Movatterモバイル変換


[0]ホーム

URL:


JPH05173065A - Reduction projection lens - Google Patents

Reduction projection lens

Info

Publication number
JPH05173065A
JPH05173065AJP4022837AJP2283792AJPH05173065AJP H05173065 AJPH05173065 AJP H05173065AJP 4022837 AJP4022837 AJP 4022837AJP 2283792 AJP2283792 AJP 2283792AJP H05173065 AJPH05173065 AJP H05173065A
Authority
JP
Japan
Prior art keywords
sio
lens
lens group
group
reduction projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4022837A
Other languages
Japanese (ja)
Other versions
JP3298131B2 (en
Inventor
Kokichi Kenno
研野孝吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co LtdfiledCriticalOlympus Optical Co Ltd
Priority to JP02283792ApriorityCriticalpatent/JP3298131B2/en
Publication of JPH05173065ApublicationCriticalpatent/JPH05173065A/en
Application grantedgrantedCritical
Publication of JP3298131B2publicationCriticalpatent/JP3298131B2/en
Anticipated expirationlegal-statusCritical
Expired - Lifetimelegal-statusCriticalCurrent

Links

Landscapes

Abstract

PURPOSE:To obtain a reduction projection lens using short wavelength light as a light source and having high resolution and wide focal depth by setting up its incident iris position on a position comparatively far from an object face in order to reduce image distortion. CONSTITUTION:The reduction projection lens is constituted of the 1st lens group I including a pair of meniscus lenses whose concaves are mutually opposed, the 2nd lens group II having positive refractive power and constituted of at least two lenses and the 3rd lens group III having positive refractive power and satisfies the conditions of the shown inequalities, provided that E is an incident iris position measured from the 1st face of the lens system, L is a distance between object images and F1 is the focal distance of the 1st lens group.

Description

Translated fromJapanese
【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、投影露光法によってI
C等の集積回路パターン等を描いたマスク等から半導体
ウエーハ上に回路パターン等を転写する際に用いられる
縮小投影レンズに関するものである。
BACKGROUND OF THE INVENTION The present invention is based on the projection exposure method.
The present invention relates to a reduction projection lens used when a circuit pattern or the like is transferred onto a semiconductor wafer from a mask or the like on which an integrated circuit pattern or the like such as C is drawn.

【0002】[0002]

【従来の技術】今日、集積回路等の集積度が上がるにつ
れて、より微細な回路パターンを形成する必要が生じて
いる。このため、高い解像力を得るのにレンズ系のNA
(開口数)を上げるのが一般的方法である。以前は、こ
の方法により高NA化が行われてきたが、近年では、あ
まりに高NAでは、焦点深度が浅くなり、オートフォー
カスの要求精度が非常に厳しくなったり、半導体ウェー
ハの反り等によって不都合が生じるため、実用的にNA
は0.5前後が最適である。そこで、使用波長の短波長
化に力点が移されてきた。例えば、g線(436nm)
からi線(365nm)を使用するレンズ系が発明さ
れ、今後はKrFエキシマレーザ(248nm)を光源
とするレンズ系が主流となると言われているし、特許出
願が盛んに行われている。
2. Description of the Related Art Today, as the degree of integration of integrated circuits and the like increases, it becomes necessary to form finer circuit patterns. Therefore, the NA of the lens system is required to obtain high resolution.
It is a general method to raise (numerical aperture). In the past, this method was used to increase the NA, but in recent years, when the NA is too high, the depth of focus becomes shallow, the precision required for autofocus becomes extremely strict, and the semiconductor wafer is warped. Because it occurs, NA is practical
Is optimally around 0.5. Therefore, emphasis has been placed on shortening the wavelength used. For example, g line (436nm)
Therefore, a lens system using the i-line (365 nm) has been invented, and it is said that a lens system using a KrF excimer laser (248 nm) as a light source will become the mainstream in the future, and patent applications have been actively made.

【0003】一方、回路パターンが微細になればなるほ
ど、回路パターンの歪みもより少ないレンズ系が要求さ
れてきている。しかし、いくらレンズ系の歪みが少なく
ても、露光する半導体ウェーハ基板の平面度を厳しく抑
えないと、ウェーハ基板等の反りによる像の歪みが発生
してしまう。そのために、像側の射出瞳位置を無限遠に
した像側テレセントリック光学系にすることが行われて
いた。
On the other hand, as the circuit pattern becomes finer, a lens system with less distortion of the circuit pattern is required. However, no matter how small the distortion of the lens system is, if the flatness of the semiconductor wafer substrate to be exposed is not strictly suppressed, the image distortion will occur due to the warp of the wafer substrate or the like. Therefore, an image-side telecentric optical system has been used in which the position of the exit pupil on the image side is set to infinity.

【0004】なお、公知の縮小投影露光レンズとしは、
特開昭63−155014号、特開昭60−14031
0号、特開昭63−121810号、特開昭63−11
8115号等のものがある。また、本出願人が出願した
特願平2−283827号等のものがある。
As a known reduction projection exposure lens,
JP-A-63-155014, JP-A-60-14031
No. 0, JP-A-63-121810, JP-A-63-11
There are things such as 8115. In addition, there are Japanese Patent Application No. 2-283827 and the like filed by the applicant.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の縮小投影法に使用される縮小投影レンズに
は、248nm等の短波長光を光源として、投影レンズ
の射出側のみならず、入射側の入射瞳位置も像面から比
較的遠くにあり、物体面の平面度が悪くても像の歪みが
小さくてすむ高解像力で焦点深度の広い縮小投影レンズ
は存在しなかった。
However, the reduction projection lens used in the conventional reduction projection method as described above uses short wavelength light such as 248 nm as a light source, not only on the exit side of the projection lens but also on the incident side. The entrance pupil position on the side is also relatively far from the image plane, and there was no reduction projection lens with a high resolution and a wide depth of focus that can reduce image distortion even if the object plane has poor flatness.

【0006】本発明はこのような状況に鑑みてなされた
ものであり、その目的は、この像歪みを小さくするため
に、縮小投影レンズの入射瞳位置が物体面から比較的遠
くにあり、短波長光を光源とする高解像力で焦点深度の
広い縮小投影レンズを提供することである。
The present invention has been made in view of such a situation, and an object thereof is to reduce the image distortion, because the position of the entrance pupil of the reduction projection lens is relatively far from the object plane and is short. It is an object of the present invention to provide a reduction projection lens which uses a wavelength light as a light source and has a high resolution and a wide depth of focus.

【0007】[0007]

【課題を解決するための手段】上記目的を達成する本発
明の縮小投影レンズは、物体側より順に、互いに凹面を
向かい合わせた一対のメニスカスレンズを含んでなる第
1レンズ群、正の屈折力を持ち少なくとも2枚のレンズ
により構成された第2レンズ群、正の屈折力を持った第
3レンズ群より構成され、レンズ系の第1面より測った
入射瞳位置をE、物像間距離をL、第1レンズ群の焦点
距離をF1とするとき、 0.5<|E/L| 0.2<|F1/L| なる条件を満足することを特徴とするものである。
A reduction projection lens of the present invention which achieves the above object has a first lens group including a pair of meniscus lenses whose concave surfaces face each other in order from the object side, a positive refractive power. And a third lens group having a positive refracting power and having an entrance pupil position E measured from the first surface of the lens system, and an object-image distance Is L and the focal length of the first lens unit is F1 , the condition of 0.5 <| E / L | 0.2 <| F1 / L | is satisfied.

【0008】この場合、第2レンズ群の焦点距離をF2
とするとき、 0.1<|F2/L|<0.3 なる条件を満足することが望ましく、また、第3レンズ
群の焦点距離をF3とするとき、 0.04<|F3/L|<0.1 なる条件を満足することが望ましい。
In this case, the focal length of the second lens group is F2
It is desirable to satisfy the following condition: 0.1 <| F2 /L|<0.3, and when the focal length of the third lens group is F3 , 0.04 <| F3 It is desirable to satisfy the condition of /L|<0.1.

【0009】[0009]

【作用】以下、本発明の構成を採用した理由と作用につ
いて説明する。レンズ系への入射瞳が物体に近いと、軸
外光束が光軸となす角度が大きくなって、物体面の面精
度が悪いと、物点位置の光軸方向へのズレが縮小投影さ
れた像の歪みとして大きくなるという問題がある。物体
高I、レンズ系の第1面より測った入射瞳位置E、縮小
倍率B、物体面の光軸方向の撓み量dと像の歪みDとの
関係は、次式で表される。
The reason why the structure of the present invention is adopted and the function thereof will be described below. When the entrance pupil to the lens system is close to the object, the angle formed by the off-axis light beam with the optical axis becomes large, and when the surface accuracy of the object surface is poor, the deviation of the object point position in the optical axis direction was reduced and projected. There is a problem that it becomes large as image distortion. The relationship between the object height I, the entrance pupil position E measured from the first surface of the lens system, the reduction magnification B, the deflection amount d of the object plane in the optical axis direction, and the image distortion D is expressed by the following equation.

【0010】D=I/E×B×d 本出願人が先に出願した特願平2−283827号のエ
キシマレーザを光源とする実施例の場合には、物体面の
反り量が1μmの場合に、像面上の歪みとして0.03
6μmが発生する(I=90、E=490、B=0.
2)。
D = I / E × B × d In the case of the embodiment using the excimer laser of Japanese Patent Application No. 2-283827 previously filed by the applicant of the present invention as the light source, the warp amount of the object surface is 1 μm. Is 0.03 as the distortion on the image plane.
6 μm occurs (I = 90, E = 490, B = 0.
2).

【0011】この物体面の反りによる像歪みを十分小さ
くするためには、入射瞳位置を物体から遠くにする必要
がある。上記条件式は、この入射瞳位置を規定したも
のである。この条件を満足しないと、物体面を射出す
る軸外主光線傾角が大きくなり、物体面の反りによる像
面上での歪みが無視できなくなる。
In order to sufficiently reduce the image distortion due to the warp of the object plane, it is necessary to make the entrance pupil position far from the object. The above conditional expression defines this entrance pupil position. If this condition is not satisfied, the tilt angle of the off-axis chief ray that exits the object plane becomes large, and the distortion on the image plane due to the warp of the object plane cannot be ignored.

【0012】しかし、単に特願平2−283827号の
レンズ構成で入射瞳位置を遠くにすると、レンズ系の主
な正の屈折力を持つレンズ群の中央近傍から瞳がズレて
しまう。このため、このレンズ群を通る軸外物点の上側
光束と下側光束の対称性が崩れ、この主な正の屈折力を
持つレンズ群でのコマ収差の発生が大きくなり、広い露
光領域を確保することが不可能となる。
However, if the entrance pupil position is made far in the lens construction of Japanese Patent Application No. 2-283827, the pupil will be displaced from the vicinity of the center of the main lens group of the lens system having a positive refractive power. For this reason, the symmetry of the upper and lower light fluxes at the off-axis object point passing through this lens group is broken, and the occurrence of coma aberration in the lens group having the main positive refractive power becomes large, so that a large exposure area is increased. It becomes impossible to secure it.

【0013】そこで、物体近くに正のレンズ群を付加し
て、主な正の屈折力を持つレンズ群の中央近傍に瞳位置
を投影することが考えられる。しかし、軸外主光線の高
い物体近傍に正レンズ群を配することになり、ペッツバ
ール和が悪化すると共に、この正レンズ群により発生す
るコマ収差が他の群で補正不可能となってしまう。この
コマ収差とペッツバール和を良好に補正するためには、
物体近傍の正のレンズ群のさらに物体側に、凹面が向き
合う一対のメニスカスレンズを含み負の屈折力を持つレ
ンズ群を配置することが収差補正上重要になる。
Therefore, it is conceivable to add a positive lens group near the object and project the pupil position near the center of the lens group having a main positive refractive power. However, since the positive lens group is arranged in the vicinity of an object having a high off-axis chief ray, the Petzval sum is deteriorated and the coma aberration generated by this positive lens group cannot be corrected by other groups. In order to satisfactorily correct this coma aberration and Petzval sum,
It is important for aberration correction to dispose a lens group having a negative refracting power including a pair of meniscus lenses whose concave surfaces face each other, further to the object side of the positive lens group near the object.

【0014】したがって、本発明では、上記物体側の負
のレンズ群を第1群、次の正レンズ群を第2群、主な屈
折力を持つレンズ群を第3群とした3群構成としてい
る。
Therefore, in the present invention, the above-mentioned negative lens group on the object side is the first group, the next positive lens group is the second group, and the lens group having the main refractive power is the third group. There is.

【0015】次に、この第1群、第2群、第3群の役割
に付いて説明する。第1群の互いに向き合った凹面を持
つメニスカスレンズは、コマ収差を負側に補正してい
る。前記条件式の範囲を越えて焦点距離が短くなる
と、第1群で発生するコマ収差が大きくなりすぎ、第2
群とのコマ収差補正のバランスが崩れ、第1群と第2群
を合わせたトータルのコマ収差補正が不可能となる。な
お、条件式に上限を設けて、|F1/L|<1なる条
件を満足するようにすると、他のレンズ群で発生する正
のペッツバール和を補正するために必要な負のペッツバ
ール和を発生させることができ、全系のペッツバール和
をより良好にすることができる。
Next, the roles of the first group, the second group and the third group will be described. The meniscus lens having the concave surfaces facing each other in the first group corrects coma to the negative side. If the focal length becomes short beyond the range of the conditional expression, the coma aberration generated in the first lens unit becomes too large,
The balance of coma aberration correction with the group is lost, and total coma aberration correction of the first and second groups becomes impossible. If an upper limit is set in the conditional expression so that the condition of | F1 / L | <1 is satisfied, the negative Petzval sum required to correct the positive Petzval sum generated in the other lens group can be obtained. Can be generated, and the Petzval sum of the entire system can be improved.

【0016】さらに好ましくは、第2群は、第1群の負
のパワーによって発散してしまう入射瞳を第3群の中央
付近に投影する役目を持っている。前記条件式は、こ
の入射瞳の投影条件を規定している関係式である。この
条件式の上限を越えても、下限を越えても、瞳の投影を
第3群の中央近傍にすることができなくなる。つまり、
条件は、前記した条件と同様に、レンズ全系で発生
するコマ収差を補正するために必要な条件であり、この
条件を外れると、第3群で発生するコマ収差が大きくな
りすき、他の群でこれを補正することが不可能となって
しまう。
More preferably, the second group has a role of projecting the entrance pupil, which is diverged by the negative power of the first group, near the center of the third group. The conditional expression is a relational expression that defines the projection condition of the entrance pupil. If the upper limit or the lower limit of this conditional expression is exceeded, the pupil cannot be projected near the center of the third lens group. That is,
Similar to the above-mentioned conditions, the condition is a condition necessary to correct the coma aberration generated in the entire lens system. If the condition is deviated, the coma aberration generated in the third group becomes large, and It becomes impossible for the group to correct this.

【0017】また、第1群と第2群の屈折力の配分は、 1<|F1/F2|<5 の条件を満足すると、第1群と第2群で発生するコマフ
レアーの発生を全系で補正するのによい結果が得られ
る。
As for the distribution of the refracting powers of the first group and the second group, if the condition of 1 <| F1 / F2 | <5 is satisfied, the coma flare generated in the first group and the second group is generated. A good result is obtained for correcting in the whole system.

【0018】第3群は、レンズ系全体の投影倍率等の近
軸量を決定しているレンズ群であり、条件式の上限を
越えると、投影倍率が大きくなり、下限を越えると小さ
くなり、何れも所望の倍率が得られなくなってしまう。
The third lens group is a lens group which determines the paraxial amount such as the projection magnification of the entire lens system. When the upper limit of the conditional expression is exceeded, the projection magnification increases, and when it exceeds the lower limit, the projection magnification decreases. In either case, the desired magnification cannot be obtained.

【0019】さて、縮小投影光学系において、高い解像
力と広い露光領域とを確保するためには、第3群で発生
する像面湾曲をほぼ完全に補正しなくてはならない。こ
のような目的のため、互いに向き合った凹面を持つガウ
スタイプが写真レンズ等ではよく用いられるが、本発明
では、第3群の中に向き合った凹面を持つレンズ群を少
なくとも1組設けることにより、ペッツバール和を補正
する。
Now, in the reduction projection optical system, in order to secure high resolution and a wide exposure area, it is necessary to almost completely correct the field curvature generated in the third lens unit. For such a purpose, a Gauss type having concave surfaces facing each other is often used in a photographic lens or the like, but in the present invention, by providing at least one lens group having concave surfaces facing each other in the third group, Correct Petzval sum.

【0020】また、縮小投影法では、基板の平面度によ
って部分的な像歪が生じないように、射出瞳を無限遠に
近くなるようにしている。本発明でも、少なくとも像面
側の射出瞳を無限遠に近くするために、第3群の向き合
った凹面により構成されたレンズ群のさらに像面側に、
正のレンズ群と像面側に凹面を向けたメニスカスレンズ
を配置している。この正レンズ群は、レンズ系の中にあ
る瞳を無限遠に結像する作用を持つ。像面側に凹面を向
けたメニスカスレンズは、ペッツバール和を補正するた
めのもので、コマ収差を劣化させないようにするため、
面に対する光線の傾角が小さくなる向き、すなわち、凹
面が像面側になるように配置している。
Further, in the reduction projection method, the exit pupil is made to be close to infinity so that partial image distortion does not occur due to the flatness of the substrate. Also in the present invention, in order to bring at least the exit pupil on the image plane side to infinity, further to the image plane side of the lens group constituted by the concave surfaces facing each other in the third group,
A positive lens group and a meniscus lens with a concave surface facing the image side are arranged. This positive lens group has a function of forming an image of the pupil in the lens system at infinity. The meniscus lens with the concave surface facing the image side is for correcting the Petzval sum, so as not to deteriorate coma aberration,
The arrangement is such that the inclination angle of the light ray with respect to the surface is small, that is, the concave surface is on the image surface side.

【0021】なお、この像面側に凹面を向けたメニスカ
スレンズの凹面の屈折力をφ3、物像間距離をLとする
と、 1/L<|φ3|<20/L なる条件を満足することによって、広い露光領域が確保
される。この条件の下限を越えた場合には、凹面での屈
折力が弱くなりすぎてしまい、広い露光領域を得ること
が難しくなる。また、その上限を越えると、負の屈折力
が強くなりすぎてしまい、ペッツバール和は補正できる
が、コマ収差の発生が大きくなり、他の面で補正するこ
とが難しくなる。
When the refractive power of the concave surface of the meniscus lens with the concave surface facing the image surface side is φ3 and the object-image distance is L, the condition 1 / L <| φ3 | <20 / L is satisfied. By doing so, a wide exposure area is secured. If the lower limit of this condition is exceeded, the refractive power on the concave surface becomes too weak, and it becomes difficult to obtain a wide exposure area. Further, if the upper limit is exceeded, the negative refractive power becomes too strong, and Petzval sum can be corrected, but coma aberration increases, and it becomes difficult to correct it in other aspects.

【0022】[0022]

【実施例】以下に、本発明の縮小投影レンズの実施例に
ついて説明する。実施例1〜8のレンズ配置を示すレン
ズ断面図を図1〜図8に示す。本発明の縮小投影レンズ
では、縮小倍率が小さくなると、ペッツバール和が補正
し難くなるため、第3群に設けた向き合った凹面の負の
屈折力が強くなりがちである。しかし、この向き合った
凹面の負の屈折力を強くしすぎると、ペッツバール和は
小さくなるが、あまりに凹面が強くなりすぎると、この
面で発生するコマ収差が大きくなり、他の面ではこれを
補正できなくなってしまう。
EXAMPLES Examples of the reduction projection lens of the present invention will be described below. 1 to 8 are lens cross-sectional views showing lens arrangements of Examples 1 to 8. In the reduction projection lens of the present invention, it becomes difficult to correct the Petzval sum when the reduction magnification becomes small, and therefore the negative refractive power of the facing concave surfaces provided in the third lens unit tends to become strong. However, if the negative refractive power of the facing concave surface is made too strong, the Petzval sum will be small, but if the concave surface becomes too strong, the coma aberration generated on this surface will become large, and this will be corrected on other surfaces. I can not do it.

【0023】この問題に対処するため、実施例1〜5に
示した縮小投影倍率が1/5のレンズ系においては、上
記の向き合った凹面で構成するレンズ群を2組用いてい
る。この場合、2組のレンズ群を単に並べただけでは、
凹面による光線の発散作用を持ったレンズ群がレンズ系
の一部に集まってしまうため、全系の屈折力を所定の屈
折力にするために、上記の向き合った凹面の屈折力が弱
くなってしまう。つまり、ペッツバール和を小さくする
作用を持った向き合った凹面は増えるが、凹面の負の屈
折力が弱くなり、結局ペッツバール和は小さくならな
い。
In order to deal with this problem, in the lens system having a reduction projection magnification of ⅕ shown in Examples 1 to 5, two sets of lens groups each having the concave surface facing each other are used. In this case, simply arranging two lens groups
Since the lens group having the diverging action of the light rays by the concave surface gathers in a part of the lens system, the refractive power of the concave surface facing each other becomes weak in order to make the refractive power of the entire system a predetermined refractive power. I will end up. In other words, the number of facing concave surfaces having the effect of reducing the Petzval sum increases, but the negative refractive power of the concave surfaces weakens, and the Petzval sum does not decrease in the end.

【0024】そこで、これらの実施例1〜5において
は、この向き合った凹面で構成された2組のレンズ群を
有効にペッツバール和の補正に使うため、上記2組のレ
ンズ群の間に少なくとも1つの正の屈折力を持つレンズ
面を配置する。この正の屈折力のレンズ面によってはじ
めて、物体側と像側の向き合った凹面で構成された2組
のレンズ群のそれぞれの凹面が、ペッツバール和とコマ
収差に対して適切な屈折力を持ち得ることになる。上記
の適切な屈折力とは、上記の向き合った2つの凹面の屈
折力を各々φ1、φ2とし、物像間距離をLとしたと
き、上記2組のレンズ群が共に、 1/L|φ1|<20/L、1/L|φ2|<20/
L なる条件を満足することである。これらの条件式の上
限、下限の意味は、条件式について述べたことと同じ
である。
Therefore, in these Examples 1 to 5, in order to effectively use the two sets of lens groups constituted by the concave surfaces facing each other for the Petzval sum correction, at least 1 is provided between the two sets of lens groups. Two lens surfaces having positive refractive power are arranged. Only by this lens surface having a positive refractive power, the concave surfaces of the two lens groups, which are composed of the concave surfaces facing each other on the object side and the image side, can have appropriate refractive powers for Petzval sum and coma. It will be. When the refractive powers of the two concave surfaces facing each other are φ1 and φ2 , respectively, and the object-image distance is L, the above-mentioned appropriate refractive power is 1 / L | Φ1 | <20 / L, 1 / L | φ2 | <20 /
That is, the condition L is satisfied. The meanings of the upper and lower limits of these conditional expressions are the same as those described for the conditional expressions.

【0025】ところで、上記の実施例では、第3群の主
点を像面側に置くために、第3群全体をレトロフォーカ
ス的なパワー配置にしてあり、凹面を向き合わせたレン
ズ群の中の像側にある群が、このレトロフォーカス配置
の負のパワーの役割を担っている。
By the way, in the above-mentioned embodiment, in order to place the principal point of the third lens unit on the image plane side, the entire third lens unit is arranged in a retrofocus power arrangement. The group on the image side of is responsible for the negative power of this retrofocus arrangement.

【0026】しかし、投影倍率が1/4と大きくなる
と、レンズ系の主たる屈折力を負担する第3群の主点位
置が像側から物体側に移動する。このため、上記のレト
ロフォーカス的配置が不要となり、このレンズ群の負の
屈折力を弱くすることができる。その結果、凹面を向き
合わせた2組のレンズ群の一方を省略することができ
る。実施例6〜8では、このような理由により、凹面を
向き合わせたレンズ群の数は1つになっている。
However, when the projection magnification increases to 1/4, the principal point position of the third lens group, which bears the main refracting power of the lens system, moves from the image side to the object side. For this reason, the above retrofocus arrangement is unnecessary, and the negative refracting power of this lens group can be weakened. As a result, one of the two lens groups whose concave surfaces face each other can be omitted. In Examples 6 to 8, for the above reason, the number of lens groups having concave surfaces facing each other is one.

【0027】なお、倍率1/4の実施例6〜8では、後
記のレンズデータから明らかなように、倍率1/5の実
施例1〜5のものに比較して、開口数、露光領域が共に
大きくなっている。
In Examples 6 to 8 with a magnification of 1/4, as is apparent from the lens data described later, the numerical aperture and the exposure area are smaller than those in Examples 1 to 5 with a magnification of 1/5. Both are getting bigger.

【0028】以下、より具体的に、実施例1〜5におい
ては、第1群Iは第1レンズから第3レンズの3枚から
なり、第2群IIは第4レンズと第5レンズの2枚からな
る。第3群III は、実施例1から実施例4は、第6レン
ズから第23レンズの18枚からなり、実施例5は第6
レンズから第24レンズの19枚からなる。また、実施
例6〜8においては、第1群Iは第1レンズから第3レ
ンズの3枚からなり、第2群IIは第4レンズから第6レ
ンズの3枚からなる。第3群III は、実施例6、実施例
8は、第7レンズから第24レンズの18枚からなり、
実施例7は、第7レンズから第23レンズの17枚から
なる。何れのレンズも溶融石英(SiO2)からなる。
More specifically, in Examples 1 to 5, the first group I is composed of three lenses, the first lens to the third lens, and the second group II is composed of the fourth lens and the fifth lens. It consists of pieces. The third group III includes 18 lenses from the sixth lens to the 23rd lens in the first to fourth embodiments, and the fifth embodiment includes the sixth lens.
It consists of 19 lenses from the 24th lens to the 24th lens. In Examples 6 to 8, the first group I is composed of the first to third lenses, and the second group II is composed of the fourth to sixth lenses. The third lens group III is composed of eighteen lenses, that is, the seventh lens to the twenty-fourth lens in Example 6 and Example 8,
The seventh embodiment includes 17 lenses, that is, the seventh lens to the 23rd lens. Both lenses are made of fused silica (SiO2 ).

【0029】また、第3群中の向き合った凹面について
は、上記したように、実施例1〜5においては2組用い
ており、何れの実施例においても、第14面(φ1)と
第19面(φ2)、第28面(φ1)と第29面
(φ2)がそれらの組を構成しており、また、上記メニ
スカスレンズの像面側の面は、第40面(φ3)が構成
している。また、実施例6〜8においては、第3群中に
向き合った凹面を1組用いており、実施例6、8におい
ては、第16面(φ1)と第23面(φ2)がその組を
構成しており、実施例7においては、第14面(φ1
と第21面(φ2)がその組を構成している。メニスカ
スレンズの像面側の面は、実施例6、8においては、第
40面(φ3)が、実施例7においては、第36面(φ
3)が、それぞれ構成している。
As to the concave surfaces facing each other in the third group, two sets are used in Examples 1 to 5 as described above. In any of the Examples, the 14th surface (φ1 ) and the The 19th surface (φ2 ), the 28th surface (φ1 ) and the 29th surface (φ2 ) constitute a set thereof, and the image-side surface of the meniscus lens is the 40th surface (φ3 ) is composed. Further, in Examples 6 to 8, one set of concave surfaces facing each other in the third group is used, and in Examples 6 and 8, the 16th surface (φ1 ) and the 23rd surface (φ2 ) are the same. And the fourteenth surface (φ1 ) in Example 7.
And the 21st surface (φ2 ) constitutes the set. The image-side surface of the meniscus lens is the 40th surface (φ3 ) in Examples 6 and 8 and the 36th surface (φ3 ) in Example 7.
3 ), but each constitutes.

【0030】次に、これら実施例1〜8のレンズデータ
を示すが、記号については、上記の外、riは物体側よ
り順に第i番目のレンズ面の曲率半径、diは物体側よ
り順に第i番目のレンズ面間間隔(ただし、実施例1〜
8のd0は物体面から第1レンズ面までの距離、実施例
1〜4、7のd46、実施例5、6、8のd48はレンズ系
の最終レンズ面から像面までの距離)、n248,iは物体
側より順に第i番目のレンズの波長248nmでの屈折
率、NAは開口数、Eは第1レンズ面より測った入射瞳
位置であり、また、上記したように、何れのレンズも溶
融石英から構成され、そのn248,iは1.5083であ
る。
Next, the lens data of these Examples 1 to 8 will be shown. Regarding the symbols, in addition to the above, ri is the radius of curvature of the i-th lens surface in order from the object side, and di is the object side. The i-th lens-to-lens surface interval in order (however, in Examples 1 to
D0 of 8 is the distance from the object surface to the first lens surface, d46 of Examples 1 to 4 and 7 and d48 of Examples 5, 6 and 8 is the distance from the final lens surface of the lens system to the image surface. ), N248, i is the refractive index of the i-th lens at the wavelength of 248 nm in order from the object side, NA is the numerical aperture, E is the entrance pupil position measured from the first lens surface, and as described above, Each lens is made of fused silica, and its n248, i is 1.5083.

【0031】なお、実施例1〜5においては、倍率β=
1/5、物像間距離L=1000mmであり、実施例6
〜8においては、倍率β=1/4、物像間距離L=10
00mmである。
In Examples 1 to 5, the magnification β =
⅕, object-image distance L = 1000 mm, and Example 6
In 8 to 8, magnification β = 1/4, object-image distance L = 10
It is 00 mm.

【0032】実施例1 NA=0.50 露光領域16.7×16.7mm E= ∞ d0=41.667 r1= 158.8180 d1=41.667 n248,1=1.5083 (SiO2) r2= 155.6344 d2=62.989 r3= 521.3761 d3=18.467 n248,2=1.5083 (SiO2) r4= 154.8448 d4=50.923 r5= -109.4408 d5=12.500 n248,3=1.5083 (SiO2) r6= -119.5306 d6=16.162 r7= 366.1980 d7=37.475 n248,4=1.5083 (SiO2) r8= -256.3179 d8= 0.083 r9= 353.4320 d9=40.072 n248,5=1.5083 (SiO2) r10= -667.9980 d10=35.047 r11= 131.6928 d11=23.349 n248,6=1.5083 (SiO2) r12= 248.4079 d12= 1.511 r13= 142.7179 d13=41.065 n248,7=1.5083 (SiO2) r14= 60.8060 d14=27.503 r15= -167.3935 d15=12.500 n248,8=1.5083 (SiO2) r16= -107.3010 d16= 0.083 r17= -721.4791 d17=12.500 n248,9=1.5083 (SiO2) r18= 101.6271 d18=20.585 r19= -62.1308 d19=12.500 n248,10=1.5083 (SiO2) r20= 213.2965 d20=22.453 r21= -290.4600 d21=41.667 n248,11=1.5083 (SiO2) r22= -142.1379 d22= 0.083 r23= 710.6183 d23=25.767 n248,12=1.5083 (SiO2) r24= -157.4733 d24= 0.083 r25= 176.7278 d25=20.056 n248,13=1.5083 (SiO2) r26= 2143.3574 d26= 0.083 r27= 212.7948 d27=38.145 n248,14=1.5083 (SiO2) r28= 108.7235 d28=25.747 r29= -135.8758 d29=12.500 n248,15=1.5083 (SiO2) r30= 487.8604 d30=32.627 r31= -559.6964 d31=35.123 n248,16=1.5083 (SiO2) r32= -219.9666 d32= 0.083 r33= 905.5655 d33=24.259 n248,17=1.5083 (SiO2) r34= -198.0141 d34= 0.083 r35= 229.0919 d35=40.041 n248,18=1.5083 (SiO2) r36= -753.1448 d36=12.508 r37= 129.3415 d37=22.495 n248,19=1.5083 (SiO2) r38= 293.9816 d38= 0.124 r39= 87.6213 d39=41.667 n248,20=1.5083 (SiO2) r40= 59.4786 d40=18.051 r41=-1548.7213 d41=25.915 n248,21=1.5083 (SiO2) r42= 161.4997 d42= 0.083 r43= 72.3482 d43=20.560 n248,22=1.5083 (SiO2) r44= 90.3115 d44= 0.580 r45= 58.8494 d45=20.566 n248,23=1.5083 (SiO2) r46= ∞ d46=10.000 F1=-509.343 F2= 187.569 F3= 51.157 φ1=-0.00836 φ2=-0.00818 φ1=-0.00468 φ2=-0.00374 φ3=-0.00855 。Example 1 NA = 0.50 exposure area 16.7 × 16.7 mm E = ∞ d0 = 41.667 r1 = 158.8180 d1 = 41.667 n248,1 = 1.5083 (SiO2 ) r2 = 155.6344 d2 = 62.989 r3 = 521.3761 d3 = 18.467 n248,2 = 1.5083 (SiO2 ) r4 = 154.8448 d4 = 50.923 r5 = -109.4408 d5 = 12.500 n248,3 = 1.5083 (SiO2 ) r6 = -119.5306 d6 = 16.162 r7 = 366.1980 d7 = 37.475 n248,4 = 1.5083 (SiO2 ) r8 = -256.3179 d8 = 0.083 r9 = 353.4320 d9 = 40.072 n248,5 = 1.5083 (SiO2 ) r10 = -667.9980 d10 = 35.047 r11 = 131.6928 d11 = 23.349 n248,6 = 1.5083 (SiO2 ) r12 = 248.4079 d12 = 1.511 r13 = 142.7179 d13 = 41.065 n248,7 = 1.5083 (SiO2 ). r14 = 60.8060 d14 = 27.503 r15 = -167.3935 d15 = 12.500 n248,8 = 1.5083 (SiO2 ) r16 = -107.3010 d16 = 0.083 r17 = -721.4791 d17 = 12.500 n248,9 = 1.5083 (SiO2 ) r18 = 101.6271 d18 = 20.585 r19 = -62.1308 d19 = 12 .500 n248,10 = 1.5083 (SiO2 ) r20 = 213.2965 d20 = 22.453 r21 = -290.4600 d21 = 41.667 n248,11 = 1.5083 (SiO2 ) r22 = -142.1379 d22 = 0.083 r23 = 710.6183 d23 = 25.767 n248,12 = 1.5083 (SiO2 ) r24 = -157.4733 d24 = 0.083 r25 = 176.7278 d25 = 20.056 n248,13 = 1.5083 (SiO2 ) r26 = 2143.3574 d26 = 0.083 r27 = 212.7948 d27 = 38.145 n248,14 = 1.5083 (SiO2 ) r28 = 108.7235 d28 = 25.747 r29 = -135.8758 d29 = 12.500 n248,15 = 1.5083 (SiO2 ) r30 = 487.8604 d30 = 32.627 r31 = -559.6964 d31 = 35.123 n248,16 = 1.5083 (SiO2 ) r32 = -219.9666 d32 = 0.083 r33 = 905.5655 d33 = 24.259 n248,17 = 1.5083 (SiO2 ). r34 = -198.0141 d34 = 0.083 r35 = 229.0919 d35 = 40.041 n248,18 = 1.5083 (SiO2 ) r36 = -753.1448 d36 = 12.508 r37 = 129.3415 d37 = 22.495 n248,19 = 1.5083(SiO 2) r 38 = 293.9816 d 38 = 0.124 r 39 = 87.621339 = 41.667 n 248,20 = 1.5083 ( SiO 2) r 40 = 59.4786 d 40 = 18.051 r 41 = -1548.7213 d 41 = 25.915 n 248,21 = 1.5083 (SiO 2) r 42 = 161.4997 d 42 = 0.083 r 43 = 72.3482 d43 = 20.560 n248,22 = 1.5083 (SiO2 ) r44 = 90.3115 d44 = 0.580 r45 = 58.8494 d45 = 20.566 n248,23 = 1.5083 (SiO2 ) r46 = ∞ d46 = 10.000 F1 = -509.343 F2 = 187.569 F3 = 51.157 φ1 = -0.00836 φ2 = -0.00818 φ1 = -0.00468 φ2 = -0.00374 φ3 = -0.00855.

【0033】実施例2 NA=0.48 露光領域 20×20 mm E=20842.22 d0=50.000 r1= 141.2698 d1=33.671 n248,1=1.5083 (SiO2) r2= 152.0192 d2=29.286 r3= 666.2277 d3=15.000 n248,2=1.5083 (SiO2) r4= 151.1574 d4=26.859 r5= -108.1434 d5=15.000 n248,3=1.5083 (SiO2) r6= -118.8647 d6=14.745 r7= 460.9167 d7=43.187 n248,4=1.5083 (SiO2) r8= -276.6500 d8= 0.100 r9= 275.5863 d9=35.557 n248,5=1.5083 (SiO2) r10=-1203.1428 d10= 0.131 r11= 160.4572 d11=34.632 n248,6=1.5083 (SiO2) r12= 661.6698 d12= 0.222 r13= 214.4262 d13=41.178 n248,7=1.5083 (SiO2) r14= 71.8816 d14=64.177 r15= -166.9853 d15=15.006 n248,8=1.5083 (SiO2) r16= -121.2880 d16= 4.026 r17= -947.7400 d17=24.617 n248,9=1.5083 (SiO2) r18= 96.3131 d18=21.706 r19= -63.8413 d19=15.000 n248,10=1.5083 (SiO2) r20= 236.8715 d20=21.763 r21= -295.4267 d21=49.126 n248,11=1.5083 (SiO2) r22= -152.0088 d22= 0.100 r23= 777.0670 d23=29.069 n248,12=1.5083 (SiO2) r24= -157.5230 d24= 0.100 r25= 168.4778 d25=22.530 n248,13=1.5083 (SiO2) r26= 1074.2257 d26= 0.100 r27= 251.5811 d27=20.491 n248,14=1.5083 (SiO2) r28= 131.9121 d28=28.754 r29= -137.1541 d29=15.000 n248,15=1.5083 (SiO2) r30= 425.5107 d30=22.730 r31= -682.4012 d31=26.847 n248,16=1.5083 (SiO2) r32= -241.5028 d32= 0.100 r33= 1049.8203 d33=28.249 n248,17=1.5083 (SiO2) r34= -182.7013 d34= 0.100 r35= 226.6109 d35=25.505 n248,18=1.5083 (SiO2) r36=-1068.8899 d36= 0.100 r37= 141.2526 d37=21.972 n248,19=1.5083 (SiO2) r38= 329.5029 d38= 0.146 r39= 98.8268 d39=41.393 n248,20=1.5083 (SiO2) r40= 66.7276 d40=26.108 r41= -517.3678 d41=38.814 n248,21=1.5083 (SiO2) r42= 186.4744 d42= 0.100 r43= 74.2966 d43=36.835 n248,22=1.5083 (SiO2) r44= 94.9398 d44= 0.101 r45= 58.8202 d45=21.753 n248,23=1.5083 (SiO2) r46= ∞ d46= 8.013 F1=-516.940 F2= 198.765 F3= 52.931 φ1=-0.00707 φ2=-0.00796 φ1=-0.00385 φ2=-0.00371 φ3=-0.00762 。Example 2 NA = 0.48 exposure area 20 × 20 mm E = 20842.22 d0 = 50.000 r1 = 141.2698 d1 = 33.671 n248,1 = 1.5083 (SiO2 ) r2 = 152.0192 d2 = 29.286 r3 = 666.2277 d3 = 15.000 n248,2 = 1.5083 (SiO2 ) r4 = 151.1574 d4 = 26.859 r5 = -108.1434 d5 = 15.000 n248,3 = 1.5083 (SiO2 ) r6 = -118.8647 d6 = 14.745 r7 = 460.9167 d7 = 43.187 n248,4 = 1.5083 (SiO2 ) r8 = -276.6500 d8 = 0.100 r9 = 275.5863 d9 = 35.557 n248,5 = 1.5083 (SiO2 ) r10 = -1203.1428 d10 = 0.131 r11 = 160.4572 d11 = 34.632 n248,6 = 1.5083 (SiO2 ) r12 = 661.6698 d12 = 0.222 r13 = 214.4262 d13 = 41.178 n248,7 = 1.5083 (SiO2 ) r14 = 71.8816 d14 = 64.177 r15 = -166.9853 d15 = 15.006 n248,8 = 1.5083 (SiO2 ) r16 = -121.2880 d16 = 4.026 r17 = -947.7400 d17 = 24.617 n248,9 = 1.5083 (SiO2 ) r18 = 96.3131 d18 = 21.706 r19 = -63.8413 d19 = 15.000 n248,10 = 1.5083 (SiO2 ) r20 = 236.8715 d20 = 21.763 r21 = -295.4267 d21 = 49.126 n248,11 = 1.5083 (SiO2 ) r22 = -152.0088 d22 = 0.100 r23 = 777.0670 d23 = 29.069 n248,12 = 1.5083 (SiO2 ) r24 = -157.5230 d24 = 0.100 r25 = 168.4778 d25 = 22.530 n248,13 = 1.5083 (SiO2 ) r26 = 1074.2257 d26 = 0.100 r27 = 251.5811 d27 = 20.491 n248,14 = 1.5083 (SiO2 ) r28 = 131.9121 d28 = 28.754 r29 = -137.1541 d29 = 15.000 n248,15 = 1.5083 (SiO2 ) r30 = 425.5107 d30 = 22.730 r31 = -682.4012 d31 = 26.847 n248,16 = 1.5083 (SiO2 ) r32 = -241.5028 d32 = 0.100 r33 = 1049.8203 d33 = 28.249 n248,17 = 1.5083 (SiO2 ) r34 = -182.7013 d34 = 0.100 r35 = 226.6109 d35 = 25.505 n248,18 = 1.5083 (SiO2 ) r36 = -1068.8899 d36 = 0.100 r37 = 141.2526 d37 = 21.972 n248,19 = 1.5083 (SiO2 ) r38 = 329.5029 d38 = 0.146 r39 = 98.8268 d39 = 41.393 n248,20 = 1.5083 (SiO2 ) r40 = 66.7276 d40 = 26.108 r41 = -517.3678 d41 = 38.814 n248,21 = 1.5083 (SiO2 ) r42 = 186.4744 d42 = 0.100 r43 = 74.2966 d43 = 36.835 n248,22 = 1.5083 (SiO2 ) r44 = 94.9398 d44 = 0.101 r45 = 58.8202 d45 = 21.753 n248,23 = 1.5083 (SiO2 ) r46 = ∞ d46 = 8.013 F1 = -516.940 F2 = 198.765 F3 = 52.931 φ1 = -0.00707 φ2 = -0.00796 φ1 = -0.00385 φ2 = -0.00371 φ3 = -0.00762.

【0034】実施例3 NA=0.50 露光領域 20×20 mm E=725.58 d0=50.000 r1= 106.2081 d1=19.183 n248,1=1.5083 (SiO2) r2= 112.7090 d2=14.582 r3= 243.1751 d3=15.000 n248,2=1.5083 (SiO2) r4= 102.7156 d4=59.376 r5= -121.6125 d5=15.000 n248,3=1.5083 (SiO2) r6= -136.4936 d6=17.234 r7= 295.0056 d7=33.106 n248,4=1.5083 (SiO2) r8= -389.3950 d8= 0.100 r9= 228.2290 d9=30.132 n248,5=1.5083 (SiO2) r10=-1157.4165 d10= 0.100 r11= 239.1661 d11=24.828 n248,6=1.5083 (SiO2) r12=-2736.2711 d12= 0.239 r13= 200.6372 d13=15.000 n248,7=1.5083 (SiO2) r14= 74.3536 d14=40.122 r15= -124.0785 d15=15.631 n248,8=1.5083 (SiO2) r16= -112.5088 d16= 0.100 r17=-1081.6120 d17=75.311 n248,9=1.5083 (SiO2) r18= 99.0951 d18=25.286 r19= -61.2676 d19=15.000 n248,10=1.5083 (SiO2) r20= 290.7525 d20=13.838 r21= -264.3925 d21=42.982 n248,11=1.5083 (SiO2) r22= -142.3785 d22= 0.100 r23=-2574.3470 d23=33.911 n248,12=1.5083 (SiO2) r24= -128.0224 d24= 0.100 r25= 178.8290 d25=27.785 n248,13=1.5083 (SiO2) r26=14133.9919 d26= 0.100 r27= 366.2486 d27=15.000 n248,14=1.5083 (SiO2) r28= 145.1509 d28=39.190 r29= -134.1619 d29=15.000 n248,15=1.5083 (SiO2) r30= 546.4401 d30=18.673 r31= -510.4058 d31=24.615 n248,16=1.5083 (SiO2) r32= -230.2698 d32= 0.100 r33= 1032.2937 d33=39.467 n248,17=1.5083 (SiO2) r34= -175.7421 d34= 0.100 r35= 253.8440 d35=30.345 n248,18=1.5083 (SiO2) r36= -784.4228 d36= 0.100 r37= 165.8967 d37=22.259 n248,19=1.5083 (SiO2) r38= 348.5753 d38= 0.100 r39= 111.5420 d39=43.105 n248,20=1.5083 (SiO2) r40= 79.1769 d40=31.484 r41= -513.011 d41=51.270 n248,21=1.5083 (SiO2) r42= 236.3217 d42= 0.100 r43= 89.8217 d43=54.275 n248,22=1.5083 (SiO2) r44= 110.2619 d44= 0.100 r45= 61.3966 d45=22.570 n248,23=1.5083 (SiO2) r46= ∞ d46= 8.000 F1=-449.873 F2= 181.832 F3= 47.071 φ1=-0.00684 φ2=-0.00830 φ1=-0.00350 φ2=-0.00379 φ3=-0.00642 。Example 3 NA = 0.50 exposure area 20 × 20 mm E = 725.58 d0 = 50.000 r1 = 106.2081 d1 = 19.183 n248,1 = 1.5083 (SiO2 ) r2 = 112.7090 d2 = 14.582 r3 = 243.1751 d3 = 15.000 n248,2 = 1.5083 (SiO2 ) r4 = 102.7156 d4 = 59.376 r5 = -121.6125 d5 = 15.000 n248,3 = 1.5083 (SiO2 ) r6 = -136.4936 d6 = 17.234 r7 = 295.0056 d7 = 33.106 n248,4 = 1.5083 (SiO2 ) r8 = -389.3950 d8 = 0.100 r9 = 228.2290 d9 = 30.132 n248,5 = 1.5083 (SiO2 ) r10 = -1157.4165 d10 = 0.100 r11 = 239.1661 d11 = 24.828 n248,6 = 1.5083 (SiO2 ) r12 = -2736.2711 d12 = 0.239 r13 = 200.6372 d13 = 15.000 n248,7 = 1.5083 (SiO2 ) r14 = 74.3536 d14 = 40.122 r15 = -124.0785 d15 = 15.631 n248,8 = 1.5083 (SiO2 ) r16 = -112.5088 d16 = 0.100 r17 = -1081.6120 d17 = 75.311 n248,9 = 1.5083 (SiO2 ) r18 = 99.0951 d18 = 25.286 r19 = -61.2676 d19 = 15.000 n248,10 = 1.5083 (SiO2 ) r20 = 290.7525 d20 = 13.838 r21 = -264.3925 d21 = 42.982 n248,11 = 1.5083 (SiO2 ) r22 = -142.3785 d22 = 0.100 r23 = -2574.3470 d23 = 33.911 n248,12 = 1.5083 (SiO2 ) r24 = -128.0224 d24 = 0.100 r25 = 178.8290 d25 = 27.785 n248,13 = 1.5083 (SiO2 ) r26 = 14133.9919 d26 = 0.100 r27 = 366.2486 d27 = 15.000 n248,14 = 1.5083 (SiO2 ) r28 = 145.1509 d28 = 39.190 r29 = -134.1619 d29 = 15.000 n248,15 = 1.5083 (SiO2 ) r30 = 546.4401 d30 = 18.673 r31 = -510.4058 d31 = 24.615 n248,16 = 1.5083 (SiO2 ) r32 = -230.2698 d32 = 0.100 r33 = 1032.2937 d33 = 39.467 n248,17 = 1.5083 (SiO2 ) r34 = -175.7421 d34 = 0.100 r35 = 253.8440 d35 = 30.345 n248,18 = 1.5083 (SiO2 ) r36 = -784.4228 d36 = 0.100 r37 = 165.8967 d37 = 22.259 n248,19 = 1.5083 (SiO2 ) r38 = 348.5753 d38 = 0.100 r39 = 111.5420 d39 = 43.105 n248,20 = 1.5083 (SiO2 ) r40 = 79.1769 d40 = 31.484 r41 = -513.011 d41 = 51.270 n248,21 = 1.5083 (SiO2 ) r42 = 236.3217 d42 = 0.100 r43 = 89.8217 d43 = 54.275 n248,22 = 1.5083 (SiO2 ) r44 = 110.2619 d44 = 0.100 r45 = 61.3966 d45 = 22.570 n248,23 = 1.5083 (SiO2 ) r46 = ∞ d46 = 8.000 F1 = -449.873 F2 = 181.832 F3 = 47.071 φ1 = -0.00684 φ2 = -0.00830 φ1 = -0.00350 φ2 = -0.00379 φ3 = -0.00642.

【0035】実施例4 NA=0.48 露光領域 20×20 mm E=1478.10 d0=100.000 r1= 137.2562 d1=25.000 n248,1=1.5083 (SiO2) r2= 147.6178 d2=15.558 r3= 444.0530 d3=25.000 n248,2=1.5083 (SiO2) r4= 137.1186 d4=47.265 r5= -120.4597 d5=25.000 n248,3=1.5083 (SiO2) r6= -140.3130 d6= 7.696 r7= 467.8743 d7=32.991 n248,4=1.5083 (SiO2) r8= -359.6274 d8= 1.000 r9= 557.3871 d9=30.000 n248,5=1.5083 (SiO2) r10= -515.5693 d10= 1.000 r11= 123.7905 d11=41.484 n248,6=1.5083 (SiO2) r12= 643.8987 d12= 1.000 r13= 171.4587 d13=25.016 n248,7=1.5083 (SiO2) r14= 66.5180 d14=41.583 r15= -152.4686 d15=20.000 n248,8=1.5083 (SiO2) r16= -126.9177 d16=23.751 r17= ∞ d17=15.000 n248,9=1.5083 (SiO2) r18= 92.5666 d18=24.103 r19= -65.0156 d19=15.000 n248,10=1.5083 (SiO2) r20= 260.3267 d20=18.623 r21= -272.8242 d21=47.402 n248,11=1.5083 (SiO2) r22= -150.2897 d22= 1.000 r23= 700.4601 d23=32.885 n248,12=1.5083 (SiO2) r24= -147.3217 d24= 1.000 r25= 198.8265 d25=23.375 n248,13=1.5083 (SiO2) r26= ∞ d26= 1.000 r27= 276.9653 d27=22.000 n248,14=1.5083 (SiO2) r28= 139.4304 d28=30.352 r29= -135.7057 d29=22.000 n248,15=1.5083 (SiO2) r30= 425.1163 d30=16.299 r31= -488.1142 d31=23.000 n248,16=1.5083 (SiO2) r32= -221.2312 d32= 1.000 r33= 793.9923 d33=29.322 n248,17=1.5083 (SiO2) r34= -178.4943 d34= 1.000 r35= 230.7597 d35=24.399 n248,18=1.5083 (SiO2) r36=-1400.000 d36= 1.000 r37= 143.8285 d37=22.630 n248,19=1.5083 (SiO2) r38= 346.4978 d38= 1.000 r39= 92.4396 d39=46.822 n248,20=1.5083 (SiO2) r40= 59.0889 d40=17.769 r41= ∞ d41=48.415 n248,21=1.5083 (SiO2) r42= 100.6209 d42= 1.000 r43= 59.7465 d43=25.260 n248,22=1.5083 (SiO2) r44= 92.1960 d44= 1.000 r45= 57.9881 d45=15.000 n248,23=1.5083 (SiO2) r46= ∞ d46= 8.001 F1=-487.258 F2= 235.341 F3= 67.839 φ1=-0.00764 φ2=-0.00782 φ1=-0.00365 φ2=-0.00375 φ3=-0.00860 。Example 4 NA = 0.48 exposure area 20 × 20 mm E = 1478.10 d0 = 100.000 r1 = 137.2562 d1 = 25.000 n248,1 = 1.5083 (SiO2 ) r2 = 147.6178 d2 = 15.558 r3 = 444.0530 d3 = 25.000 n248,2 = 1.5083 (SiO2 ) r4 = 137.1186 d4 = 47.265 r5 = -120.4597 d5 = 25.000 n248,3 = 1.5083 (SiO2 ) r6 = -140.3130 d6 = 7.696 r7 = 467.8743 d7 = 32.991 n248,4 = 1.5083 (SiO2 ) r8 = -359.6274 d8 = 1.000 r9 = 557.3871 d9 = 30.000 n248,5 = 1.5083 (SiO2 ) r10 = -515.5693 d10 = 1.000 r11 = 123.7905 d11 = 41.484 n248,6 = 1.5083 (SiO2 ) r12 = 643.8987 d12 = 1.000 r13 = 171.4587 d13 = 25.016 n248,7 = 1.5083 (SiO2 ). r14 = 66.5180 d14 = 41.583 r15 = -152.4686 d15 = 20.000 n248,8 = 1.5083 (SiO2 ) r16 = -126.9177 d16 = 23.751 r17 = ∞ d17 = 15.000 n248,9 = 1.5083 (SiO2 ) r18 = 92.5666 d18 = 24.103 r19 = -65.0156 d19 = 15.00 0 n248,10 = 1.5083 (SiO2 ) r20 = 260.3267 d20 = 18.623 r21 = -272.8242 d21 = 47.402 n248,11 = 1.5083 (SiO2 ) r22 = -150.2897 d22 = 1.000 r23 = 700.4601 d23 = 32.885 n248,12 = 1.5083 (SiO2 ) r24 = -147.3217 d24 = 1.000 r25 = 198.8265 d25 = 23.375 n248,13 = 1.5083 (SiO2 ) r26 = ∞ d26 = 1.000 r27 = 276.9653 d27 = 22.000 n248,14 = 1.5083 (SiO2 ) r28 = 139.4304 d28 = 30.352 r29 = -135.7057 d29 = 22.000 n248,15 = 1.5083 (SiO2 ) r30 = 425.1163 d30 = 16.299 r31 = -488.1142 d31 = 23.000 n248,16 = 1.5083 (SiO2 ) r32 = -221.2312 d32 = 1.000 r33 = 793.9923 d33 = 29.322 n248,17 = 1.5083 (SiO2 ) r34 = -178.4943 d34 = 1.000 r35 = 230.7597 d35 = 24.399 n248,18 = 1.5083 (SiO2 ) r36 = -1400.000 d36 = 1.000 r37 = 143.8285 d37 = 22.630 n248,19 = 1.5083 ( SiO2 ) r38 = 346.4978 d38 = 1.000 r39 = 92.4396 d39 = 46.822 n248,20 = 1.5083 (SiO2 ) r40 = 59.0889 d40 = 17.769 r41 = ∞ d41 = 48.415 n248,21 = 1.5083 (SiO2 ) r42 = 100.6209 d42 = 1.000 r43 = 59.7465 d43 = 25.260 n248,22 = 1.5083 (SiO2 ) r44 = 92.1960 d44 = 1.000 r45 = 57.9881 d45 = 15.000 n248,23 = 1.5083 (SiO2 ) r46 = ∞ d46 = 8.001 F1 =- 487.258 F2 = 235.341 F3 = 67.839 φ1 = -0.00764 φ2 = -0.00782 φ1 = -0.00365 φ2 = -0.00375 φ3 = -0.00860.

【0036】実施例5 NA=0.47 露光領域 25×25 mm E= ∞ d0=100.000 r1= 158.8170 d1=19.241 n248,1=1.5083 (SiO2) r2= 239.7566 d2=25.114 r3= -520.0778 d3=15.000 n248,2=1.5083 (SiO2) r4= 173.3822 d4=55.581 r5= -134.3573 d5=12.500 n248,3=1.5083 (SiO2) r6= -158.9506 d6= 0.833 r7=11353.9937 d7=30.783 n248,4=1.5083 (SiO2) r8= -260.7941 d8= 0.833 r9= 236.4466 d9=41.454 n248,5=1.5083 (SiO2) r10= -965.9305 d10= 0.833 r11= 197.3572 d11=33.902 n248,6=1.5083 (SiO2) r12= 2305.5231 d12= 0.833 r13= 155.2685 d13=39.333 n248,7=1.5083 (SiO2) r14= 74.2733 d14=33.505 r15= -833.0055 d15=16.231 n248,8=1.5083 (SiO2) r16= -173.1079 d16=15.107 r17= -132.3474 d17=12.500 n248,9=1.5083 (SiO2) r18= 107.5686 d18=39.258 r19= -71.6995 d19=12.500 n248,10=1.5083 (SiO2) r20= 231.6966 d20=17.492 r21= -526.9275 d21=36.447 n248,11=1.5083 (SiO2) r22= -188.3114 d22= 0.833 r23= 866.0416 d23=36.994 n248,12=1.5083 (SiO2) r24= -156.0137 d24= 0.833 r25= 274.4281 d25=33.991 n248,13=1.5083 (SiO2) r26= -342.0398 d26= 0.833 r27= 228.3407 d27=25.104 n248,14=1.5083 (SiO2) r28= 113.0798 d28=44.582 r29= -145.4000 d29=12.500 n248,15=1.5083 (SiO2) r30= 785.8063 d30=14.521 r31= -572.7342 d31=18.677 n248,16=1.5083 (SiO2) r32= -210.7349 d32= 0.833 r33= 615.9888 d33=33.977 n248,17=1.5083 (SiO2) r34= -184.3613 d34= 0.833 r35= 243.9015 d35=21.294 n248,18=1.5083 (SiO2) r36= ∞ d36= 0.833 r37= 145.8836 d37=20.377 n248,19=1.5083 (SiO2) r38= 349.6684 d38= 0.833 r39= 99.0981 d39=56.543 n248,20=1.5083 (SiO2) r40= 55.1839 d40=21.646 r41= -279.6333 d41=12.500 n248,21=1.5083 (SiO2) r42= -140.8099 d42= 8.770 r43= -187.9892 d43=18.628 n248,22=1.5083 (SiO2) r44= 89.6294 d44= 0.833 r45= 57.9895 d45=30.250 n248,23=1.5083 (SiO2) r46= 155.8950 d46= 0.833 r47= 57.2342 d47=14.113 n248,24=1.5083 (SiO2) r48= ∞ d48= 8.750 F1=-343.449 F2= 217.296 F3= 70.923 φ1=-0.00685 φ2=-0.00709 φ1=-0.00450 φ2=-0.00350 φ3=-0.00921 。Example 5 NA = 0.47 exposure area 25 × 25 mm E = ∞ d0 = 100.000 r1 = 158.8170 d1 = 19.241 n248,1 = 1.5083 (SiO2 ) r2 = 239.7566 d2 = 25.114 r3 = -520.0778 d3 = 15.000 n248,2 = 1.5083 (SiO2 ) r4 = 173.3822 d4 = 55.581 r5 = -134.3573 d5 = 12.500 n248,3 = 1.5083 (SiO2 ) r6 = -158.9506 d6 = 0.833 r7 = 11353.9937 d7 = 30.783 n248,4 = 1.5083 (SiO2 ) r8 = -260.7941 d8 = 0.833 r9 = 236.4466 d9 = 41.454 n248,5 = 1.5083 (SiO2 ) r10 = -965.9305 d10 = 0.833 r11 = 197.3572 d11 = 33.902 n248,6 = 1.5083 (SiO2 ) r12 = 2305.5231 d12 = 0.833 r13 = 155.2685 d13 = 39.333 n248,7 = 1.5083 (SiO2 ) r14 = 74.2733 d14 = 33.505 r15 = -833.0055 d15 = 16.231 n248,8 = 1.5083 (SiO2 ) r16 = -173.1079 d16 = 15.107 r17 = -132.3474 d17 = 12.500 n248,9 = 1.5083 (SiO2 ) r18 = 107.5686 d18 = 39.258 r19 = -71.6995 d19 = 12.500 n248,10 = 1.5083 (SiO2 ) r20 = 231.6966 d20 = 17.492 r21 = -526.9275 d21 = 36.447 n248,11 = 1.5083 (SiO2 ) r22 = -188.3114 d22 = 0.833 r23 = 866.0416 d23 = 36.994 n248,12 = 1.5083 (SiO2 ) r24 = -156.0137 d24 = 0.833 r25 = 274.4281 d25 = 33.991 n248,13 = 1.5083 (SiO2 ) r26 = -342.0398 d26 = 0.833 r27 = 228.3407 d27 = 25.104 n248,14 = 1.5083 (SiO2 ) r28 = 113.0798 d28 = 44.582 r29 = -145.4000 d29 = 12.500 n248,15 = 1.5083 (SiO2 ) r30 = 785.8063 d30 = 14.521 r31 = -572.7342 d31 = 18.677 n248,16 = 1.5083 (SiO2 ) r32 = -210.7349 d32 = 0.833 r33 = 615.9888 d33 = 33.977 n248,17 = 1.5083 (SiO2 ). r34 = -184.3613 d34 = 0.833 r35 = 243.9015 d35 = 21.294 n248,18 = 1.5083 (SiO2 ) r36 = ∞ d36 = 0.833 r37 = 145.8836 d37 = 20.377 n248,19 = 1.5083 ( SiO2 ) r38 = 349.6684 d38 = 0.833 r39 = 99.0981 d39 = 56.543 n248,20 = 1.5083 (SiO2 ) r40 = 55.1839 d40 = 21.646 r41 = -279.6333 d41 = 12.500 n248,21 = 1.5083 (SiO2 ) r42 = -140.8099 d42 = 8.770 r43 = -187.9892 d43 = 18.628 n248,22 = 1.5083 (SiO2 ) r44 = 89.6294 d44 = 0.833 r45 = 57.9895 d45 = 30.250 n248,23 = 1.5083 (SiO2 ) r46 = 155.8950 d46 = 0.833 r47 = 57.2342 d47 = 14.113 n248,24 = 1.5083 (SiO2 ) r48 = ∞ d48 = 8.750 F1 = -343.449 F2 = 217.296 F3 = 70.923 φ1 = -0.00685 φ2 = -0.00709 φ1 = -0.00450 φ2 = -0.00350 φ3 = -0.00921.

【0037】実施例6 NA=0.48 露光領域 25×25 mm E=1000 d0=100.000 r1= 122.2218 d1=42.000 n248,1=1.5083 (SiO2) r2= 131.8406 d2=26.527 r3= -456.7383 d3=15.000 n248,2=1.5083 (SiO2) r4= 146.7156 d4=58.920 r5= -109.3340 d5=15.000 n248,3=1.5083 (SiO2) r6= -124.4118 d6=16.650 r7=-1603.5903 d7=30.631 n248,4=1.5083 (SiO2) r8= -230.6638 d8= 1.000 r9= 306.7289 d9=40.340 n248,5=1.5083 (SiO2) r10= -589.4298 d10= 1.000 r11= 344.7579 d11=27.251 n248,6=1.5083 (SiO2) r12=-7346.6854 d12= 1.000 r13= 208.1925 d13=26.911 n248,7=1.5083 (SiO2) r14= 663.0676 d14= 1.000 r15= 99.4529 d15=15.000 n248,8=1.5083 (SiO2) r16= 71.1583 d16=43.911 r17= -572.6484 d17=15.000 n248,9=1.5083 (SiO2) r18= -241.4067 d18= 9.511 r19= -515.5571 d19=15.000 n248,10=1.5083 (SiO2) r20= 125.7783 d20= 9.188 r21= 594.4223 d21=15.000 n248,11=1.5083 (SiO2) r22= 136.9477 d22=24.889 r23= -73.8735 d23=15.000 n248,12=1.5083 (SiO2) r24= 453.6327 d24=13.350 r25= -173.8233 d25=20.397 n248,13=1.5083 (SiO2) r26= -131.9886 d26= 1.000 r27= 245.6658 d27=27.993 n248,14=1.5083 (SiO2) r28= -324.3616 d28= 3.841 r29=-1493.8830 d29=15.000 n248,15=1.5083 (SiO2) r30= 511.5606 d30= 9.729 r31= -931.9050 d31=15.000 n248,16=1.5083 (SiO2) r32= 259.1839 d32=14.889 r33=-2876.7613 d33=24.510 n248,17=1.5083 (SiO2) r34=
-225.4203 d34= 1.000 r35= 396.8058 d35=40.820 n248,18=1.5083 (SiO2) r36= -211.6756 d36= 1.000 r37= 160.4017 d37=37.780 n248,19=1.5083 (SiO2) r38= 1933.4335 d38= 1.000 r39= 157.5349 d39=48.675 n248,20=1.5083 (SiO2) r40= 289.4471 d40=49.305 r41= 603.3704 d41=50.000 n248,21=1.5083 (SiO2) r42=-4086.5298 d42= 6.206 r43= -128.0736 d43=15.000 n248,22=1.5080 (SiO2) r44= 80.1338 d44= 1.000 r45= 54.7881 d45=16.776 n248,23=1.5083 (SiO2) r46= 181.4529 d46= 1.000 r47= 85.3329 d47=10.000 n248,24=1.5083 (SiO2) r48= ∞ d48= 9.000 F1=-287.448 F2= 174.217 F3= 69.301 φ1=-0.00714 φ2=-0.00688 φ3=-0.00176 。
Example 6 NA = 0.48 exposure area 25 × 25 mm E = 1000 d0 = 100.000 r1 = 122.2218 d1 = 42.000 n248,1 = 1.5083 (SiO2 ) r2 = 131.8406 d2 = 26.527 r3 = -456.7383 d3 = 15.000 n248,2 = 1.5083 (SiO2 ) r4 = 146.7156 d4 = 58.920 r5 = -109.3340 d5 = 15.000 n248,3 = 1.5083 (SiO2 ) r6 = -124.4118 d6 = 16.650 r7 = -1603.5903 d7 = 30.631 n248,4 = 1.5083 (SiO2 ) r8 = -230.6638 d8 = 1.000 r9 = 306.7289 d9 = 40.340 n248,5 = 1.5083 (SiO2 ) r10 = -589.4298 d10 = 1.000 r11 = 344.7579 d11 = 27.251 n248,6 = 1.5083 (SiO2 ) r12 = -7346.6854 d12 = 1.000 r13 = 208.1925 d13 = 26.911 n248,7 = 1.5083 ( SiO2 ) r14 = 663.0676 d14 = 1.000 r15 = 99.4529 d15 = 15.000 n248,8 = 1.5083 (SiO2 ) r16 = 71.1583 d16 = 43.911 r17 = -572.6484 d17 = 15.000 n248,9 = 1.5083 (SiO2 ) r18 = -241.4067 d18 = 9.511 r19 = -515.5571 d19 = 1 5.000 n248,10 = 1.5083 (SiO2 ) r20 = 125.7783 d20 = 9.188 r21 = 594.4223 d21 = 15.000 n248,11 = 1.5083 (SiO2 ) r22 = 136.9477 d22 = 24.889 r23 = -73.8735 d23 = 15.000 n248,12 = 1.5083 (SiO2 ) r24 = 453.6327 d24 = 13.350 r25 = -173.8233 d25 = 20.397 n248,13 = 1.5083 (SiO2 ) r26 = -131.9886 d26 = 1.000 r27 = 245.6658 d27 = 27.993 n248,14 = 1.5083 (SiO2 ) r28 = -324.3616 d28 = 3.841 r29 = -1493.8830 d29 = 15.000 n248,15 = 1.5083 (SiO2 ) r30 = 511.5606 d30 = 9.729 r31 = -931.9050 d31 = 15.000 n248,16 = 1.5083 (SiO2 ) r32 = 259.1839 d32 = 14.889 r33 = -2876.7613 d33 = 24.510 n248,17 = 1.5083 (SiO2 ) r34 =
-225.4203 d34 = 1.000 r35 = 396.8058 d35 = 40.820 n248,18 = 1.5083 (SiO2 ) r36 = -211.6756 d36 = 1.000 r37 = 160.4017 d37 = 37.780 n248,19 = 1.5083 (SiO2 ) r38 = 1933.4335 d38 = 1.000 r39 = 157.5349 d39 = 48.675 n248,20 = 1.5083 (SiO2 ) r40 = 289.4471 d40 = 49.305 r41 = 603.3704 d41 = 50.000 n248,21 = 1.5083 ( SiO2 ) r42 = -4086.5298 d42 = 6.206 r43 = -128.0736 d43 = 15.000 n248,22 = 1.5080 (SiO2 ) r44 = 80.1338 d44 = 1.000 r45 = 54.7881 d45 = 16.776 n248, 23 = 1.5083 (SiO2 ) r46 = 181.4529 d46 = 1.000 r47 = 85.3329 d47 = 10.000 n248,24 = 1.5083 (SiO2 ) r48 = ∞ d48 = 9.000 F1 = -287.448 F2 = 174.217 F3 = 69.301 φ1 = -0.00714 φ2 = -0.00688 φ3 = -0.00176.

【0038】実施例7 NA=0.48 露光領域 25×25 mm E=1000 d0=100.000 r1= 123.3658 d1=18.768 n248,1=1.5083 (SiO2) r2= 123.8122 d2=31.218 r3= -498.8768 d3=15.000 n248,2=1.5083 (SiO2) r4= 172.6737 d4=49.975 r5= -110.7247 d5=15.000 n248,3=1.5083 (SiO2) r6= -129.4457 d6= 1.000 r7=-3947.7165 d7=32.190 n248,4=1.5083 (SiO2) r8= -232.1087 d8= 1.000 r9= 389.1147 d9=39.911 n248,5=1.5083 (SiO2) r10= -430.7653 d10= 1.000 r11= 192.5059 d11=44.254 n248,6=1.5083 (SiO2) r12=-1743.8050 d12= 1.000 r13= 132.0319 d13=34.793 n248,7=1.5083 (SiO2) r14= 74.3519 d14=42.281 r15= -332.3886 d15=15.827 n248,8=1.5083 (SiO2) r16= -167.3614 d16= 1.000 r17= -241.8117 d17=43.457 n248,9=1.5083 (SiO2) r18= 171.1876 d18= 7.936 r19= 1020.6841 d19=15.000 n248,10=1.5083 (SiO2) r20= 174.9693 d20=28.528 r21= -71.1009 d21=35.689 n248,11=1.5083 (SiO2) r22= 887.0010 d22=12.714 r23= -285.9543 d23=25.520 n248,12=1.5083 (SiO2) r24= -167.7632 d24= 1.113 r25=-4840.1342 d25=32.591 n248,13=1.5083 (SiO2) r26= -178.2112 d26=52.896 r27=80941.2159 d27=33.607 n248,14=1.5083 (SiO2) r28= -229.9629 d28= 1.000 r29= 546.6617 d29=25.562 n248,15=1.5083 (SiO2) r30= -718.3377 d30= 1.000 r31= 190.6956 d31=28.558 n248,16=1.5083 (SiO2) r32= 945.1528 d32= 1.000 r33= 165.1537 d33=19.762 n248,17=1.5083 (SiO2) r34= 272.3522 d34= 1.000 r35= 108.8985 d35=36.791 n248,18=1.5083 (SiO2) r36= 82.9680 d36=18.432 r37= 650.5592 d37=25.135 n248,19=1.5083 (SiO2) r38= -325.9244 d38= 1.986 r39= -275.1850 d39=15.000 n248,20=1.5083 (SiO2) r40= 68.8076 d40=33.857 r41= 61.0827 d41=26.023 n248,21=1.5083 (SiO2) r42= 140.8818 d42= 1.000 r43= 76.1085 d43=10.000 n248,22=1.5083 (SiO2) r44= -210.8257 d44= 1.624 r45= -183.0680 d45=10.000 n248,23=1.5083 (SiO2) r46= ∞ d46= 9.001 F1=-254.075 F2= 141.816 F3= 49.773 φ1=-0.00684 φ2=-0.00715 φ3=-0.00613 。Example 7 NA = 0.48 exposure area 25 × 25 mm E = 1000 d0 = 100.000 r1 = 123.3658 d1 = 18.768 n248,1 = 1.5083 (SiO2 ) r2 = 123.8122 d2 = 31.218 r3 = -498.8768 d3 = 15.000 n248,2 = 1.5083 (SiO2 ) r4 = 172.6737 d4 = 49.975 r5 = -110.7247 d5 = 15.000 n248,3 = 1.5083 (SiO2 ) r6 = -129.4457 d6 = 1.000 r7 = -3947.7165 d7 = 32.190 n248,4 = 1.5083 (SiO2 ) r8 = -232.1087 d8 = 1.000 r9 = 389.1147 d9 = 39.911 n248,5 = 1.5083 (SiO2 ) r10 = -430.7653 d10 = 1.000 r11 = 192.5059 d11 = 44.254 n248,6 = 1.5083 (SiO2 ) r12 = -1743.8050 d12 = 1.000 r13 = 132.0319 d13 = 34.793 n248,7 = 1.5083 ( SiO2 ) r14 = 74.3519 d14 = 42.281 r15 = -332.3886 d15 = 15.827 n248,8 = 1.5083 (SiO2 ) r16 = -167.3614 d16 = 1.000 r17 = -241.8117 d17 = 43.457 n248 , 9 = 1.5083 (SiO2 ) r18 = 171.1876 d18 = 7.936 r19 = 1020.6841 d19 = 15.000 n248,10 = 1.5083 (SiO2 ) r20 = 174.9693 d20 = 28.528 r21 = -71.1009 d21 = 35.689 n248,11 = 1.5083 (SiO2 ) r22 = 887.0010 d22 = 12.714 r23 = -285.9543 d23 = 25.520 n248,12 = 1.5083 (SiO2 ) r24 = -167.7632 d24 = 1.113 r25 = -4840.1342 d25 = 32.591 n248,13 = 1.5083 (SiO2 ) r26 = -178.2112 d26 = 52.896 r27 = 80941.2159 d27 = 33.607 n248,14 = 1.5083 (SiO2 ) r28 = -229.9629 d28 = 1.000 r29 = 546.6617 d29 = 25.562 n248,15 = 1.5083 (SiO2 ) r30 = -718.3377 d30 = 1.000 r31 = 190.6956 d31 = 28.558 n248,16 = 1.5083 (SiO2 ) r32 = 945.1528 d32 = 1.000 r33 = 165.1537 d33 = 19.762 n248,17 = 1.5083 (SiO2 ) r34 = 272.3522 d34 = 1.000 r35 = 108.8985 d35 = 36.791 n248,18 = 1.5083 (SiO2 ) r36 = 82.9680 d36 = 18.432 r37 = 650.5592 d37 = 25.135 n248,19 = 1.5083 (SiO 2) r 38 = -325.9244 d 38 = 1.986 r 39 = -275.185039 = 15.000 n 248,20 = 1.5083 ( SiO 2) r 40 = 68.8076 d 40 = 33.857 r 41 = 61.0827 d 41 = 26.023 n 248,21 = 1.5083 (SiO 2) r 42 = 140.8818 d 42 = 1.000 r 43 = 76.1085 d43 = 10.000 n248,22 = 1.5083 (SiO2 ) r44 = -210.8257 d44 = 1.624 r45 = -183.0680 d45 = 10.000 n248,23 = 1.5083 (SiO2 ) r46 = ∞ d46 = 9.001 F1 = -254.075 F2 = 141.816 F3 = 49.773 φ1 = -0.00684 φ2 = -0.00715 φ3 = -0.00613.

【0039】実施例8 NA=0.52 露光領域 25×25 mm E=874.0 d0=100.000 r1= 111.7880 d1=16.214 n248,1=1.5083 (SiO2) r2= 123.4881 d2=35.706 r3= -348.6845 d3=15.000 n248,2=1.5083 (SiO2) r4= 164.8758 d4=56.185 r5= -104.1790 d5=19.988 n248,3=1.5083 (SiO2) r6= -127.9442 d6= 1.000 r7= -988.3088 d7=35.450 n248,4=1.5083 (SiO2) r8= -202.1689 d8= 1.000 r9= 396.2774 d9=42.997 n248,5=1.5083 (SiO2) r10= -455.9975 d10= 1.000 r11= 317.7947 d11=33.108 n248,6=1.5083 (SiO2) r12=-2661.3524 d12= 1.000 r13= 190.6737 d13=30.320 n248,7=1.5083 (SiO2) r14= 565.1670 d14= 1.000 r15= 96.2734 d15=15.000 n248,8=1.5083 (SiO2) r16= 68.6751 d16=43.994 r17=-9282.0807 d17=16.617 n248,9=1.5083 (SiO2) r18= -271.6829 d18= 1.000 r19= -406.2942 d19=15.000 n248,10=1.5083 (SiO2) r20= 118.7133 d20=11.932 r21= 1567.6905 d21=15.000 n248,11=1.5083 (SiO2) r22= 134.3926 d22=27.019 r23= -74.6080 d23=15.000 n248,12=1.5083 (SiO2) r24= 503.2389 d24=13.695 r25= -189.2346 d25=16.706 n248,13=1.5083 (SiO2) r26= -130.1851 d26= 1.000 r27= 247.8524 d27=30.749 n248,14=1.5083 (SiO2) r28= -271.8151 d28= 1.000 r29= -788.0965 d29=15.000 n248,15=1.5083 (SiO2) r30= 454.5327 d30=10.242 r31=-1211.5252 d31=15.000 n248,16=1.5083 (SiO2) r32= 257.7440 d32=15.420 r33=-4049.8333 d33=25.467 n248,17=1.5083 (SiO2) r34= -229.8300 d34= 1.000 r35= 391.4166 d35=44.040 n248,18=1.5083 (SiO2) r36= -208.8223 d36= 1.000 r37= 159.7557 d37=40.383 n248,19=1.5083 (SiO2) r38= 1991.5753 d38= 1.000 r39= 147.8854 d39=49.645 n248,20=1.5083 (SiO2) r40= 182.5940 d40=50.209 r41= 169.5532 d41=38.119 n248,21=1.5083 (SiO2) r42= 616.6126 d42= 7.377 r43= -144.3126 d43=15.000 n248,22=1.5083 (SiO2) r44= 73.4065 d44= 1.000 r45= 53.1077 d45=16.417 n248,23=1.5083 (SiO2) r46= 138.8285 d46= 1.000 r47= 81.6751 d47=10.000 n248,24=1.5083 (SiO2) r48= ∞ d48= 9.001 F1=-240.598 F2= 167.965 F3= 66.235 φ1=-0.00740 φ2=-0.00681 φ3=-0.00278 。Example 8 NA = 0.52 exposure area 25 × 25 mm E = 874.0 d0 = 100.000 r1 = 111.7880 d1 = 16.214 n248,1 = 1.5083 (SiO2 ) r2 = 123.4881 d2 = 35.706 r3 = -348.6845 d3 = 15.000 n248,2 = 1.5083 (SiO2 ) r4 = 164.8758 d4 = 56.185 r5 = -104.1790 d5 = 19.988 n248,3 = 1.5083 (SiO2 ) r6 = -127.9442 d6 = 1.000 r7 = -988.3088 d7 = 35.450 n248,4 = 1.5083 (SiO2 ) r8 = -202.1689 d8 = 1.000 r9 = 396.2774 d9 = 42.997 n248,5 = 1.5083 (SiO2 ) r10 = -455.9975 d10 = 1.000 r11 = 317.7947 d11 = 33.108 n248,6 = 1.5083 (SiO2 ) r12 = -2661.3524 d12 = 1.000 r13 = 190.6737 d13 = 30.320 n248,7 = 1.5083 ( SiO2 ) r14 = 565.1670 d14 = 1.000 r15 = 96.2734 d15 = 15.000 n248,8 = 1.5083 (SiO2 ) r16 = 68.6751 d16 = 43.994 r17 = -9282.0807 d17 = 16.617 n248,9 = 1.5083 (SiO2 ) r18 = -271.6829 d18 = 1.000 r19 = -406.2942 d19 = 15.000 n248,10 = 1.5083 (SiO2 ) r20 = 118.7133 d20 = 11.932 r21 = 1567.6905 d21 = 15.000 n248,11 = 1.5083 (SiO2 ) r22 = 134.3926 d22 = 27.019 r23 = -74.6080 d23 = 15.000 n248,12 = 1.5083 (SiO2 ) r24 = 503.2389 d24 = 13.695 r25 = -189.2346 d25 = 16.706 n248,13 = 1.5083 (SiO2 ) r26 = -130.1851 d26 = 1.000 r27 = 247.8524 d27 = 30.749 n248,14 = 1.5083 (SiO2 ) r28 = -271.8151 d28 = 1.000 r29 = -788.0965 d29 = 15.000 n248,15 = 1.5083 (SiO2 ) r30 = 454.5327 d30 = 10.242 r31 = -1211.5252 d31 = 15.000 n248,16 = 1.5083 (SiO2 ) r32 = 257.7440 d32 = 15.420 r33 = -4049.8333 d33 = 25.467 n248,17 = 1.5083 (SiO2 ). r34 = -229.8300 d34 = 1.000 r35 = 391.4166 d35 = 44.040 n248,18 = 1.5083 (SiO2 ) r36 = -208.8223 d36 = 1.000 r37 = 159.7557 d37 = 40.383 n248,19 = 1.5083 (SiO2 ) r38 = 1991.5753 d38 = 1.000 r39 = 147.885 4 d39 = 49.645 n248,20 = 1.5083 (SiO2 ) r40 = 182.5940 d40 = 50.209 r41 = 169.5532 d41 = 38.119 n248,21 = 1.5083 (SiO2 ) r42 = 616.6126 d42 = 7.377 r43 = -144.3126 d43 = 15.000 n248,22 = 1.5083 (SiO2 ) r44 = 73.4065 d44 = 1.000 r45 = 53.1077 d45 = 16.417 n248,23 = 1.5083 (SiO2 ) r46 = 138.8285 d46 = 1.000 r47 = 81.6751 d47 = 10.000 n248,24 = 1.5083 (SiO2 ) r48 = ∞ d48 = 9.001 F1 = -240.598 F2 = 167.965 F3 = 66.235 φ1 = -0.00740 φ2 =- 0.00681 φ3 = -0.00278.

【0040】以上の実施例1〜8の球面収差、非点収
差、歪曲収差、コマ収差を表す収差図をそれぞれ図9か
ら図16に示す。
9 to 16 are aberration diagrams showing the spherical aberration, astigmatism, distortion and coma of Examples 1 to 8 described above.

【0041】[0041]

【発明の効果】以上説明したように、本発明の縮小投影
レンズによると、入射瞳位置を物体面から比較的遠くに
位置させ、像歪みが小さく、短波長光を光源とする高解
像力で焦点深度の広い縮小投影レンズを得ることができ
る。
As described above, according to the reduction projection lens of the present invention, the position of the entrance pupil is located relatively far from the object plane, the image distortion is small, and the focal point is high resolution using short wavelength light as the light source. A reduction projection lens with a wide depth can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の縮小投影レンズの断面図で
ある。
FIG. 1 is a sectional view of a reduction projection lens according to a first embodiment of the present invention.

【図2】本発明の実施例2の縮小投影レンズの断面図で
ある。
FIG. 2 is a sectional view of a reduction projection lens according to a second exemplary embodiment of the present invention.

【図3】本発明の実施例3の縮小投影レンズの断面図で
ある。
FIG. 3 is a sectional view of a reduction projection lens according to a third exemplary embodiment of the present invention.

【図4】本発明の実施例4の縮小投影レンズの断面図で
ある。
FIG. 4 is a sectional view of a reduction projection lens according to a fourth exemplary embodiment of the present invention.

【図5】本発明の実施例5の縮小投影レンズの断面図で
ある。
FIG. 5 is a sectional view of a reduction projection lens according to a fifth exemplary embodiment of the present invention.

【図6】本発明の実施例6の縮小投影レンズの断面図で
ある。
FIG. 6 is a sectional view of a reduction projection lens according to embodiment 6 of the present invention.

【図7】本発明の実施例7の縮小投影レンズの断面図で
ある。
FIG. 7 is a sectional view of a reduction projection lens according to a seventh embodiment of the present invention.

【図8】本発明の実施例8の縮小投影レンズの断面図で
ある。
FIG. 8 is a sectional view of a reduction projection lens according to Example 8 of the present invention.

【図9】実施例1の球面収差、非点収差、歪曲収差、コ
マ収差を表す収差図である。
FIG. 9 is an aberration diagram illustrating spherical aberration, astigmatism, distortion, and coma of Example 1.

【図10】実施例2の図9の同様な収差図である。FIG. 10 is an aberration diagram similar to FIG. 9 of Example 2.

【図11】実施例3の図9の同様な収差図である。FIG. 11 is a similar aberration diagram of FIG. 9 of Example 3;

【図12】実施例4の図9の同様な収差図である。FIG. 12 is a similar aberration diagram of FIG. 9 of Example 4.

【図13】実施例5の図9の同様な収差図である。FIG. 13 is a diagram of aberrations similar to FIG. 9 of Example 5;

【図14】実施例6の図9の同様な収差図である。FIG. 14 is an aberration diagram similar to that of FIG. 9 of Example 6;

【図15】実施例7の図9の同様な収差図である。FIG. 15 is a similar aberration diagram of FIG. 9 of Example 7.

【図16】実施例8の図9の同様な収差図である。FIG. 16 is a similar aberration diagram of FIG. 9 of Example 8.

【符号の説明】[Explanation of symbols]

I …第1レンズ群 II …第2レンズ群 III …第3レンズ群 I ... 1st lens group II ... 2nd lens group III ... 3rd lens group

Claims (3)

Translated fromJapanese
【特許請求の範囲】[Claims]【請求項1】 物体側より順に、互いに凹面を向かい合
わせた一対のメニスカスレンズを含んでなる第1レンズ
群、正の屈折力を持ち少なくとも2枚のレンズにより構
成された第2レンズ群、正の屈折力を持った第3レンズ
群より構成され、レンズ系の第1面より測った入射瞳位
置をE、物像間距離をL、第1レンズ群の焦点距離をF
1とするとき、 0.5<|E/L| 0.2<|F1/L| なる条件を満足することを特徴とする縮小投影レンズ。
1. A first lens group including a pair of meniscus lenses having concave surfaces facing each other in order from the object side, a second lens group having at least two lenses having a positive refractive power, and a positive lens group. E is the entrance pupil position measured from the first surface of the lens system, L is the object-image distance, and F is the focal length of the first lens group.
When the1, 0.5 <| E / L | 0.2 <| F 1 / L | becomes reduction projection lens which satisfies the condition.
【請求項2】 第2レンズ群の焦点距離をF2とすると
き、 0.1<|F2/L|<0.3 なる条件を満足することを特徴とする請求項1記載の縮
小投影レンズ。
2. The reduced projection according to claim 1, wherein when the focal length of the second lens unit is F2 , the condition 0.1 <| F2 /L|<0.3 is satisfied. lens.
【請求項3】 第3レンズ群の焦点距離をF3とすると
き、 0.04<|F3/L|<0.1 なる条件を満足することを特徴とする請求項1又は2記
載の記載の縮小投影レンズ。
3. When the focal length of the third lens group is F3 , the condition 0.04 <| F3 /L|<0.1 is satisfied. The reduction projection lens described.
JP02283792A1991-10-241992-02-07 Reduction projection lensExpired - LifetimeJP3298131B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP02283792AJP3298131B2 (en)1991-10-241992-02-07 Reduction projection lens

Applications Claiming Priority (3)

Application NumberPriority DateFiling DateTitle
JP277613911991-10-24
JP3-2776131991-10-24
JP02283792AJP3298131B2 (en)1991-10-241992-02-07 Reduction projection lens

Publications (2)

Publication NumberPublication Date
JPH05173065Atrue JPH05173065A (en)1993-07-13
JP3298131B2 JP3298131B2 (en)2002-07-02

Family

ID=26360118

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP02283792AExpired - LifetimeJP3298131B2 (en)1991-10-241992-02-07 Reduction projection lens

Country Status (1)

CountryLink
JP (1)JP3298131B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
EP0712019A2 (en)1994-11-101996-05-15Nikon CorporationProjection optical system and projection exposure apparatus
EP0717299A1 (en)*1994-12-141996-06-19Nikon CorporationExposure apparatus
EP0721150A2 (en)1995-01-061996-07-10Nikon CorporationProjection optical system and exposure apparatus using the same
EP0732605A2 (en)1995-03-151996-09-18Nikon CorporationExposure apparatus
EP0770895A2 (en)1995-10-121997-05-02Nikon CorporationProjection optical system and exposure apparatus provided therewith
US5781278A (en)*1996-04-251998-07-14Nikon CorporationProjection optical system and exposure apparatus with the same
US5808814A (en)*1996-07-181998-09-15Nikon CorporationShort wavelength projection optical system
US5831776A (en)*1993-11-151998-11-03Nikon CorporationProjection optical system and projection exposure apparatus
US5852490A (en)*1996-09-301998-12-22Nikon CorporationProjection exposure method and apparatus
US5903400A (en)*1996-08-081999-05-11Nikon CorporationProjection-optical system for use in a projection-exposure apparatus
US5930049A (en)*1996-10-011999-07-27Nikon CorporationProjection optical system and method of using such system for manufacturing devices
US5943172A (en)*1993-11-151999-08-24Nikon CorporationProjection optical system and projection exposure apparatus
US6008884A (en)*1997-04-251999-12-28Nikon CorporationProjection lens system and apparatus
US6259508B1 (en)1998-01-222001-07-10Nikon CorporationProjection optical system and exposure apparatus and method
US6262793B1 (en)1993-12-222001-07-17Nikon CorporationMethod of manufacturing and using correction member to correct aberration in projection exposure apparatus
JP2001201682A (en)*1999-12-212001-07-27Carl Zeiss:Fa Optical projection system
US6268903B1 (en)1995-01-252001-07-31Nikon CorporationMethod of adjusting projection optical apparatus
US6333781B1 (en)1997-07-242001-12-25Nikon CorporationProjection optical system and exposure apparatus and method
US6377338B1 (en)1998-08-182002-04-23Nikon CorporationExposure apparatus and method
US6556353B2 (en)2001-02-232003-04-29Nikon CorporationProjection optical system, projection exposure apparatus, and projection exposure method
USRE38421E1 (en)1994-04-282004-02-10Nikon CorporationExposure apparatus having catadioptric projection optical system
USRE38438E1 (en)1994-08-232004-02-24Nikon CorporationCatadioptric reduction projection optical system and exposure apparatus having the same
US6700645B1 (en)1998-01-222004-03-02Nikon CorporationProjection optical system and exposure apparatus and method
USRE38465E1 (en)1994-12-142004-03-16Nikon CorporationExposure apparatus
US6862078B2 (en)2001-02-212005-03-01Nikon CorporationProjection optical system and exposure apparatus with the same
US7079314B1 (en)1999-07-132006-07-18Nikon CorporationCatadioptric optical system and exposure apparatus equipped with the same
USRE39296E1 (en)1993-03-122006-09-19Nikon CorporationCatadioptric projection systems
CN113835209A (en)*2021-11-192021-12-24中导光电设备股份有限公司Large-view-field DUV objective lens

Cited By (46)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
USRE39296E1 (en)1993-03-122006-09-19Nikon CorporationCatadioptric projection systems
US5831776A (en)*1993-11-151998-11-03Nikon CorporationProjection optical system and projection exposure apparatus
US5943172A (en)*1993-11-151999-08-24Nikon CorporationProjection optical system and projection exposure apparatus
US6958803B2 (en)1993-12-222005-10-25Nikon CorporationProjection exposure apparatus and method with adjustment of rotationally asymmetric optical characteristics
US6262793B1 (en)1993-12-222001-07-17Nikon CorporationMethod of manufacturing and using correction member to correct aberration in projection exposure apparatus
USRE39024E1 (en)1994-04-282006-03-21Nikon CorporationExposure apparatus having catadioptric projection optical system
USRE38421E1 (en)1994-04-282004-02-10Nikon CorporationExposure apparatus having catadioptric projection optical system
USRE38438E1 (en)1994-08-232004-02-24Nikon CorporationCatadioptric reduction projection optical system and exposure apparatus having the same
EP0712019A2 (en)1994-11-101996-05-15Nikon CorporationProjection optical system and projection exposure apparatus
USRE38403E1 (en)1994-11-102004-01-27Nikon CorporationProjection optical system and projection exposure apparatus
US5805344A (en)*1994-11-101998-09-08Nikon CorporationProjection optical system and projection exposure apparatus
EP0717299B2 (en)1994-12-142006-08-09Nikon CorporationExposure apparatus
US6104544A (en)*1994-12-142000-08-15Nikon CorporationExposure apparatus
USRE38465E1 (en)1994-12-142004-03-16Nikon CorporationExposure apparatus
EP0717299A1 (en)*1994-12-141996-06-19Nikon CorporationExposure apparatus
USRE37846E1 (en)1995-01-062002-09-17Nikon CorporationProjection optical system and exposure apparatus using the same
EP0721150A2 (en)1995-01-061996-07-10Nikon CorporationProjection optical system and exposure apparatus using the same
US6268903B1 (en)1995-01-252001-07-31Nikon CorporationMethod of adjusting projection optical apparatus
US6377333B1 (en)1995-01-252002-04-23Nikon CorporationMethod of adjusting projection optical apparatus
US6084723A (en)*1995-03-152000-07-04Nikon CorporationExposure apparatus
EP1310818A3 (en)*1995-03-152005-02-02Nikon CorporationProjection optical system
EP0732605A2 (en)1995-03-151996-09-18Nikon CorporationExposure apparatus
EP0770895B1 (en)*1995-10-122003-06-25Nikon CorporationProjection optical system and exposure apparatus provided therewith
EP0770895A2 (en)1995-10-121997-05-02Nikon CorporationProjection optical system and exposure apparatus provided therewith
EP0803755A3 (en)*1996-04-252000-03-08Nikon CorporationProjection optical system and exposure apparatus with the same
US5781278A (en)*1996-04-251998-07-14Nikon CorporationProjection optical system and exposure apparatus with the same
US5808814A (en)*1996-07-181998-09-15Nikon CorporationShort wavelength projection optical system
US5903400A (en)*1996-08-081999-05-11Nikon CorporationProjection-optical system for use in a projection-exposure apparatus
US5920379A (en)*1996-09-301999-07-06Nikon CorporationProjection exposure method and apparatus
US5852490A (en)*1996-09-301998-12-22Nikon CorporationProjection exposure method and apparatus
US5930049A (en)*1996-10-011999-07-27Nikon CorporationProjection optical system and method of using such system for manufacturing devices
US6008884A (en)*1997-04-251999-12-28Nikon CorporationProjection lens system and apparatus
US6333781B1 (en)1997-07-242001-12-25Nikon CorporationProjection optical system and exposure apparatus and method
US6700645B1 (en)1998-01-222004-03-02Nikon CorporationProjection optical system and exposure apparatus and method
US6259508B1 (en)1998-01-222001-07-10Nikon CorporationProjection optical system and exposure apparatus and method
US6646797B2 (en)1998-08-182003-11-11Nikon CorporationExposure apparatus and method
US6452723B1 (en)1998-08-182002-09-17Nikon CorporationExposure apparatus and method
US6451507B1 (en)1998-08-182002-09-17Nikon CorporationExposure apparatus and method
US6377338B1 (en)1998-08-182002-04-23Nikon CorporationExposure apparatus and method
US6707601B2 (en)1998-08-182004-03-16Nikon CorporationExposure apparatus and method
US7079314B1 (en)1999-07-132006-07-18Nikon CorporationCatadioptric optical system and exposure apparatus equipped with the same
JP2001201682A (en)*1999-12-212001-07-27Carl Zeiss:Fa Optical projection system
US6862078B2 (en)2001-02-212005-03-01Nikon CorporationProjection optical system and exposure apparatus with the same
US6556353B2 (en)2001-02-232003-04-29Nikon CorporationProjection optical system, projection exposure apparatus, and projection exposure method
CN113835209A (en)*2021-11-192021-12-24中导光电设备股份有限公司Large-view-field DUV objective lens
CN113835209B (en)*2021-11-192024-04-26中导光电设备股份有限公司Large-view-field DUV objective lens

Also Published As

Publication numberPublication date
JP3298131B2 (en)2002-07-02

Similar Documents

PublicationPublication DateTitle
JP3298131B2 (en) Reduction projection lens
JP3041939B2 (en) Projection lens system
JP3396935B2 (en) Projection optical system and projection exposure apparatus
EP0803755B1 (en)Projection optical system and exposure apparatus with the same
JPH0534593A (en)Contraction projection lens
JPH07140384A (en) Projection optical system and projection exposure apparatus
JP2692996B2 (en) Imaging lens
US6538821B2 (en)Projection optical system
JP3662105B2 (en) Imaging optical system
JPH1048517A (en) Projection optical system
JP3306129B2 (en) Standard lens
JP3254239B2 (en) Large aperture medium telephoto lens
JPH06313845A (en)Projection lens system
JPH0961708A (en)Standard lens system
JPH07128592A (en)Reduction stepping lens
JPH0410609B2 (en)
JP3234618B2 (en) Large aperture medium telephoto lens
JPH11352398A (en) Two-sided telecentric optical system
JPH10170820A (en) Optical system having diffractive optical element
JPH0119124B2 (en)
EP0581585B1 (en)Catadioptric reduction projection optical system
JPS5965820A (en)Telephoto lens system
JPH10333030A (en) Precision copy lens
JP2709944B2 (en) Telecentric fθ lens
JPH023968B2 (en)

Legal Events

DateCodeTitleDescription
A01Written decision to grant a patent or to grant a registration (utility model)

Free format text:JAPANESE INTERMEDIATE CODE: A01

Effective date:20020319

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20080419

Year of fee payment:6

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20110419

Year of fee payment:9

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20120419

Year of fee payment:10

EXPYCancellation because of completion of term

[8]ページ先頭

©2009-2025 Movatter.jp