ぶ通路50が穿設される。通路50は反応室2
6に存在する中性粒子が通抜けでき、電子の流れと逆方
向に移動する中性粒子が、電子の流れを妨げることなく
逆方向に移動することを助けるために備えられ、中性粒
子が自由に連結部25に侵入できるような径、例えば
3.5mmを有し、数も8等適宜選択される。
The electron accelerating electrode 42 and the anode electrode 40 of the connecting portion 25 of the plasma apparatus S are supported by the support 49 as shown in FIG. The support 49 of the electron accelerating electrode 42 is connected to the connecting portion 25 and the reaction chamber 2.
A passage 50 connecting with 6 is drilled. Passage 50 is reaction chamber 2
Neutral particles existing in 6 can pass through, and neutral particles that move in the opposite direction to the electron flow are provided to help move in the opposite direction without obstructing the electron flow. It has a diameter such that it can freely enter the connecting portion 25, for example, 3.5 mm, and the number is appropriately selected such as 8.

【0017】ここで、反応室26で連結部25からの電
子が導入されてエッチング処理される際に、 P4〜P3<P2 (ここでP2=プラズマ発生室の圧、P3=連結部の圧、
4=反応室26の圧を示す。)が維持されることが、
電子の輸送が効率よく行なわれる。そのため、連結部2
5の電子加速電極42の支持体49に通路50を設け、
アノード電極40の支持体49に通路を設けることによ
り、連結部25と、反応室26の真空度は同等に維持さ
れると共に、真空装置により反応室26からの排気が行
なわれ、プラズマ反応により生じた活性ガスは連結部2
5に多量に移動することはない。また、連結部25とプ
ラズマ発生室24とはアノード電極40により、P3
2が維持される。
Here, when electrons from the connecting portion 25 are introduced into the reaction chamber 26 for etching, P4 to P3 <P2 (where P2 = pressure of plasma generating chamber, P3 = Connection pressure,
P4 = indicates the pressure in the reaction chamber 26. ) Is maintained,
Electrons are efficiently transported. Therefore, the connecting portion 2
5, the passage 50 is provided in the support 49 of the electron acceleration electrode 42 of
By providing a passage in the support 49 of the anode electrode 40, the degree of vacuum in the connecting portion 25 and the reaction chamber 26 is maintained at the same level, and the reaction chamber 26 is evacuated by the vacuum device to generate plasma reaction. Active gas is connected 2
It does not move to 5 in large quantities. Further, the connecting portion 25 and the plasma generating chamber 24 are connected to each other by the anode electrode 40 so that P3 <
P2 is maintained.

【0018】ここで、通路50は電子加速電極42の支
持体49に設けず、図4に示すように電子加速電極42
aを直接穿設して中央の電子の導入孔42cの周囲に、
適宜中性粒子の通過する通路51を設けるようにしても
よい。上記のような構成のプラズマ装置Sを用いてエッ
チングを行うには、放電用ガス導入孔27と同一に構成
されたカソード電極28を通過させて放電用ガスG1を
プラズマ発生室24内に導入する。カソード電極28
と、第1の中間電極29間の圧力が例えば1.0Torr程
度となるように排気を行なった状態で、カソード電極2
8と、第1及び、第2の中間電極29及び30、アノー
ド電極40との間に放電電圧V1を印加して放電を生起
させると、放電領域39内にプラズマが発生する。この
時、第1の中間電極29の電子の導入孔の径を細め、カ
ソード電極28と、第1の中間電極29間の圧力を0.
6Torr程度となるように真空度を調整して、効率よくプ
ラズマ放電が発生するようにする。最初にカソード電極
28と、第1の中間電極29間で放電が生じ、その後第
2の中間電極30、アノード電極40と移行していく。
カソード電極28とアノード電極40間で放電が安定し
てなされるようになった時点で第1及び第2の中間電極
29及び30は作動を中止させてよいため、それぞれの
スイッチS1及びS2をOFFとする。
Here, the passage 50 is not provided in the support 49 of the electron acceleration electrode 42, but as shown in FIG.
a is directly formed around the central electron introducing hole 42c,
A passage 51 through which neutral particles pass may be provided as appropriate. In order to perform the etching using the plasma apparatus S having the above-described structure, the discharge gas G1 is introduced into the plasma generation chamber 24 through the cathode electrode 28 having the same structure as the discharge gas introduction hole 27. .. Cathode electrode 28
Then, the cathode electrode 2 is evacuated so that the pressure between the first intermediate electrodes 29 becomes, for example, about 1.0 Torr.
8 and the first and second intermediate electrodes 29 and 30, and the anode electrode 40, a discharge voltage V1 is applied to generate discharge, and plasma is generated in the discharge region 39. At this time, the diameter of the electron introduction hole of the first intermediate electrode 29 is reduced, and the pressure between the cathode electrode 28 and the first intermediate electrode 29 is reduced to 0.
The degree of vacuum is adjusted to be about 6 Torr so that plasma discharge is efficiently generated. First, discharge is generated between the cathode electrode 28 and the first intermediate electrode 29, and then the second intermediate electrode 30 and the anode electrode 40 are transferred.
Since the first and second intermediate electrodes 29 and 30 may be stopped at the time when the discharge is stably generated between the cathode electrode 28 and the anode electrode 40, the respective switches S1 and S2 are turned off. And

【0019】このようにしてプラズマ発生室24に安定
して発生されるプラズマにより引出される電子は連結部
25の電子加速電極42とアノード電極40間に加速電
圧V2を印加することにより加速領域41で加速され
る。連結部25の電子移動方向の長さが短いため、ソレ
ノイド43の径が大きくなくても電子は効率よく加速さ
れ反応室26に導入される。この際、反応室26に接続
された真空装置により開かれた開閉弁47により排気孔
48から排気させ、反応室26及び連結部25を所望の
真空度例えば10-6〜10-7Torrに設定しておく。連結
部25は容積が小さいため、反応室26に接続された真
空装置により充分排気がなされる。その後、反応室26
に反応ガスG2を導入し、連結部25から加速された電
子が移動して反応ガスを照射しプラズマ領域46にプラ
ズマを発生させる。この時の真空圧は10-3〜10-4To
rrに調整する。この時、連結部25の電子加速電極42
の電子導入孔42bまたは42cから電子が反応室26
に移動すると共に、電子導入孔の周囲に穿設された導入
孔50あるいは51を通って、中性粒子が電子の流れに
逆流して反応室26から連結部25に移動する。そのた
め、P4〜P3<P2が維持され、プラズマ中のイオンは
半導体ウェハ7の表面上のプラズマシース中で加速され
半導体ウェハ7のエッチングが成される。この時、反応
室26に接続された真空装置により余剰の反応ガスG2
は排気孔48より排気され、プラズマ反応により生じた
活性ガスは連結部25に移動することはない。
Electrons extracted by the plasma stably generated in the plasma generation chamber 24 in this way are accelerated by applying an acceleration voltage V2 between the electron acceleration electrode 42 and the anode electrode 40 of the connecting portion 25. Is accelerated by. Since the length of the connecting portion 25 in the electron moving direction is short, the electrons are efficiently accelerated and introduced into the reaction chamber 26 even if the diameter of the solenoid 43 is not large. At this time, the on-off valve 47 opened by the vacuum device connected to the reaction chamber 26 is used to exhaust gas from the exhaust hole 48, and the reaction chamber 26 and the connecting portion 25 are set to a desired degree of vacuum, for example, 10−6 to 10−7 Torr. I'll do it. Since the connecting portion 25 has a small volume, it is sufficiently evacuated by the vacuum device connected to the reaction chamber 26. Then, the reaction chamber 26
The reaction gas G2 is introduced into the chamber, and the accelerated electrons move from the connecting portion 25 to irradiate the reaction gas to generate plasma in the plasma region 46. The vacuum pressure at this time is 10-3 to 10-4 To
Adjust to rr. At this time, the electron acceleration electrode 42 of the connecting portion 25
Electrons are introduced from the electron introducing hole 42b or 42c of the reaction chamber 26
At the same time, the neutral particles flow back into the flow of electrons through the introduction holes 50 or 51 formed around the electron introduction hole and move from the reaction chamber 26 to the connecting portion 25. Therefore, P4 to P3 <P2 is maintained, and the ions in the plasma are accelerated in the plasma sheath on the surface of the semiconductor wafer 7 to etch the semiconductor wafer 7. At this time, the excess reaction gas G2 is removed by the vacuum device connected to the reaction chamber 26.
Is exhausted from the exhaust hole 48, and the active gas generated by the plasma reaction does not move to the connecting portion 25.

【0020】尚、上記説明は連結部に1のソレノイドを
巻装した場合についてであるが、本発明は連結部に巻装
するソレノイドを分割し、図示はしないが、アノード電
極40と、電子加速電極42の外周の連結部25の外側
に、それぞれソレノイドを別個に設けてもよい。この
時、2のソレノイドは同じ仕様のものが好ましく、中心
間の距離はソレノイドの内径と外径の平均の等倍から3
倍程度が適当である。このようにソレノイドをアノード
電極40と、電子加速電極42に分割して設けると、ア
ノード電極40と、電子加速電極42との磁場を各々別
個に調整できるため、電子の流入量を効率よくコントロ
ールできる。
Although the above description is for the case where one solenoid is wound around the connecting portion, the present invention divides the solenoid wound around the connecting portion and, although not shown, the anode electrode 40 and the electron acceleration. Solenoids may be separately provided outside the connecting portion 25 on the outer circumference of the electrode 42. At this time, it is preferable that the solenoids of 2 have the same specifications, and the distance between the centers is 3 to 3 times the average of the inner diameter and the outer diameter of the solenoid.
About twice is appropriate. When the solenoid is divided into the anode electrode 40 and the electron accelerating electrode 42 as described above, the magnetic fields of the anode electrode 40 and the electron accelerating electrode 42 can be adjusted separately, so that the inflow amount of electrons can be efficiently controlled. ..

【0021】更に上記記載のソレノイドは永久磁石で代
用してもよい。図示はしないが、図1におけるソレノイ
ドに代用する永久磁石を電子移動方向に順次互いに逆の
極性を有するように配置することにより、同様の効果を
得ることができる。また、上記実施例では、連結部25
をプラズマ発生室24と、反応室26と別部品で設ける
ものであるが、プラズマ発生室24と、連結部25と、
反応室26とを一体に成形したものであってもよい。
Further, the solenoid described above may be replaced by a permanent magnet. Although not shown, the same effect can be obtained by arranging the permanent magnets in place of the solenoid in FIG. 1 so as to sequentially have polarities opposite to each other in the electron movement direction. Further, in the above embodiment, the connecting portion 25
Is provided as a separate component from the plasma generation chamber 24 and the reaction chamber 26. The plasma generation chamber 24, the connecting portion 25, and
It may be integrally formed with the reaction chamber 26.

【0022】尚、上記実施例は、本発明のプラズマ装置
をエッチング装置に適用した場合について説明したが、
ドーピング装置、酸化膜形成装置、洗浄装置等にも好適
に採用できる。
In the above embodiment, the case where the plasma device of the present invention is applied to the etching device has been described.
It can be suitably used for a doping device, an oxide film forming device, a cleaning device and the like.

【0023】[0023]

【発明の効果】以上の説明からも明らかなように、本発
明のプラズマ装置によれば、放電用ガスをプラズマ化す
るプラズマ発生室と、プラズマ化された反応ガスで被処
理体のプラズマ処理を行なう反応室を連結部で接続し、
連結部にはアノード電極と電子加速電極を設置して、ソ
レノイドを巻装させたため、従来必要であった加速室を
排除できる。しかも、連結部は真空装置に接続される必
要もないことから、排気孔も不要なため、部品数も減少
でき、装置自体も簡略化され、小型化が図れる。
As is apparent from the above description, according to the plasma apparatus of the present invention, the plasma generation chamber for converting the discharge gas into plasma and the plasma processing of the object to be processed with the reaction gas converted into plasma. Connect the reaction chambers to be performed at the connecting part,
Since the anode electrode and the electron acceleration electrode are installed in the connecting portion and the solenoid is wound, the acceleration chamber, which is conventionally required, can be eliminated. Moreover, since the connecting portion does not need to be connected to the vacuum device, no exhaust hole is required, so that the number of parts can be reduced, the device itself can be simplified, and the size can be reduced.

【0024】更に連結部と反応室を区切るように設けら
れる電子加速電極の電子導入孔の周囲に連結部と反応室
を結ぶ通路を設けたため、反応室に存在する中性粒子が
電子移動方向に対して逆流できるため、連結部で加速さ
れた電子を効率よく反応室に導入し、反応ガスをプラズ
マ化でき、効率のよい処理ができる。
Further, since a passage connecting the connecting portion and the reaction chamber is provided around the electron introducing hole of the electron accelerating electrode provided so as to divide the connecting portion and the reaction chamber, neutral particles existing in the reaction chamber are moved in the electron moving direction. On the other hand, since it is possible to flow backward, electrons accelerated in the connecting portion can be efficiently introduced into the reaction chamber, and the reaction gas can be turned into plasma, and efficient processing can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のプラズマ装置を示す構成図。FIG. 1 is a configuration diagram showing a plasma device of the present invention.

【図2】電子透過率と電子通過距離との関係図。FIG. 2 is a relationship diagram of electron transmittance and electron passage distance.

【図3】図1に示す実施例の要部を示す図。FIG. 3 is a diagram showing a main part of the embodiment shown in FIG.

【図4】他の実施例の要部を示す図。FIG. 4 is a diagram showing a main part of another embodiment.

【図5】従来のプラズマ装置を示す図。FIG. 5 is a diagram showing a conventional plasma device.

【符号の説明】[Explanation of symbols]

7…………半導体ウェハ(被処理体) 24………プラズマ発生室 25………連結部 26………反応室 28………カソード電極 42………電子加速電極 42b………導入孔 50、51………通路 G1………放電用ガス G2………反応ガス S…………プラズマ装置 7: Semiconductor wafer (object to be processed) 24: Plasma generation chamber 25: Connection part 26: Reaction chamber 28: Cathode electrode 42: Electron acceleration electrode 42b: Introduction hole 50, 51 ... Passage G1 ... Discharge gas G2 ... Reactive gas S ... Plasma device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/31 C 8518−4M─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl.5 Identification code Office reference number FI technical display location H01L 21/31 C 8518-4M

Claims (1)

Translated fromJapanese
【特許請求の範囲】[Claims]【請求項1】カソード電極に囲まれた空間を通って導入
される放電用ガスをプラズマ化させるプラズマ発生室
と、前記プラズマから引出される電子の照射により反応
ガスをプラズマ化して被処理体の処理を行なう反応室と
を備え、前記プラズマ発生室と前記反応室とを連結する
連結部を設け、前記連結部と前記反応室の間に設置され
中央に前記電子の導入孔を有した電子加速電極の前記導
入孔周囲に、前記反応室と前記連結部を結ぶ通路を備え
たことを特徴とするプラズマ装置。
1. A plasma generation chamber for converting a discharge gas introduced into a space surrounded by a cathode electrode into a plasma, and a reaction gas converted into a plasma by irradiation of electrons extracted from the plasma. An electron accelerating device having a reaction chamber for performing processing, a connection part connecting the plasma generation chamber and the reaction chamber, and having an electron introduction hole in the center between the connection part and the reaction chamber. A plasma device comprising a passage around the introduction hole of the electrode, the passage connecting the reaction chamber and the connecting portion.
JP4032328A1992-01-131992-02-19Plasma equipmentPendingJPH05234945A (en)

Priority Applications (2)

Application NumberPriority DateFiling DateTitle
JP4032328AJPH05234945A (en)1992-02-191992-02-19Plasma equipment
US08/004,066US5397956A (en)1992-01-131993-01-13Electron beam excited plasma system

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP4032328AJPH05234945A (en)1992-02-191992-02-19Plasma equipment

Publications (1)

Publication NumberPublication Date
JPH05234945Atrue JPH05234945A (en)1993-09-10

Family

ID=12355878

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP4032328APendingJPH05234945A (en)1992-01-131992-02-19Plasma equipment

Country Status (1)

CountryLink
JP (1)JPH05234945A (en)

Similar Documents

PublicationPublication DateTitle
US5397956A (en)Electron beam excited plasma system
US5032205A (en)Plasma etching apparatus with surface magnetic fields
US20040219737A1 (en)Method and apparatus for processing a workpiece with a plasma
US5266146A (en)Microwave-powered plasma-generating apparatus and method
JPH04326725A (en)Plasma apparatus
JPS62195122A (en)Plasma processing apparatus with magnified magnetic field
US5252892A (en)Plasma processing apparatus
US5413663A (en)Plasma processing apparatus
JPH11135297A (en)Plasma generator
JP2001148340A (en)Method and apparatus for aligning with charged particle beam
JPS6338585A (en) plasma equipment
JPH05234945A (en)Plasma equipment
JPH07282993A (en) Electron beam generator for electron beam excited plasma generation
JP2000012293A (en) Neutral beam generator
JPS63172429A (en)Microwave plasma treating apparatus
JP2929149B2 (en) Plasma equipment
JPH05234946A (en)Plasma equipment
JPS62235484A (en) thin film device
JP3433703B2 (en) Ion source device and vacuum processing device
JP3020075B2 (en) Plasma equipment
JP2929151B2 (en) Plasma equipment
JP2929150B2 (en) Plasma equipment
JPH01293521A (en)Method and apparatus for plasma treatment
JP3010059B2 (en) Ion source
JP3106327B2 (en) Electron beam excited plasma processing equipment

Legal Events

DateCodeTitleDescription
A02Decision of refusal

Free format text:JAPANESE INTERMEDIATE CODE: A02

Effective date:20000208


[8]ページ先頭

©2009-2025 Movatter.jp