【0001】[0001]
【産業上の利用分野】超音波に関する応用等関連機器に
属する。[Industrial field] Application of ultrasonic waves and related equipment.
【0002】[0002]
【従来の技術】水晶発振器、超音波発生装置、計測器等
がある。2. Description of the Related Art There are crystal oscillators, ultrasonic generators, measuring instruments and the like.
【0003】[0003]
【0004】[0004]
【発明が解決しようとする課題】電磁波の通信法に対応
する超音波の通信法の構成Configuration of ultrasonic communication method corresponding to electromagnetic wave communication method
【0005】[0005]
【課題を解決するための手段】上記の目的を達成するた
め超音波の送受信搬送周波数非同調ピエゾ振動子系とこ
れに対応する電波の送受信機系の組合せを手段とする。
図1について数字記号は1:ピエゾ振動子、1−1:伝
播変調超音波を示す模型、Z:垂直形アンテナ、2−
1:送受信高周波電源、3:送信機T、3−1:送信機
出力端子、4:受信機R、4−1:アンテナ受信機入力
端子、を夫々示す。本発明に関する超音波の周波数f値
の範囲は105−106サイクル/秒でありこれは中波
の電磁波に対応する。中波帯についてNHK等1チャン
ネルは594KHz、ラジオ日本は1422KHzとな
る、103KHzと短波104KHz(10MC)の超
音波を発生させるピエゾ振動子(例えば水晶)の外形寸
法は厚みが5mm及び1mm位いになり円板と考えると
直径10mm程度である。このようなピエゾ振動子に関
して電磁波と超音波は同等の対応関係にありいずれも空
中を伝播して通信機能を形成する。図1について1の外
形は既述の寸法に準じ水晶、ロツシエル塩等のピエゾ振
動子である。1−1は振動子1によって発生伝播する変
調超音波を示しこれは電波に準じるが弾性波であること
が本通信法の主題に当る。In order to achieve the above object, a combination of an ultrasonic transmission / reception carrier frequency non-tuned piezo oscillator system and a corresponding radio wave transceiver system is used.
Regarding FIG. 1, numeral symbols are 1: piezo oscillator, 1-1: model showing propagation modulated ultrasonic waves, Z: vertical antenna, 2-
Reference numeral 1 indicates a transmission / reception high-frequency power source, 3: a transmitter T, 3-1: a transmitter output terminal, 4: a receiver R, 4-1: an antenna receiver input terminal, respectively. The range of frequency f values for ultrasonic waves according to the present invention is 105 -106 cycles / second, which corresponds to medium-wave electromagnetic waves. Regarding the medium wave band, 1 channel of NHK etc. is 594 KHz, Radio Japan is 1422 KHz, and the external dimensions of the piezoelectric oscillator (for example, crystal) that generates ultrasonic waves of 103 KHz and short wave 104 KHz (10 MC) are 5 mm and thickness. The diameter is about 10 mm when it is considered to be a disk about 1 mm. With regard to such a piezoelectric vibrator, electromagnetic waves and ultrasonic waves have an equivalent correspondence relationship, and both propagate in the air to form a communication function. In FIG. 1, the outer shape of 1 is a piezo-oscillator such as a crystal, a Rochier salt or the like according to the above-mentioned dimensions. Reference numeral 1-1 denotes a modulated ultrasonic wave generated and propagated by the vibrator 1, which is an elastic wave according to a radio wave, which is the subject of the present communication method.
【0006】通信法の発信側は発信機T、3で音声等の
入力信号で適当な搬送周波数高周波(中波)を変調して
まず通常の送信電波出力が作られる。これを出力端子3
−1を経てアンテナ2に接続する。2の垂直形アンテナ
は電源2−1で励起される。従ってT送信機、3はこの
変調高周波電源2−1を意味している。電源2−1に接
続する送受信用垂直アンテナ2についてl≒λ/4 λ:アンテナの固有波長(3×105−3×104)c
m l:アンテナ基部より先端までの長さ で示される。受信側について垂直形アンテナ2の入力は
2−1電源でとり出されこれは受信機R、4によって増
幅されて出力となる。このことは通常の電波による通信
法と相似するが本発明は送受信のこの電磁的な対応に超
音波の弾性波がピエゾ振動子を通して媒介されることが
電波だけの送受信関係と異っている。音声変調超音波を
発生させる場合ピエゾ振動子が電波の搬送周波数に共振
すると変調超音波がえられない。従って1は搬送波周波
数に対して非同調の寸法の振動子を意味する。結局、2
個の系、電波系と超音波通信系の2者の結合で形成され
る通信法が課題を解決するものである。On the transmission side of the communication method, an appropriate transmission frequency high frequency (medium wave) is modulated by an input signal such as voice by transmitters T and 3, and a normal transmission radio wave output is first produced. This is output terminal 3
Connect to antenna 2 via -1. The two vertical antennas are excited by the power source 2-1. Therefore, the T transmitter 3 means the modulated high frequency power source 2-1. Regarding the transmission / reception vertical antenna 2 connected to the power source 2-1, l≈λ / 4 λ: antenna specific wavelength (3 × 105 −3 × 104 ) c
ml: The length from the base of the antenna to the tip. On the receiving side, the input of the vertical antenna 2 is taken out by the 2-1 power supply, which is amplified by the receivers R and 4 and becomes the output. This is similar to the ordinary radio wave communication method, but the present invention is different from the transmission / reception relationship of only radio waves in that elastic waves of ultrasonic waves are mediated through a piezoelectric vibrator in response to this electromagnetic correspondence of transmission / reception. When generating a voice-modulated ultrasonic wave, the modulated ultrasonic wave cannot be obtained when the piezoelectric vibrator resonates with the carrier frequency of the radio wave. Therefore, 1 means a transducer whose dimensions are non-tuned to the carrier frequency. After all, 2
A communication method formed by combining two systems, an individual system, a radio system and an ultrasonic communication system, solves the problem.
【0007】[0007]
【作用】超音波は空気に関しては良導体であるから長距
離通信が可能である。つまり効率のいゝ微小強度の変調
超音波の空中伝送が充分成立する。これはコーモリの行
動で類似してもいゝ。コーモリの通信機能は本発明の送
信機−発信子、受信子−受信機の関係を生物学的な生理
的器官で代置したものに相当する。[Operation] Since ultrasonic waves are good conductors of air, long distance communication is possible. In other words, efficient in-air transmission of modulated ultrasonic waves with minute intensity is sufficiently established. This may be similar to the behavior of Komori. The communication function of the call terminal corresponds to the transmitter-transmitter and receiver-receiver relationship of the present invention replaced by a biological physiological organ.
【0008】[0008]
【実施例】受信側は図1の振動子1、アンテナ2、受信
機R4の3者で成立するが4はスーパーヘテロダインA
Mラジオ、1はクリスタルレシーバーのロツシエル塩音
声振動子、垂直系アンテナ2は市販されるAMラジオの
アンテナで実用上使用できる。[Embodiment] The receiving side is made up of the vibrator 1, the antenna 2 and the receiver R4 of FIG. 1, but 4 is a superheterodyne A.
The M radio, 1 is a Rothsiel salt voice oscillator as a crystal receiver, and the vertical antenna 2 is a commercially available AM radio antenna that can be used practically.
【0009】[0009]
【発明の効果】ガラス窓のメッキや金網のような電波を
遮蔽した状況でも超音波は通過できる。又超音波を吸収
する遮蔽された状態でも電波は遮断されない。これは電
磁波と異なった用途を実現する。EFFECTS OF THE INVENTION Ultrasonic waves can pass even in a situation where radio waves are shielded, such as plating of glass windows and wire mesh. Further, even in a shielded state that absorbs ultrasonic waves, radio waves are not blocked. This realizes a different application from electromagnetic waves.
【図1】超音波通信法を説明する構成図である。FIG. 1 is a configuration diagram illustrating an ultrasonic communication method.
1 ピエゾ振動子 2 垂直形アンテナ 3 送信機T 4 受信機R 1 Piezo transducer 2 Vertical antenna 3 Transmitter T 4 Receiver R
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP36142291AJPH05167540A (en) | 1991-12-16 | 1991-12-16 | Ultrasonic communication method |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP36142291AJPH05167540A (en) | 1991-12-16 | 1991-12-16 | Ultrasonic communication method |
| Publication Number | Publication Date |
|---|---|
| JPH05167540Atrue JPH05167540A (en) | 1993-07-02 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP36142291APendingJPH05167540A (en) | 1991-12-16 | 1991-12-16 | Ultrasonic communication method |
| Country | Link |
|---|---|
| JP (1) | JPH05167540A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9026202B2 (en) | 2010-06-08 | 2015-05-05 | Alivecor, Inc. | Cardiac performance monitoring system for use with mobile communications devices |
| US9220430B2 (en) | 2013-01-07 | 2015-12-29 | Alivecor, Inc. | Methods and systems for electrode placement |
| US9247911B2 (en) | 2013-07-10 | 2016-02-02 | Alivecor, Inc. | Devices and methods for real-time denoising of electrocardiograms |
| US9254092B2 (en) | 2013-03-15 | 2016-02-09 | Alivecor, Inc. | Systems and methods for processing and analyzing medical data |
| US9254095B2 (en) | 2012-11-08 | 2016-02-09 | Alivecor | Electrocardiogram signal detection |
| US9351654B2 (en) | 2010-06-08 | 2016-05-31 | Alivecor, Inc. | Two electrode apparatus and methods for twelve lead ECG |
| US9420956B2 (en) | 2013-12-12 | 2016-08-23 | Alivecor, Inc. | Methods and systems for arrhythmia tracking and scoring |
| US9649042B2 (en) | 2010-06-08 | 2017-05-16 | Alivecor, Inc. | Heart monitoring system usable with a smartphone or computer |
| US9839363B2 (en) | 2015-05-13 | 2017-12-12 | Alivecor, Inc. | Discordance monitoring |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9026202B2 (en) | 2010-06-08 | 2015-05-05 | Alivecor, Inc. | Cardiac performance monitoring system for use with mobile communications devices |
| US11382554B2 (en) | 2010-06-08 | 2022-07-12 | Alivecor, Inc. | Heart monitoring system usable with a smartphone or computer |
| US9833158B2 (en) | 2010-06-08 | 2017-12-05 | Alivecor, Inc. | Two electrode apparatus and methods for twelve lead ECG |
| US9351654B2 (en) | 2010-06-08 | 2016-05-31 | Alivecor, Inc. | Two electrode apparatus and methods for twelve lead ECG |
| US9649042B2 (en) | 2010-06-08 | 2017-05-16 | Alivecor, Inc. | Heart monitoring system usable with a smartphone or computer |
| US10478084B2 (en) | 2012-11-08 | 2019-11-19 | Alivecor, Inc. | Electrocardiogram signal detection |
| US9254095B2 (en) | 2012-11-08 | 2016-02-09 | Alivecor | Electrocardiogram signal detection |
| US9579062B2 (en) | 2013-01-07 | 2017-02-28 | Alivecor, Inc. | Methods and systems for electrode placement |
| US9220430B2 (en) | 2013-01-07 | 2015-12-29 | Alivecor, Inc. | Methods and systems for electrode placement |
| US9254092B2 (en) | 2013-03-15 | 2016-02-09 | Alivecor, Inc. | Systems and methods for processing and analyzing medical data |
| US9681814B2 (en) | 2013-07-10 | 2017-06-20 | Alivecor, Inc. | Devices and methods for real-time denoising of electrocardiograms |
| US9247911B2 (en) | 2013-07-10 | 2016-02-02 | Alivecor, Inc. | Devices and methods for real-time denoising of electrocardiograms |
| US9572499B2 (en) | 2013-12-12 | 2017-02-21 | Alivecor, Inc. | Methods and systems for arrhythmia tracking and scoring |
| US9420956B2 (en) | 2013-12-12 | 2016-08-23 | Alivecor, Inc. | Methods and systems for arrhythmia tracking and scoring |
| US10159415B2 (en) | 2013-12-12 | 2018-12-25 | Alivecor, Inc. | Methods and systems for arrhythmia tracking and scoring |
| US9839363B2 (en) | 2015-05-13 | 2017-12-12 | Alivecor, Inc. | Discordance monitoring |
| US10537250B2 (en) | 2015-05-13 | 2020-01-21 | Alivecor, Inc. | Discordance monitoring |
| Publication | Publication Date | Title |
|---|---|---|
| US2193102A (en) | Dictograph | |
| TW200718050A (en) | Acoustically communicating data signals across an electrical isolation barrier | |
| JPH09307399A (en) | Monolithic surface acoustic wave duplexer and its manufacture | |
| KR930015319A (en) | Surface acoustic wave filter | |
| US2840694A (en) | Portable radio transmitter with combination microphone horn and antenna | |
| JPH05167540A (en) | Ultrasonic communication method | |
| US2185966A (en) | Vibratory element | |
| GB2035009A (en) | Transducer horns | |
| JPS6372231A (en) | Ultrasonic wave type data communication equipment | |
| JP4399241B2 (en) | Driving method of spherical surface acoustic wave element and electromagnetic wave transmission / reception system | |
| CN106059706B (en) | A kind of mixing sound wave recording shielding device | |
| CN105827357A (en) | A recording shielding device and recording shielding method | |
| AU532596B2 (en) | Improving the coupling and directivity of electroacoustic transducers | |
| DE60130006D1 (en) | HEARING DEVICE WITH A HIGH FREQUENCY RECEIVER | |
| US5301361A (en) | Low parts count transmitter unit | |
| JPS5853874B2 (en) | Atsuden on Kansoshio Mochiita Kenshiyutsuhouhou | |
| JPH0633726Y2 (en) | CW transceiver | |
| JPS58193475A (en) | Ultrasonic reflection type detector | |
| JPS585099A (en) | Resonance variable type underwater transceiver | |
| JPS63272134A (en) | Signal tramsmitter-receiver | |
| JPH0445348Y2 (en) | ||
| JP2527960B2 (en) | Reverberation damping device for ultrasonic transducer | |
| JPS59131186A (en) | Presence detection system for receiver and transmitter | |
| JPH03262400A (en) | Underwater fm communication antenna | |
| US2133645A (en) | Electrical system |