【0001】[0001]
【産業上の利用分野】本発明は、光学材料基板上に精密
微細溝を加工する方法及びその加工装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for processing precision fine grooves on an optical material substrate.
【0002】[0002]
【従来の技術】光スイッチ,光交換機等の光デバイス
は、リチウムナイオベート等の光学材料基板上に形成さ
れ、同一基板内のデバイス同士は、光学材料基板の表面
層に形成された光導波路で接続される。しかし、他基板
上のデバイスあるいは光ファイバと接続するためには、
光学材料基板端面まで導かれた導波路端部と光ファイバ
とを、両者の光軸をミクロン単位で合わせて接合する必
要があり、従来は一本ずつ顕微鏡を使って位置合わせ,
固定を行っていたため、時間とコストがかかるという問
題点があった。2. Description of the Related Art Optical devices such as optical switches and optical switches are formed on an optical material substrate such as lithium niobate, and devices on the same substrate are optical waveguides formed on the surface layer of the optical material substrate. Connected. However, in order to connect with devices on other boards or optical fibers,
It is necessary to join the end portions of the waveguide guided to the end surface of the optical material substrate and the optical fiber by aligning the optical axes of the both with a unit of micron, and conventionally, they are aligned one by one using a microscope,
Since it was fixed, there was a problem that it took time and cost.
【0003】[0003]
【発明が解決しようとする課題】前記の精密溝を形成す
る方法としては、光学材料基板上にエッチング等の方法
で加工する方法、異方性エッチング等の方法で溝を形成
したシリコン単結晶板を光学基板上に接着する方法、機
械的除去加工で溝を形成する等の方法が考えられるが、
エッチングで加工する場合、例えば光ファイバの直径の
半分程度の深さの溝を形成する必要があり、通常の光通
信用ファイバの場合、60μm以上の深さが必要とな
る。このような寸法の溝において必要とされるミクロン
精度の幅,深さ精度の溝を形成することは困難である。As a method of forming the above-mentioned precision groove, a method of processing on an optical material substrate by a method such as etching, a silicon single crystal plate in which a groove is formed by a method such as anisotropic etching, etc. It is conceivable that a method of adhering to the optical substrate or a method of forming a groove by mechanical removal processing,
In the case of processing by etching, for example, it is necessary to form a groove having a depth about half the diameter of the optical fiber, and in the case of an ordinary fiber for optical communication, a depth of 60 μm or more is required. It is difficult to form a groove with a micron-precision width and depth accuracy required for a groove of such a size.
【0004】また、シリコン基板上に溝を形成する方法
では、半導体素子用のリソグラフィ技術と異方性エッチ
ングを用いればサブミクロン精度の溝を形成することが
できるが、光学材料基板に接着時に位置合わせを行う必
要があり、またシリコン基板を光学材料基板に接着する
ことにより生じる表面の段差の問題を解消する必要があ
る。Further, in the method of forming a groove on a silicon substrate, a submicron-precision groove can be formed by using a lithography technique for semiconductor elements and anisotropic etching. It is necessary to carry out the alignment, and it is necessary to solve the problem of the surface step caused by adhering the silicon substrate to the optical material substrate.
【0005】一般的な溝形成方法としては、薄刃の円盤
状工具の外周部分を用いた機械的除去加工が多用されて
いる。この方法は、基板の端から端までの直線溝形成に
は適しているが基板の途中までの溝形成や任意の曲線形
状等の溝形成は不可能であるという欠点があった。As a general groove forming method, mechanical removal using the outer peripheral portion of a thin blade disk-shaped tool is often used. This method is suitable for forming a straight groove from one end of the substrate to the other, but has a drawback in that it is impossible to form a groove halfway through the substrate or a groove having an arbitrary curved shape.
【0006】本発明の目的は、従来の上記欠点を解消し
て、光学材料基板上に直接、高精度の任意形状の溝を機
械的に加工することで光ファイバの位置決めを容易に行
うことが可能な溝加工方法及び溝加工装置を提供するこ
とにある。An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to mechanically machine a groove of an arbitrary shape with high precision directly on an optical material substrate to easily position an optical fiber. It is to provide a possible groove processing method and groove processing apparatus.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するた
め、本発明による溝加工方法においては、光学材料基板
上に所望溝幅にほぼ等しい直径の円柱状微細工具を光学
材料基板表面に垂直な軸で回転させながら光学材料基板
と微細工具を相対運動させて加工することにより微細溝
を高精度に形成する溝加工方法であって、光学材料基板
と微細工具との相対運動は、加工に先立って測定した光
学材料基板表面形状データに従って工具の切り込み量を
調整しながら行うものである。In order to achieve the above object, in the groove machining method according to the present invention, a cylindrical fine tool having a diameter substantially equal to a desired groove width is formed on an optical material substrate so as to be perpendicular to the surface of the optical material substrate. A groove machining method for forming a fine groove with high accuracy by relatively moving an optical material substrate and a micro tool while rotating them around an axis, wherein the relative motion between the optical material substrate and the micro tool is prior to machining. The cutting amount of the tool is adjusted according to the surface shape data of the optical material substrate measured as described above.
【0008】また、溝加工装置においては、移動ステー
ジ機構と、工具保持機構と、表面変位測定機構と、記
録,制御機構とを有し、光学材料基板上に所要溝幅にほ
ぼ等しい直径の円柱状微細工具を光学材料基板表面に垂
直な軸で回転させながら光学材料基板と微細工具とを相
対運動させて光学材料基板に微細溝を形成する溝加工装
置であって、移動ステージ機構は、工具と光学材料基板
との相対位置を少なくとも光学材料基板表面に垂直方向
と平行方向に移動させるものであり、工具保持機構は、
スピンドルに保持された円柱状微細工具を光学材料基板
の加工面に対し垂直に保持するものであり、表面変位測
定機構は、溝加工に先立って、移動ステージ機構による
送り移動にしたがって溝加工部分の光学材料基板表面変
位を測定し、表面形状の変位データを記録,制御装置に
出力するものであり、記録,制御装置は、表面形状変位
データを記録し、そのデータに基づいて移動ステージ機
構を制御しながら工具保持機構に保持された微細工具に
よる溝加工時に、一定量の切り込みを与えるものであ
る。Further, the groove processing apparatus has a moving stage mechanism, a tool holding mechanism, a surface displacement measuring mechanism, a recording and control mechanism, and has a circle having a diameter substantially equal to the required groove width on the optical material substrate. A groove processing apparatus for forming a fine groove in an optical material substrate by relatively moving an optical material substrate and a fine tool while rotating a columnar fine tool on an axis perpendicular to the surface of the optical material substrate, wherein the moving stage mechanism is a tool. And the relative position of the optical material substrate is to move at least in the direction parallel to the surface perpendicular to the optical material substrate surface, the tool holding mechanism,
The cylindrical fine tool held by the spindle is held perpendicularly to the machined surface of the optical material substrate. The optical material substrate surface displacement is measured and the surface shape displacement data is recorded and output to the control device. The recording and control device records the surface shape displacement data and controls the moving stage mechanism based on the data. However, a certain amount of incision is given at the time of grooving with the fine tool held by the tool holding mechanism.
【0009】[0009]
【作用】光学材料基板の表面形状を前もって測定し、そ
のデータに基づいて円柱状微細工具と光学材料基板との
相対位置を制御しつつ、切り込み量を一定として溝加工
を行う。Function: The surface shape of the optical material substrate is measured in advance, and the relative position between the cylindrical micro tool and the optical material substrate is controlled based on the data, and the groove amount is constant while the cutting amount is constant.
【0010】[0010]
【実施例】次に本発明について図面を参照して詳細に説
明する。図1は、本発明の溝加工方法を説明するための
斜視図である。図中、1は、光学材料基板である。2
は、円柱形の工具形状をもつ微細工具で、その直径は、
所望する溝幅(例えば直径125μmの光ファイバ固定
用の溝ならば直径125μm)にほぼ等しく、外周部に
加工のための砥粒を保持し、あるいは切り刃を有してい
る。微細工具2は、高周波スピンドル等の回転機構3に
保持され、微細工具2の中心軸を回転軸として回転す
る。光材料基板1と微細工具2とは、少なくとも一方が
移動可能な機構を有し(図1には図示せず)、相対運動
を行うことにより切り込みを与え、加工が可能となる。The present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view for explaining the groove processing method of the present invention. In the figure, 1 is an optical material substrate. Two
Is a fine tool with a cylindrical tool shape and its diameter is
The groove width is approximately equal to a desired groove width (for example, a diameter of 125 μm for a groove for fixing an optical fiber having a diameter of 125 μm), and holds abrasive grains for processing or has a cutting edge on the outer peripheral portion. The fine tool 2 is held by a rotating mechanism 3 such as a high frequency spindle, and rotates with the central axis of the fine tool 2 as a rotation axis. At least one of the optical material substrate 1 and the fine tool 2 has a movable mechanism (not shown in FIG. 1), and a relative movement is performed to make a cut, thereby enabling processing.
【0011】図2は、本発明の溝加工方法と溝加工装置
の構成を説明するための部分断面図である。図におい
て、光学材料基板1は、ベース4の上に水平ステージ
5,垂直ステージ6によって保持されている。7は、変
位計で、回転あるいは平行移動させる等の方法により微
細工具2の先端位置に変位計7の測定部分を移動させる
ことができる表面変位測定機構を有している。変位計で
測定した光学材料基板1の表面形状のデータは、パーソ
ナルコンピュータ等の記録制御装置8に送り記録し、記
録,制御装置8に記録したデータを用いて垂直ステージ
6を制御できる構成を有している。FIG. 2 is a partial cross-sectional view for explaining the structure of the groove processing method and the groove processing apparatus of the present invention. In the figure, the optical material substrate 1 is held on a base 4 by a horizontal stage 5 and a vertical stage 6. Reference numeral 7 denotes a displacement gauge, which has a surface displacement measuring mechanism capable of moving the measurement portion of the displacement gauge 7 to the tip position of the fine tool 2 by a method such as rotation or parallel movement. The surface shape data of the optical material substrate 1 measured by the displacement meter is sent to a recording control device 8 such as a personal computer and recorded, and the vertical stage 6 can be controlled using the data recorded in the recording and control device 8. is doing.
【0012】図3は、図2の溝加工装置を使用した溝加
工の切り込み量の制御方法について説明するための概念
図である。本図では解りやすいように光学材料基板1を
固定して微細工具2及び変位計7が移動するように表示
している。9は、光学材料基板1の表面形状を表してお
り、図3では表面の凹凸や傾斜を誇張して示している。
まず、図3(a)のように変位計7を固定した状態で図
2の水平ステージ5を移動させて表面形状9を測定し、
記録,制御装置8にこのデータを取り込む。FIG. 3 is a conceptual diagram for explaining a method of controlling the cutting amount of the groove processing using the groove processing apparatus of FIG. In this figure, the optical material substrate 1 is fixed and the fine tool 2 and the displacement gauge 7 are moved so as to be easily understood. Reference numeral 9 denotes the surface shape of the optical material substrate 1, and in FIG. 3, the unevenness and the inclination of the surface are exaggeratedly shown.
First, the surface shape 9 is measured by moving the horizontal stage 5 of FIG. 2 with the displacement gauge 7 fixed as shown in FIG.
This data is taken into the recording / control device 8.
【0013】次に図3(b)に示すように微細工具2を
光学材料基板1上に移動し、固定した状態で水平ステー
ジ5を移動させると同時に垂直ステージ6を記録,制御
装置8に記録させた表面形状9のデータに基づいて移動
させ、表面形状に係わらず一定量の切り込みを与え、一
定深さの高精度溝加工を行う。Next, as shown in FIG. 3B, the fine tool 2 is moved onto the optical material substrate 1 and the horizontal stage 5 is moved in a fixed state, and at the same time, the vertical stage 6 is recorded and recorded on the control device 8. It is moved based on the data of the surface shape 9 thus made, a constant amount of incision is given irrespective of the surface shape, and high precision groove processing of a constant depth is performed.
【0014】本実施例では、直径124μmのダイヤモ
ンド電着工具を工具の回転振れが0.5μm以下となる
ようにスピンドルに取り付け、変位計として分解能0.
05μmのレーザ変位計を用い、記録,制御装置として
パーソナルコンピュータを使用して、ステージを制御し
ながら加工することにより、表面の凹凸及び傾きが10
0μm/10mmのリチウムナイオベート基板上に幅1
25μm,深さ63μmの溝を長さ10mmの範囲で精
度±0.5μmで任意の形状に形成することができた。In this embodiment, a diamond electrodeposition tool having a diameter of 124 μm is attached to the spindle so that the rotational runout of the tool is 0.5 μm or less, and the displacement gauge has a resolution of 0.
By using a laser displacement meter of 05 μm and using a personal computer as a recording and control device while controlling the stage, unevenness and inclination of the surface can be reduced to 10
Width 1 on 0μm / 10mm lithium niobate substrate
A groove of 25 μm and a depth of 63 μm could be formed in an arbitrary shape with an accuracy of ± 0.5 μm within a range of 10 mm in length.
【0015】図2においては、説明を簡略化するために
水平方向の移動機構が一軸の場合を示したが、これと直
角方向に移動機構を設けることにより任意形状の溝が形
成可能であることはいうまでもない。FIG. 2 shows the case where the horizontal movement mechanism is uniaxial for the sake of simplification of description, but it is possible to form a groove of any shape by providing the movement mechanism in a direction perpendicular to this. Needless to say.
【0016】[0016]
【発明の効果】以上説明したように本発明の溝加工方法
及び溝加工装置によれば、光学材料基板上に高精度に任
意形状の溝を形成することができ、特に機械的に加工す
るため、光学基板材料の種類に係わらず加工できるとい
う利点がある。また、光学材料基板の表面に傾きや凹凸
が存在しても一定量の切り込みを与えることができ、所
要深さの溝を容易に得ることができ、光ファイバと接続
の際に位置決めを容易に行うことができる効果を有す
る。As described above, according to the groove processing method and the groove processing apparatus of the present invention, it is possible to form a groove having an arbitrary shape with high precision on the optical material substrate, and in particular, to perform the mechanical processing. The advantage is that processing can be performed regardless of the type of optical substrate material. Further, even if the surface of the optical material substrate has an inclination or unevenness, a certain amount of cut can be provided, a groove of a required depth can be easily obtained, and positioning can be facilitated when connecting with an optical fiber. Has the effect that can be done.
【図1】本発明の溝加工方法を説明するための斜視図で
ある。FIG. 1 is a perspective view for explaining a groove processing method of the present invention.
【図2】本発明の溝加工装置の構成を説明するための部
分断面図である。FIG. 2 is a partial cross-sectional view for explaining the configuration of the groove processing device of the present invention.
【図3】(a),(b)は、溝加工方法を説明するため
の概念図である。3A and 3B are conceptual diagrams for explaining a groove processing method.
1 光学材料基板 2 微細工具 3 回転機構 4 ベース 5 水平ステージ 6 垂直ステージ 7 変位計 8 記録,制御装置 9 表面形状 1 Optical Material Substrate 2 Micro Tool 3 Rotation Mechanism 4 Base 5 Horizontal Stage 6 Vertical Stage 7 Displacement Meter 8 Recording and Control Device 9 Surface Shape
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3266292AJPH05200616A (en) | 1992-01-22 | 1992-01-22 | Working of groove and groove working device |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3266292AJPH05200616A (en) | 1992-01-22 | 1992-01-22 | Working of groove and groove working device |
| Publication Number | Publication Date |
|---|---|
| JPH05200616Atrue JPH05200616A (en) | 1993-08-10 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP3266292APendingJPH05200616A (en) | 1992-01-22 | 1992-01-22 | Working of groove and groove working device |
| Country | Link |
|---|---|
| JP (1) | JPH05200616A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002144348A (en)* | 2000-10-31 | 2002-05-21 | Eastman Kodak Co | Method for manufacturing precision mold |
| JP2002205310A (en)* | 2000-10-31 | 2002-07-23 | Eastman Kodak Co | Method of manufacturing mold for micro-lens array |
| KR100456129B1 (en)* | 2002-09-12 | 2004-11-08 | 화천기공 주식회사 | A working method for horizontal slideway of the machine tool |
| JP2011020203A (en)* | 2009-07-14 | 2011-02-03 | Mimaki Engineering Co Ltd | Cutting plotter |
| JP2012086296A (en)* | 2010-10-19 | 2012-05-10 | Ihi Corp | Groove working method |
| CN102632286A (en)* | 2012-02-24 | 2012-08-15 | 桐庐成顺光电配件厂 | Numerical control slot milling machine for processing copper tailstock of optical fiber connector |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002144348A (en)* | 2000-10-31 | 2002-05-21 | Eastman Kodak Co | Method for manufacturing precision mold |
| JP2002205310A (en)* | 2000-10-31 | 2002-07-23 | Eastman Kodak Co | Method of manufacturing mold for micro-lens array |
| KR100456129B1 (en)* | 2002-09-12 | 2004-11-08 | 화천기공 주식회사 | A working method for horizontal slideway of the machine tool |
| JP2011020203A (en)* | 2009-07-14 | 2011-02-03 | Mimaki Engineering Co Ltd | Cutting plotter |
| JP2012086296A (en)* | 2010-10-19 | 2012-05-10 | Ihi Corp | Groove working method |
| CN102632286A (en)* | 2012-02-24 | 2012-08-15 | 桐庐成顺光电配件厂 | Numerical control slot milling machine for processing copper tailstock of optical fiber connector |
| Publication | Publication Date | Title |
|---|---|---|
| US5722156A (en) | Method for processing ceramic wafers comprising plural magnetic head forming units | |
| CN110385798B (en) | Processing device | |
| US20070087661A1 (en) | Dicing apparatus and dicing method | |
| CN109014629B (en) | Four-axis laser precision machining device with micrometer line width | |
| JPH05200616A (en) | Working of groove and groove working device | |
| US5083401A (en) | Method of polishing | |
| KR0184533B1 (en) | Method for setting cutting tool | |
| JPH09239603A (en) | Groove cutting method | |
| JP2003039282A (en) | Free-form surface processing device and free-form surface processing method | |
| JPS6159870B2 (en) | ||
| JPH01193172A (en) | Method for polishing thin films on substrates | |
| JPH06143108A (en) | Groove processing method and device | |
| JPH02159722A (en) | Device for abrading wafer and positioning jig used for such device | |
| JP3873328B2 (en) | Grooving method and processing apparatus | |
| JP4174932B2 (en) | Manufacturing method of optical switch | |
| JPH03190607A (en) | Fine groove forming device and grinding method for diamond cutter used therefor | |
| JPH04244373A (en) | Polishing method and device | |
| JP2001162426A (en) | Curved surface cutting device and curved surface cutting method | |
| CN112238535B (en) | Ultra-precision deterministic scribing processing system and method for secondary clamping of high-hard and brittle materials | |
| JPH0339705A (en) | Method for working end surface part of optical fiber | |
| JPH1026523A (en) | Diameter measuring method, diameter working and measuring method and instrument, and work centering device | |
| JP2883279B2 (en) | Wrap jig and lap processing method using the same | |
| JPS63295173A (en) | Aspherical surface processing machine | |
| JP2004314288A (en) | Component processing method and holder | |
| JPS62114866A (en) | Nonspherical surface working machine |