Movatterモバイル変換


[0]ホーム

URL:


JPH05178988A - Galactosamine substitution product of poly-omega-substituted-l-glutamic acid (or aspartic acid) - Google Patents

Galactosamine substitution product of poly-omega-substituted-l-glutamic acid (or aspartic acid)

Info

Publication number
JPH05178988A
JPH05178988AJP3122252AJP12225291AJPH05178988AJP H05178988 AJPH05178988 AJP H05178988AJP 3122252 AJP3122252 AJP 3122252AJP 12225291 AJP12225291 AJP 12225291AJP H05178988 AJPH05178988 AJP H05178988A
Authority
JP
Japan
Prior art keywords
glutamic acid
aspartic acid
acid
residue
galactosamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3122252A
Other languages
Japanese (ja)
Other versions
JP3208570B2 (en
Inventor
Toshihiro Akaike
敏宏 赤池
Ichiro Kitada
一郎 北田
Megumi Kunou
めぐみ 久能
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamanouchi Pharmaceutical Co Ltd
Original Assignee
Yamanouchi Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamanouchi Pharmaceutical Co LtdfiledCriticalYamanouchi Pharmaceutical Co Ltd
Priority to JP12225291ApriorityCriticalpatent/JP3208570B2/en
Publication of JPH05178988ApublicationCriticalpatent/JPH05178988A/en
Application grantedgrantedCritical
Publication of JP3208570B2publicationCriticalpatent/JP3208570B2/en
Anticipated expirationlegal-statusCritical
Expired - Fee Relatedlegal-statusCriticalCurrent

Links

Landscapes

Abstract

PURPOSE:To obtain the title substitution product which is useful as a missile drug carrier by replacing a part or the whole of th peptides forming a given polypeptide with specific residues of omega-galactosamyl-L-glutamic acid (or aspartic acid). CONSTITUTION:A part or the whole of the peptides forming a polypeptide of formula I (wherein x is a polymerization degree in the range of 60-250; n is 1 or 2; and R is lower alkyl or benzyl) are replaced with the residues of omega-galactosamyl-L-glutamic acid (or aspartic acid) represented by formula II.

Description

Translated fromJapanese
【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,医用高分子材料,殊に
ミサイル医薬担体として有用なポリ−ω−アルキル(又
はベンジル)−L−グルタミン酸(又はアスパラギン
酸)のガラクトサミン置換体に関する。
TECHNICAL FIELD The present invention relates to a galactosamine substitution product of poly-ω-alkyl (or benzyl) -L-glutamic acid (or aspartic acid) which is useful as a medical polymer material, particularly as a missile drug carrier.

【0002】[0002]

【従来の技術】血清中の糖タンパクは,その末端に普遍
的にシアル酸−ガラクトース−N−アセチルグルコサミ
ンという糖構造が存在している。1960年代後半に
G.AshwellとA.Morellは,この三糖構
造が血清タンパクが血液中に安定に存在できるために必
要な構造であることをつきとめた。末端に存在するシア
ル酸を取り除くと,ガラクトースが新しい糖末端とな
る。シアル酸が除かれてガラクトースが露出した糖タン
パクはアシアロ糖タンパクと呼ばれている。アシアロ糖
タンパクは,この状態では血流中に安定に存在できなく
なり,急速に血流中より消失する。消失したアシアロ糖
タンパクのおよそ80%以上は肝臓に取り込まれること
が判明している。
2. Description of the Related Art Glycoprotein in serum has a saccharide structure of sialic acid-galactose-N-acetylglucosamine universally present at the end thereof. G.G. Ashwell and A. Morell determined that this trisaccharide structure was necessary for the stable presence of serum proteins in the blood. When the sialic acid present at the end is removed, galactose becomes the new sugar end. Glycoprotein with galactose exposed by removing sialic acid is called asialoglycoprotein. Asialoglycoprotein cannot stably exist in the bloodstream in this state, and rapidly disappears from the bloodstream. It is known that about 80% or more of the disappeared asialoglycoprotein is taken up by the liver.

【0003】ところで,肝細胞の膜表面上には特異的糖
認識レセプターが存在し,アシアロ糖タンパクはこのア
シアロ糖タンパクレセプターを介して細胞内に取り込ま
れたものである。本発明者等は,肝細胞膜上のアシアロ
糖タンパクレセプターに着目し,ミサイルドラッグ等に
用いるドラッグキャリアー用の高分子材料の開発を目標
として検討を重ねた結果,糖残基としてガラクトサミン
を導入したポリアミノ酸がすぐれた性質を有することを
見出し本発明を完成した。
By the way, a specific sugar recognition receptor exists on the membrane surface of hepatocytes, and the asialoglycoprotein is taken up into the cell via this asialoglycoprotein receptor. The present inventors have focused their attention on asialoglycoprotein receptors on hepatocyte membranes and have conducted repeated studies with the goal of developing polymeric materials for drug carriers used in missile drugs and the like, and as a result, have introduced galactosamine as a sugar residue into a polysaccharide. The inventors have found that amino acids have excellent properties and completed the present invention.

【0004】[0004]

【問題点を解決するための手段】すなわち,本発明は,
一般式
[Means for Solving the Problems] That is, the present invention is
General formula

【0005】[0005]

【化6】[Chemical 6]

【0006】(式中,Xは重合度60〜250であるこ
とを,nは1又は2を,Rは低級アルキル基又はベンジ
ル基を夫々意味する。)で示されるポリペプチドにおい
て,その構成ペプチドの一部または全部を一般式
(Wherein, X has a degree of polymerization of 60 to 250, n means 1 or 2 and R means a lower alkyl group or a benzyl group, respectively). A part or all of the general formula

【0007】[0007]

【化7】[Chemical 7]

【0008】(式中,nは前記の意味を表わす)で表わ
されるω−ガラクトサミル−L−グルタミン酸(又はア
スパラギン酸)残基および場合により式
A ω-galactosamyl-L-glutamic acid (or aspartic acid) residue represented by the formula:

【0009】[0009]

【化8】[Chemical 8]

【0010】(式中,nは前記の意味を表わす)で表わ
されるL−グルタミン酸(又はアスパラギン酸)残基で
置換したポリ−ω−アルキル(又はベンジル)−L−グ
ルタミン酸(アスパラギン酸)のガラクトサミン置換体
に関する。本発明のポリペプチドを更に説明すると以下
の通りである。 構成単位:ω−アルキル(又はベンジル)−L−グルタ
ミン酸(アスパラギン酸)残基
Galactosamine of poly-ω-alkyl (or benzyl) -L-glutamic acid (aspartic acid) substituted with an L-glutamic acid (or aspartic acid) residue represented by the formula (n represents the above meaning) Regarding substitutes. The polypeptide of the present invention will be further described below. Structural unit: ω-alkyl (or benzyl) -L-glutamic acid (aspartic acid) residue

【0011】[0011]

【化9】[Chemical 9]

【0012】(式中,nおよびRは前記と同じであ
る。)L−グルタミン酸(アスパラギン酸)残基
(In the formula, n and R are the same as above.) L-glutamic acid (aspartic acid) residue

【0013】[0013]

【化10】[Chemical 10]

【0014】(式中,nは前記と同じである。)ω−ガ
ラクトサミル−L−グルタミン酸(又はアスパラギン
酸)残基
(In the formula, n is the same as above.) Ω-galactosamyl-L-glutamic acid (or aspartic acid) residue

【0015】[0015]

【化11】[Chemical 11]

【0016】(式中,nは前記と同じである。) 配列状態:線状 分子量 :8,000〜71,000 重合度 :60〜250 構成単位の比率: ω−アルキル(又はベンジル)−L−グルタミン酸(又はアスパラギン 酸)残基 0〜97% L−グルタミン酸(又はアスパラギン酸)残基 0〜87% ω−ガラクトサミル−L−グルタミン酸(又はアスパラギン酸)残基 3〜100% 本発明の化合物は,たとえば次式で示される方
法により合成できる。
(In the formula, n is the same as above.) Arrangement state: linear molecular weight: 8,000 to 71,000 Degree of polymerization: 60 to 250 Ratio of constitutional unit: ω-alkyl (or benzyl) -L -Glutamic acid (or aspartic acid) residue 0-97% L-glutamic acid (or aspartic acid) residue 0-87% ω-galactosamyl-L-glutamic acid (or aspartic acid) residue 3-100% , Can be synthesized, for example, by the method represented by the following formula

【0017】[0017]

【化12】[Chemical 12]

【0018】(式中,nおよびRは前記と同じ。また,
YおよびZは,1より小さい数で,Y≧Zを満たすもの
を意味する。)この方法は,ポリ−ω−置換−L−グル
タミン酸(又はアスパラギン酸)(II)の側鎖アルキル
エステル(又はベンジルエステル)を加水分解して側鎖
カルボキシル基が遊離した重合体(III) を得(第1工
程),次いでこの重合体(III) の側鎖カルボキシル基に
ガラクトサミンを導入して本発明の目的化合物(I)を
得る(第2工程)ことにより行う。
(In the formula, n and R are the same as above.
Y and Z are numbers smaller than 1 and mean those satisfying Y ≧ Z. ) This method is a method of hydrolyzing a side chain alkyl ester (or benzyl ester) of poly-ω-substituted-L-glutamic acid (or aspartic acid) (II) to release a polymer (III) in which a side chain carboxyl group is released. This is carried out by obtaining (first step) and then introducing galactosamine into the side chain carboxyl group of the polymer (III) to obtain the object compound (I) of the present invention (second step).

【0019】第1工程の加水分解は,ポリ−γ−アルキ
ル(又はベンジル)−L−グルタミン酸又はポリ−β−
アルキル(又はベンジル)−L−アスパラギン酸を適当
な有機溶媒中,塩基で処理することにより容易に行うこ
とができる。有機溶媒としては,たとえばクロロホル
ム,ジクロルメタン等のハロゲン化炭化水素(ヘリック
ス溶媒)が好適であるが,ジクロル酢酸,トリフルオロ
酢酸などのランダムコイル溶媒を用いることもできる。
The hydrolysis in the first step is performed by using poly-γ-alkyl (or benzyl) -L-glutamic acid or poly-β-.
This can be easily carried out by treating alkyl (or benzyl) -L-aspartic acid with a base in a suitable organic solvent. As the organic solvent, for example, a halogenated hydrocarbon (helix solvent) such as chloroform and dichloromethane is suitable, but a random coil solvent such as dichloroacetic acid and trifluoroacetic acid can also be used.

【0020】塩基としては,水酸化ナトリウム,水酸化
カリウム等が適当である。これらの塩基は通常メタノー
ル,イソプロピルアルコール等のアルコール水溶液とし
て反応液中に添加される。反応は,室温附近で,10〜
200分間行う。これらの反応条件,殊に反応時間を適
宜選ぶことにより,加水分解の割合を任意に調節するこ
とができる。なお,本工程の原料化合物として使用する
ポリ−ω−置換−L−グルタミン酸(又はアスパラギン
酸)(II)は,重合度がおよそ60〜250のものが用
いられるが,これに限定されるものではない。後記実施
例においては,たとえばポリ−γ−メチル−L−グルタ
メート(PMLGと略記する)は,重合度およそ100
〜200(分子量約14,000〜29,000)のも
のを用いた。
As the base, sodium hydroxide, potassium hydroxide and the like are suitable. These bases are usually added to the reaction solution as an aqueous alcohol solution such as methanol or isopropyl alcohol. The reaction is 10-
Do it for 200 minutes. By appropriately selecting these reaction conditions, especially the reaction time, the rate of hydrolysis can be arbitrarily adjusted. The poly-ω-substituted-L-glutamic acid (or aspartic acid) (II) used as the raw material compound in this step has a polymerization degree of about 60 to 250, but is not limited to this. Absent. In Examples described later, for example, poly-γ-methyl-L-glutamate (abbreviated as PMLG) has a polymerization degree of about 100.
.About.200 (molecular weight of about 14,000 to 29,000) was used.

【0021】第2工程は,ポリグルタミン酸(又はポリ
アスパラギン酸)(III) の側鎖カルボキシル基とガラク
トサミンの一級アミノ基との間のペプチデーションであ
る。このペプチデーションには,カルボキシル基又はア
ミノ基を活性化する方法および縮合剤の存在下に行う方
法等が採用できる。この中,カルボキシル基を活性化す
るペプチデーションとしては,第1工程で得られた加水
分解物(III) のカルボキシル基を,たとえばp−ニトロ
フェニルエステルの形態で活性化し,活性化化合物を分
離した後,これにガラクトサミンを反応させる。この反
応は,ジメチルホルムアミド(DMF),テトラヒドロ
フラン(THF),ジメチルスルホキサイド(DMS
O)等の溶媒中,室温乃至冷却下で行われる。反応時間
は数時間乃至数日間である。ペプチデーションの進行率
は,反応に伴って遊離するp−ニトロフェノールを定量
することにより知ることができる。
The second step is the peptidation between the side chain carboxyl group of polyglutamic acid (or polyaspartic acid) (III) and the primary amino group of galactosamine. For this peptidation, a method of activating a carboxyl group or an amino group, a method of performing in the presence of a condensing agent, and the like can be adopted. Among them, as the peptidation for activating the carboxyl group, the carboxyl group of the hydrolyzate (III) obtained in the first step is activated, for example, in the form of p-nitrophenyl ester, and the activated compound is separated. Later, this is reacted with galactosamine. This reaction is performed using dimethylformamide (DMF), tetrahydrofuran (THF), dimethyl sulfoxide (DMS).
It is carried out in a solvent such as O) at room temperature or under cooling. The reaction time is several hours to several days. The progress rate of peptidation can be known by quantifying the amount of p-nitrophenol released with the reaction.

【0022】つぎに,縮合剤を用いる方法としては,た
とえばN,N′−ジシクロヘキシルカルボジイミド(D
CC),1−エチル−3−(3−ジメチルアミノプロピ
ル)カルボジイミドハイドロクロライド(EDC)等の
存在下,部分加水分解物(III) とガラクトサミンとをカ
ップリングさせる。この反応条件は,上述のカルボキシ
ル基の活性化によるペプチデーションと同様である。生
成した目的化合物(I)は,たとえばセルロース透析膜
を用いる透析により精製することができる。
Next, as a method using a condensing agent, for example, N, N'-dicyclohexylcarbodiimide (D
CC), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and the like, and the partial hydrolyzate (III) is coupled with galactosamine. This reaction condition is the same as the above-mentioned peptidation by activation of the carboxyl group. The produced target compound (I) can be purified by dialysis using, for example, a cellulose dialysis membrane.

【0023】[0023]

【発明の効果】本発明の目的化合物は,前述のように標
的生体細胞に対する認識作用が期待されるから,生体認
識高分子として医療分野に応用することができる。ま
た,本発明の目的化合物は,天然類似高分子であるポリ
アミノ酸誘導体であるから,生体分解性であり,また,
水溶性である。したがってこの化合物は,ミサイルドラ
ッグ等に用いるドラッグキャリアー用高分子材料として
好適である。つぎに,ラットを用いた動物実験により本
発明の化合物の肝細胞親和性を示す。
EFFECTS OF THE INVENTION Since the object compound of the present invention is expected to have a recognition action on target living cells as described above, it can be applied to the medical field as a biorecognition polymer. The object compound of the present invention is a polyamino acid derivative which is a naturally similar polymer, and thus is biodegradable.
It is water soluble. Therefore, this compound is suitable as a polymer material for drug carriers used in missile drugs and the like. Next, the hepatocyte affinity of the compound of the present invention will be shown in animal experiments using rats.

【0024】実験例 SD系雌ラット(4〜5週令)を用い,細胞間接着タン
パク質を酵素を用いて消化する所謂Seglenの灌流
法に準じてラットの肝実質細胞を分離した。調製した肝
細胞を氷冷したWE培地中に40万cells/mlと
なるように懸濁させた。その後ディスポピペットを用い
て,あらかじめ調製した各ポリマーコートシャーレ(注
1)に肝細胞懸濁液を1.5ml播種し,炭酸ガス培養
装置にて37℃,炭酸ガス濃度5%で所定時間培養し
た。その後,非接着細胞数をカウントすることにより,
接着率を算出した。
Experimental Example Using SD female rats (4-5 weeks old), rat hepatocytes were separated according to the so-called Seglen perfusion method in which the intercellular adhesion protein was digested with an enzyme. The prepared hepatocytes were suspended in ice-cooled WE medium at 400,000 cells / ml. Then, using a disposable pipette, 1.5 ml of the hepatocyte suspension was seeded on each polymer-coated Petri dish (Note 1) prepared in advance, and the cells were cultured at 37 ° C. at a carbon dioxide concentration of 5% for a predetermined time in a carbon dioxide culture device. .. After that, by counting the number of non-adherent cells,
The adhesion rate was calculated.

【0025】本実験に用いたポリマーは,本願の目的化
合物,製造原料として用いたポリ−−γ−メチル−L−
グルタメート(PGAと略記する)および対照として従
来肝細胞親和性が知られているポリビニル系ポリマー
(ポリベンジルラクトンアミド,PVLAと略記する)
である。各シャーレに対する肝細胞の初期接着の様子を
図1に示す。グラフを見ると主鎖ポリマーに対して肝細
胞は余り接着せず主鎖自体の生理活性はない。これに対
し,ガラクトサミンを側鎖に有する本発明のポリマー
は,PVLA同様高い接着率を示した。
The polymer used in this experiment was the target compound of the present application, and poly-γ-methyl-L-
Glutamate (abbreviated as PGA) and, as a control, a polyvinyl polymer known to have hepatocyte affinity (polybenzyl lactone amide, abbreviated as PVLA)
Is. The state of initial adhesion of hepatocytes to each dish is shown in FIG. The graph shows that hepatocytes do not adhere to the main chain polymer so much that the main chain itself has no physiological activity. On the other hand, the polymer of the present invention having galactosamine in the side chain exhibited a high adhesion rate as in PVLA.

【0026】(注1)ポリマーコートシャーレの調製法 各試料をミリQ水中に0.05%(W/V)の濃度で溶
解させた。そのポリマー溶液をシャーレ中に,2ml注
入し凍結乾燥させ,その後3回ミリQ水中でリンスし自
然乾燥させることによってポリマーコートシャーレを調
製した。
(Note 1) Method for preparing polymer-coated petri dish Each sample was dissolved in Milli-Q water at a concentration of 0.05% (W / V). A polymer-coated petri dish was prepared by injecting 2 ml of the polymer solution into a petri dish, freeze-drying, and then rinsing three times in Milli-Q water and naturally drying.

【0027】つぎに,ガラクトサミンの置換割合を異に
する本発明の化合物について,各ポリマーコートシャー
レに対する接着率を図2に示す。グラフを見ると,主鎖
ポリマー及び糖含有量25%のポリマーに対しては肝細
胞はあまり接着しておらず,25%程度の含有量では糖
側鎖の影響はないものと考えられる。また糖含有量を4
0%,60%,70%,85%と増加したポリマーに対
しては肝細胞の接着率の上昇がみられ,60%以上糖残
基を有する試料に対しては,ほとんど同様の接着挙動を
示した。
Next, FIG. 2 shows the adhesion ratios of the compounds of the present invention having different galactosamine substitution ratios to each polymer-coated petri dish. From the graph, it is considered that hepatocytes do not adhere much to the main chain polymer and the polymer having a sugar content of 25%, and that the sugar side chain has no effect at a content of about 25%. The sugar content is 4
An increase in the adhesion rate of hepatocytes was observed for the polymers with an increase of 0%, 60%, 70%, and 85%, and almost the same adhesion behavior was observed for samples with 60% or more sugar residues. Indicated.

【0028】本発明の化合物を用いた製剤用投与形態と
しては,たとえばナノスフェアー化が挙げられる。ナノ
スフェアーの調製法の一例を示すとつぎの通りである。
リピオドール,イソブチルシアノアクリレートおよび薬
物をエタノールに溶解する。一方,非イオン性界面活性
剤と本発明の化合物を水に溶かし,はげしく撹拌しなが
ら,この水溶液中に上記エタノール溶液を徐々に注入す
る。反応液を濃縮したのち,凍結乾燥することにより,
本発明の化合物と薬物とを含有又は付着するナノスフェ
アーを得る。
Examples of dosage forms for pharmaceutical preparations using the compound of the present invention include nanosphere formation. An example of the method for preparing nanospheres is as follows.
Dissolve Lipiodol, isobutyl cyanoacrylate and drug in ethanol. On the other hand, the nonionic surfactant and the compound of the present invention are dissolved in water, and the above ethanol solution is gradually poured into this aqueous solution with vigorous stirring. After concentrating the reaction solution, freeze-drying it
A nanosphere containing or adhering the compound of the present invention and a drug is obtained.

【0029】[0029]

【実施例】つぎに,実施例を挙げて本発明の目的化合物
およびその製造方法を更に説明する。 実施例 1 (1) PMLGの側鎖メチルエステルの加水分解 PMLG11.57gをクロロホルム100mlに溶解
させ,8%溶液として調製し,その溶液中に撹拌しなが
ら,2N−水酸化ナトリウム35.8ml,メタノール
71.5ml,イソプロピルアルコール71.5mlの
混合溶液(体積比1:2:2)を15分かけ滴下し,そ
の後室温で撹拌を続けることにより側鎖メチルエステル
の加水分解反応を行った。その際撹拌時間を変えた反応
を行った。その後,氷酢酸で中和することにより,反応
を終了させ,この反応溶液を撹拌しながらジエチルエー
テル500ml中に加え,生成物を沈殿させた。その
後,沈殿を濾過しジエチルエーテルで数回洗浄後,少量
の蒸留水を加えゲル状にしたものを透析チューブ中につ
め,室温で2日間透析を行い,その後凍結乾燥によって
側鎖加水分解ポリマーを調製した。透析液は,適宜交換
した。
EXAMPLES Next, the object compound of the present invention and the method for producing the same will be further described with reference to examples. Example 1 (1) Hydrolysis of side chain methyl ester of PMLG 11.57 g of PMLG was dissolved in 100 ml of chloroform to prepare an 8% solution, and 35.8 ml of 2N-sodium hydroxide and methanol were stirred in the solution. A mixed solution of 71.5 ml of isopropyl alcohol and 71.5 ml of isopropyl alcohol (volume ratio 1: 2: 2) was added dropwise over 15 minutes, and the side chain methyl ester was hydrolyzed by continuing stirring at room temperature. At that time, the reaction was carried out by changing the stirring time. Then, the reaction was terminated by neutralizing with glacial acetic acid, and the reaction solution was added to 500 ml of diethyl ether while stirring to precipitate the product. After that, the precipitate was filtered and washed with diethyl ether several times, then a small amount of distilled water was added to make a gel, which was placed in a dialysis tube and dialyzed at room temperature for 2 days, and then the side chain hydrolyzed polymer was freeze-dried. Prepared. The dialysate was changed appropriately.

【0030】得られた側鎖加水分解ポリマーの1H−N
MRスペクトルを図3に示す。図中(a),(b)およ
び(c)のスペクトルは上から順に反応時間を長くした
もので一番下のスペクトル(c)は,室温で3日間反応
させたものである。結果を見ると,上から順に側鎖メチ
ルエステルのピークが減少しており,側鎖加水分解反応
がその反応時間に応じて進行していることが示されてい
る。
1 H--N of the obtained side chain hydrolyzed polymer
The MR spectrum is shown in FIG. In the figures, the spectra of (a), (b) and (c) are obtained by sequentially increasing the reaction time from the top, and the bottom spectrum (c) is the one that was reacted at room temperature for 3 days. The results show that the peaks of side-chain methyl ester decrease in order from the top, indicating that the side-chain hydrolysis reaction proceeds according to the reaction time.

【0031】(2) 側鎖カルボキシル基の活性化 側鎖部分加水分解ポリマー0.8g(5.9×10-3
ol,モノマー単位で1ユニット当りの見かけ上の分子
量から計算した値)およびp−ニトロフェノール0.5
5g(4.0×10-3mol)をDMF20ml中に加
え,その溶液にDCC0.82g(4.0×10-3mo
l)を加えて,0℃で30分間ついで室温で2日間撹拌
することによって反応を行った。その後,冷蔵庫に2時
間放置し,沈殿物をDMF,水,熱エタノールで順次よ
く洗浄した後,真空乾燥によって,試料を調製した。
(この方法は,側鎖エステルの加水分解率28.6%の
ポリマーを修飾したときのものであり,その他の反応で
もp−ニトロフェノールおよびDCCの仕込量は,ポリ
マー側鎖のカルボキシル基のmol数の1.5倍〜2倍
量とした。)
(2) Activation of side chain carboxyl group 0.8 g (5.9 × 10−3 m) of side chain partially hydrolyzed polymer
ol, a value calculated from the apparent molecular weight per unit of monomer unit) and p-nitrophenol 0.5
5 g (4.0 × 10−3 mol) was added into 20 ml of DMF, and 0.82 g (4.0 × 10−3 mo) of DCC was added to the solution.
1) was added and the reaction was carried out by stirring at 0 ° C. for 30 minutes and then at room temperature for 2 days. Then, the sample was left in the refrigerator for 2 hours, the precipitate was washed well with DMF, water, and hot ethanol in that order, and then vacuum dried to prepare a sample.
(This method is for modifying a polymer having a hydrolysis rate of side chain ester of 28.6%. In other reactions, the charged amount of p-nitrophenol and DCC is the mol of the carboxyl group of the polymer side chain. The amount was 1.5 to 2 times the number.)

【0032】得られた化合物のUVスペクトルを図4に
示す。図中310nmにp−ニトロフェノールのピーク
が観察され,ポリマー側鎖に対して,p−ニトロフェノ
ールが導入されていることが確認された。本反応におけ
る側鎖活性化率(p−ニトロフェノール導入率)をUV
スペクトルの測定により同定した。手法としては,0.
2g/lの濃度で反応生成物をメタノール中に溶解さ
せ,その溶液中に0.1Nの水酸化カリウムを加え10
分間激しく撹拌し,その溶液の390nmに現れるp−
ニトロフェノールの吸収を測定する方法を用いた。
The UV spectrum of the obtained compound is shown in FIG. In the figure, a peak of p-nitrophenol was observed at 310 nm, and it was confirmed that p-nitrophenol was introduced into the side chain of the polymer. The side chain activation rate (p-nitrophenol introduction rate) in this reaction is UV
It was identified by measuring the spectrum. As a method, 0.
The reaction product was dissolved in methanol at a concentration of 2 g / l, and 0.1 N potassium hydroxide was added to the solution to give 10
Vigorously stir for a minute and the p-
The method of measuring the absorption of nitrophenol was used.

【0033】(3) ガラクトサミンとのカップリング (活性エステル法)ガラクトサミンハイドロクロライド
0.22g(1.04×10-3mol)をDMF10m
l中に溶かし,トリエチルアミン0.15ml(1.0
4×10-3mol)を加えた後,PGA−ONp0.3
0g(1.84×10-3mol,1ユニット当りの見か
けの分子量から求めた計算値)を加え,室温で2日間反
応を行った。その後沈殿物を含めて溶液を透析し(2日
間),凍結乾燥によって,試料を調製した。(ここに挙
げた仕込量は,前述した側鎖加水分解率28.6%のポ
リマーを用いて側鎖活性化を施し調製した試料のもので
ある。他の試料に対しても側鎖活性化率に応じて2倍程
度の糖及びトリエチルアミンを用いた。)
(3) Coupling with galactosamine (active ester method) 0.22 g (1.04 × 10−3 mol) of galactosamine hydrochloride was added to 10 m of DMF.
0.1 l of triethylamine (1.0
4 × 10−3 mol) and then PGA-ONp0.3
0 g (1.84 × 10−3 mol, a calculated value obtained from the apparent molecular weight per unit) was added, and the reaction was carried out at room temperature for 2 days. After that, the solution including the precipitate was dialyzed (2 days), and a sample was prepared by freeze-drying. (The charging amount listed here is for a sample prepared by subjecting the polymer having the above-mentioned side chain hydrolysis rate of 28.6% to side chain activation. About twice as much sugar and triethylamine were used depending on the ratio.)

【0034】(縮合剤法)水溶液中にPGA0.45g
を溶かし,側鎖カルボキシル基の1.5倍,1倍,0.
75倍,0.5倍,0.25倍molのガラクトサミン
(Gal−NH2)を続けて溶かし,0.1N塩酸によ
ってpHを4.7に調整した溶液を準備した。この溶液
中に用いたガラクトサミンの1.5倍molのEDCを
溶解させたpH4.7の水溶液を,0℃において8時間
かけ滴下した。引き続いて,室温で24時間反応させた
後,2日間透析し,凍結乾燥によって試料を調製した。
これらの反応で得られた化合物(PGA−Gal)の1
H−NMRスペクトルの測定結果を図5に示す。図から
明らかな様に各試料ともに4ppm付近に糖のピークが
観察され,糖がポリマー側鎖中に導入されたことが確認
された。
(Condensing agent method) 0.45 g of PGA in an aqueous solution
Is dissolved, and the side chain carboxyl group is 1.5 times, 1 time, 0.
75 times, 0.5 times, and 0.25 times mol of galactosamine (Gal-NH2 ) were continuously dissolved, and a solution whose pH was adjusted to 4.7 with 0.1N hydrochloric acid was prepared. An aqueous solution of pH 4.7 in which 1.5 times mol of EDC of galactosamine used in this solution was dissolved was added dropwise at 0 ° C. over 8 hours. Subsequently, the mixture was reacted at room temperature for 24 hours, dialyzed for 2 days, and lyophilized to prepare a sample.
1 of the compounds (PGA-Gal) obtained by these reactions
The measurement result of the 1 H-NMR spectrum is shown in FIG. As is clear from the figure, a sugar peak was observed at around 4 ppm in each sample, confirming that the sugar was introduced into the polymer side chain.

【0035】また,上記縮合剤法により,側鎖カルボキ
シル基の1.5倍,1倍,0.75倍および0.5倍の
ガラクトサミンを加えてカップリングさせて得られたガ
ラクトサミン置換体(PGA−Gal)の1H−NMR
スペクトルを図6,図7,図8および図9に示す。図か
ら明らかなように,ガラクトサミンの使用量に対応し
て,各々ガラクトサミンの置換割合85%[PGA−G
al(85)],70%[PGA−Gal(70)],
60%[PGA−Gal(60)]および40%[PG
A−Gal(40)]の化合物が得られた。
The galactosamine substitution product (PGA) obtained by adding and coupling 1.5 times, 1 times, 0.75 times and 0.5 times the galactosamine of the side chain carboxyl group by the above condensing agent method. -Gal)1 H-NMR
The spectra are shown in FIGS. 6, 7, 8 and 9. As is clear from the figure, the substitution ratio of galactosamine is 85% [PGA-G] according to the amount of galactosamine used.
al (85)], 70% [PGA-Gal (70)],
60% [PGA-Gal (60)] and 40% [PG
A-Gal (40)] compound was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の化合物(PGA−Gal:置換割合7
5),原料化合物(PGA)および対照(PVLA)の
ラット肝細胞に対する親和性を示す図である。
FIG. 1 Compound of the present invention (PGA-Gal: substitution ratio 7
FIG. 5 is a diagram showing the affinities of a starting compound (PGA) and a control (PVLA) for rat hepatocytes.

【図2】糖含有量を異にする本発明の化合物について,
肝細胞の接着率の相違を各培養時間について調べた図で
ある。
FIG. 2 shows compounds of the present invention having different sugar contents,
It is the figure which investigated the difference in the adhesion rate of hepatocytes for each culture time.

【図3】PMLGの側鎖メチルエステルの加水分解の進
行を示す1H−NMRスペクトルである。図中(c)
は,室温で3日間反応させた後の生成物について測定し
たものである。
FIG. 3 is a1 H-NMR spectrum showing the progress of hydrolysis of a side chain methyl ester of PMLG. (C) in the figure
Is measured on the product after reacting for 3 days at room temperature.

【図4】実施例1(2)で得られた化合物のUVスペク
トルを示す。
FIG. 4 shows a UV spectrum of the compound obtained in Example 1 (2).

【図5】実施例1(3)の活性エステル法で得られた化
合物の1H−NMRスペクトルを示す。
FIG. 5 shows the1 H-NMR spectrum of the compound obtained by the active ester method of Example 1 (3).

【図6】PGA−Gal(85)の1H−NMRスペク
トルを示す。
FIG. 6 shows a1 H-NMR spectrum of PGA-Gal (85).

【図7】PGA−Gal(70)の1H−NMRスペク
トルを示す。
FIG. 7 shows a1 H-NMR spectrum of PGA-Gal (70).

【図8】PGA−Gal(60)の1H−NMRスペク
トルを示す。
FIG. 8 shows a1 H-NMR spectrum of PGA-Gal (60).

【図9】PGA−Gal(40)の1H−NMRスペク
トルを示す。
FIG. 9 shows the1 H-NMR spectrum of PGA-Gal (40).

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年10月26日[Submission date] October 26, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】[Figure 1]

【図2】[Fig. 2]

【図3】[Figure 3]

【図4】[Figure 4]

【図6】[Figure 6]

【図5】[Figure 5]

【図7】[Figure 7]

【図8】[Figure 8]

【図9】[Figure 9]

Claims (2)

Translated fromJapanese
【特許請求の範囲】[Claims]【請求項1】 一般式 【化1】(式中,Xは重合度60〜250であることを,nは1
又は2を,Rは低級アルキル基又はベンジル基を夫々意
味する。)で示されるポリペプチドにおいて,その構成
ペプチドの一部または全部を一般式 【化2】(式中,nは前記の意味を表わす)で表わされる ω−
ガラクトサミル−L−グルタミン酸(又はアスパラギン
酸)残基で置換したポリ−ω−アルキル(又はベンジ
ル)−L−グルタミン酸(又はアスパラギン酸)のガラ
クトサミン置換体。
1. A general formula: (In the formula, X has a degree of polymerization of 60 to 250, and n is 1
Or 2, and R means a lower alkyl group or a benzyl group, respectively. ), A part or all of its constituent peptides can be represented by the general formula: (Wherein n represents the above-mentioned meaning)
A galactosamine substitution product of poly-ω-alkyl (or benzyl) -L-glutamic acid (or aspartic acid) substituted with a galactosamyl-L-glutamic acid (or aspartic acid) residue.
【請求項2】 ω−アルキル(又はベンジル)−L−グ
ルタミン酸(又はアスパラギン酸)残基 【化3】(式中,nは1又は2を,Rは低級アルキル基又はベン
ジル基を夫々意味する。),L−グルタミン酸(又はア
スパラギン酸)残基 【化4】(式中,nは前記の意味を表わす)および ω−ガラク
トサミル−L−グルタミン酸(又はアスパラギン酸)残
基 【化5】(式中,nは前記の意味を表わす)を構成単位とするガ
ラクトサミル化 ω−アルキル(又はベンジル)−L−
グルタミン酸(又はアスパラギン酸)線状重合体であっ
て,下記A〜Cを満足する重合体 A:重合度 60〜250 B:分子量 8,000〜71,000 C:各構成単位の比率 ω−アルキル(又はベンジル)−L−グルタミン酸(又はアスパラギン 酸)残基 0〜97% L−グルタミン酸(又はアスパラギン酸)残基 0〜87% ω−ガラクトサミル−L−グルタミン酸(又はアスパラギン酸)残基 3〜100%
2. ω-Alkyl (or benzyl) -L-glutamic acid (or aspartic acid) residue embedded image (In the formula, n means 1 or 2 and R means a lower alkyl group or a benzyl group, respectively), L-glutamic acid (or aspartic acid) residue (Wherein n represents the above meaning) and a ω-galactosamyl-L-glutamic acid (or aspartic acid) residue (Wherein n represents the above meaning) as a constitutional unit, galactosamylated ω-alkyl (or benzyl) -L-
Glutamic acid (or aspartic acid) linear polymer that satisfies the following A to C: A: degree of polymerization 60 to 250 B: molecular weight 8,000 to 71,000 C: ratio of each structural unit ω-alkyl (Or benzyl) -L-glutamic acid (or aspartic acid) residue 0-97% L-glutamic acid (or aspartic acid) residue 0-87% ω-galactosamil-L-glutamic acid (or aspartic acid) residue 3-100 %
JP12225291A1990-04-271991-04-24 Galactosamine-substituted poly-ω-substituted-L-glutamic acid (or aspartic acid)Expired - Fee RelatedJP3208570B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP12225291AJP3208570B2 (en)1990-04-271991-04-24 Galactosamine-substituted poly-ω-substituted-L-glutamic acid (or aspartic acid)

Applications Claiming Priority (3)

Application NumberPriority DateFiling DateTitle
JP2-1136811990-04-27
JP113681901990-04-27
JP12225291AJP3208570B2 (en)1990-04-271991-04-24 Galactosamine-substituted poly-ω-substituted-L-glutamic acid (or aspartic acid)

Publications (2)

Publication NumberPublication Date
JPH05178988Atrue JPH05178988A (en)1993-07-20
JP3208570B2 JP3208570B2 (en)2001-09-17

Family

ID=26452622

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP12225291AExpired - Fee RelatedJP3208570B2 (en)1990-04-271991-04-24 Galactosamine-substituted poly-ω-substituted-L-glutamic acid (or aspartic acid)

Country Status (1)

CountryLink
JP (1)JP3208570B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US7044350B2 (en)2002-05-092006-05-16Toshiyuki KameyamaCartridge for stapler and stapler

Also Published As

Publication numberPublication date
JP3208570B2 (en)2001-09-17

Similar Documents

PublicationPublication DateTitle
DemingMethodologies for preparation of synthetic block copolypeptides: materials with future promise in drug delivery
US4892733A (en)Biodegradable synthesis polypeptide and its therapeutic use
AU764144B2 (en)Polyamide chains of precise length, methods to manufacture them and their conjugates
CN101507820A (en)Manufacture of polyglutamate-therapeutic agent conjugates
JPH08507549A (en) Water-soluble non-immunogenic polyamide crosslinker
JP5199125B2 (en) Highly efficient production of polyalkylene oxide carboxylic acid
CA1193216A (en)Process for preparing conjugated haptens and muramyl-peptides useful as immunogenic agents, and compositions containing the same
WO2008083542A1 (en)Multiple modified derivatives of gelatin and crosslinked material thereof
CN113332442A (en)Targeted delivery molecule, particle, preparation method and application thereof
JP2604268B2 (en) Liposomes and thin films using peptide derivative amphiphilic compounds, intermediates thereof, and peptide derivative amphiphilic compounds
CN111494642A (en)Self-assembly material for in-situ construction of artificial extracellular matrix and preparation method and application thereof
US5753611A (en)Pharmaceutical composition having site-specific delivery
CN106749159B (en) 5-Propargyloxy-trimethylene carbonate and its preparation method and application
JP3208570B2 (en) Galactosamine-substituted poly-ω-substituted-L-glutamic acid (or aspartic acid)
JP5158716B2 (en) Depsipeptide containing lactic acid residues
US5124437A (en)Galactosamine substitute of poly-ω-substituted-L-glutamic acid (or aspartic acid)
WO2003042277A1 (en)The polyester containing active drugs and having amino acids in the main chain, and its preparation method
CN117164878A (en)Macromolecular contrast agent and preparation method and application thereof
JP4599567B2 (en) Temperature-responsive depsipeptide polymer
JP3399100B2 (en) Oxyalkylene derivative
JP3418693B2 (en) D-galactopyranosyl-gluconic acid derivatives of poly-ε-substituted-L-lysine
JPH0790080A (en)D-galactopyranosyl-gluconic acid derivative of poly-epsilon-substituted-l-lysine
JP2003506335A (en) Use of quinic acid, shikimic acid and their derivatives for preparing mannose receptor ligands
KR102430034B1 (en)Nitric oxide sensitive hydrogel
CN108503687A (en)The preparation method of the plastic factor and the preparation method of hydrogel and application

Legal Events

DateCodeTitleDescription
LAPSCancellation because of no payment of annual fees

[8]ページ先頭

©2009-2025 Movatter.jp