Movatterモバイル変換


[0]ホーム

URL:


JPH05107249A - High-sensitivity detection method of ligand/receptor reaction - Google Patents

High-sensitivity detection method of ligand/receptor reaction

Info

Publication number
JPH05107249A
JPH05107249AJP3559191AJP3559191AJPH05107249AJP H05107249 AJPH05107249 AJP H05107249AJP 3559191 AJP3559191 AJP 3559191AJP 3559191 AJP3559191 AJP 3559191AJP H05107249 AJPH05107249 AJP H05107249A
Authority
JP
Japan
Prior art keywords
fine particles
fluorescent fine
fluorescent
ligand
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3559191A
Other languages
Japanese (ja)
Inventor
Tomoyuki Kuroda
知之 黒田
Hideji Shibata
秀司 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co LtdfiledCriticalToyobo Co Ltd
Priority to JP3559191ApriorityCriticalpatent/JPH05107249A/en
Publication of JPH05107249ApublicationCriticalpatent/JPH05107249A/en
Pendinglegal-statusCriticalCurrent

Links

Landscapes

Abstract

PURPOSE:To obtain a method for achieving a high-sensitivity assay which can measure even a low-concentration ligand by selecting flocculation of a particle according to reaction with the ligand while separating and distinguishing from a natural flocculation of a particle in a method for measuring latex flocculation by a particle-measuring device. CONSTITUTION:A fluorescent fine particle 7 with a fluorescent wavelength [X] where a substance which is selectively connected to a part 3 with a specificity within a substance 1 to be inspected, a fluorescent fine particle 8 with a fluorescent wavelength [Y] where a substance which is selectively connected to a part 4 with specificity, and a sample solution containing the substance 1 to be inspected are reacted for a specified amount of time at a specified temperature, thus enabling both a fluorescent fine particle 11 and a fluorescent fine particle 12 to be specifically connected to the substance 1 to be inspected. A certain amount of obtained mixed liquid is allowed to flow to a flow site meter and fluorescences containing a front scattering light which is emitted by a fluorescent fine particle within the solution and two types of fluorescences containing fluorescent wavelengths [X] and [Y] are measure.

Description

Translated fromJapanese

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特異的結合を利用する
試料中の被検溶液中の被検物質濃度を検出する方法およ
びこの方法を実施するための測定キットに関する。この
発明は特に、分析物がいわゆる「サンドイッチ」反応の
関与により分析されるリガンド−レセプター検出法に適
用可能である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting the concentration of a test substance in a test solution in a sample using specific binding and a measuring kit for carrying out this method. The invention is particularly applicable to ligand-receptor detection methods in which analytes are analyzed by the involvement of so-called "sandwich" reactions.

【0002】本発明は特異的結合を利用するリガンド・
レセプター検出法として、具体的には、抗原抗体反応を
利用するイムノアッセイ、核酸の相補性を利用する核酸
プローブ測定、ホルモンその他生理活性物質とそのレセ
プターの特異的結合を利用する測定などへの適用が可能
である。本発明を用いることにより、これら高感度では
あるが複雑な手技を要する測定を、迅速且つ容易に行な
うことができる。本発明はまた、特異性の高い測定法と
して、遺伝病、癌、感染症、代謝異常症などの診断への
応用が期待される。
The present invention relates to ligands that utilize specific binding
Specific examples of the receptor detection method include application to immunoassays that utilize an antigen-antibody reaction, nucleic acid probe measurements that utilize nucleic acid complementation, and measurements that utilize specific binding between hormones and other physiologically active substances and their receptors. It is possible. By using the present invention, it is possible to quickly and easily perform these highly sensitive measurements that require complicated procedures. The present invention is also expected to be applied to the diagnosis of genetic diseases, cancer, infectious diseases, metabolic disorders, etc. as a highly specific assay method.

【0003】[0003]

【従来の技術】リガンド・レセプター検出法は特異性の
高い測定法であり、遺伝病、癌、感染症、代謝異常症な
どの診断のために有効な手段として汎用されるようにな
ってきた。抗原抗体反応を利用するイムノアッセイは、
CEA,AFPを初めとする腫瘍マーカーの測定、TS
H,インシュリン等のホルモン測定、B型肝炎ウイル
ス、ロタウイルス等の病原性微生物の検出、毒素原性大
腸菌毒素、Clostridium difficile 毒素等の病原因子の
検出、感染症における抗体の生成を見る抗体検査等広い
範囲で実施されている。
2. Description of the Related Art The ligand / receptor detection method is a highly specific assay method and has come to be widely used as an effective means for diagnosing genetic diseases, cancers, infectious diseases, metabolic disorders and the like. The immunoassay utilizing the antigen-antibody reaction is
Measurement of tumor markers including CEA and AFP, TS
Hormone measurement of H, insulin, etc., detection of pathogenic microorganisms such as hepatitis B virus, rotavirus, detection of pathogenic factors such as toxigenic Escherichia coli toxin, Clostridium difficile toxin, antibody test for antibody production in infectious diseases, etc. Has been implemented in a wide range.

【0004】核酸の相補性を利用する核酸プローブ測定
は、近年特異性の高い測定法として広く用いられるよう
になってきた。例えばB型肝炎、C型肝炎、AIDSな
どのウイルス感染症、パピローマウイルス、クラミジ
ア、淋菌などの性感染症、また、ガン遺伝子、ガン抑制
遺伝子などガン関連遺伝子、血友病、筋ジストロフィー
など先天性遺伝子疾患、糖尿病、高血圧など体質診断、
遺伝子異常など広範に利用されるようになってきた。ま
たホルモン、生理活性物質とその受容体を用いる特異的
測定法も用いられるようになってきた。例えば、糖類を
含む物質とレクチンとの反応、インターロイキン2とそ
のレセプター、アセチルコリンとそのレセプター、また
ビオチンとアビジンなどもこの範躊に入る。またコレラ
毒素、毒素原性大腸菌の易熱性毒素が腸管のガングリオ
シドに結合することからこのガングリオシドを用いたこ
れらの毒素の測定法も報告されている。
[0004] Nucleic acid probe measurement utilizing the complementarity of nucleic acids has become widely used in recent years as a highly specific measurement method. For example, viral infections such as hepatitis B, hepatitis C, AIDS, sexually transmitted diseases such as papilloma virus, chlamydia, gonococcus, cancer-related genes such as oncogenes and tumor suppressor genes, congenital genes such as hemophilia and muscular dystrophy. Diagnosis of diseases, diabetes, high blood pressure, etc.,
It has become widely used for genetic abnormalities. In addition, specific assay methods using hormones, physiologically active substances and their receptors have also come into use. For example, a reaction between a substance containing a sugar and a lectin, interleukin 2 and its receptor, acetylcholine and its receptor, and biotin and avidin are also included in this category. Since cholera toxin and heat-labile toxin of toxigenic Escherichia coli bind to the ganglioside of the intestinal tract, a method for measuring these toxins using this ganglioside has also been reported.

【0005】これらの測定法は感度の高い手法として近
年急速な進歩を遂げた測定法である。これらの手法は多
くはサンドイッチ法と呼ばれる測定法を用いている。す
なわち、測定対象となるリガンドを二種類のレセプター
で挟み込んで測定する。レセプターの一方を不溶性の担
体に結合担持し、他方のレセプターに測定可能な標識を
結合させて測定対象のリガンドと反応させる。この時リ
ガンドを固相レセプターと標識レセプターで挟み込むよ
うに特異的に反応して、固相レセプター−リガンド−標
識レセプターの結合が生じ、結果として標識物質が固相
に結合される。この固相に結合した標識物質の量は、検
体中の測定対象となるリガンドの量に比例し、この標識
物質の量を測定することでリガンドの量を測定すること
ができる。
These measuring methods are methods that have made rapid progress in recent years as highly sensitive methods. Most of these methods use a measurement method called a sandwich method. That is, the ligand to be measured is sandwiched between two types of receptors for measurement. One of the receptors is bound to an insoluble carrier, and a measurable label is bound to the other receptor to react with the ligand to be measured. At this time, the ligand specifically reacts so as to be sandwiched between the solid phase receptor and the labeled receptor, and solid phase receptor-ligand-labeled receptor binding occurs, and as a result, the labeling substance is bound to the solid phase. The amount of the labeling substance bound to the solid phase is proportional to the amount of the ligand to be measured in the sample, and the amount of the ligand can be measured by measuring the amount of the labeling substance.

【0006】固相としては、ポリスチレン、ナイロン、
アクリルアミド、デキストラン、アガロースなどのポリ
マーサポートがよく用いられる。また赤血球なども用い
られることがある。形状としては、ラテックスビーズ、
マイクロプレート、試験管、膜など多岐にわたってい
る。
As the solid phase, polystyrene, nylon,
Polymeric supports such as acrylamide, dextran, agarose are often used. Red blood cells may also be used. As the shape, latex beads,
It covers a wide variety of fields such as microplates, test tubes, and membranes.

【0007】標識物質として放射性同位元素、酵素、蛍
光物質、発光物質、酵素基質などが一般に用いられてい
る。またラテックスビーズなどではラテックス同士の凝
集を測定する場合もある。標識物質の数が検出法の感度
を大きく左右するが、標識物質は一般にレセプター1分
子当り1分子〜数十分子、特別に多い場合でも数百分子
であり標識物質の導入には制限がある。
Radioactive isotopes, enzymes, fluorescent substances, luminescent substances, enzyme substrates and the like are generally used as labeling substances. For latex beads, etc., the aggregation of latex particles may be measured. Although the number of labeling substances greatly affects the sensitivity of the detection method, the number of labeling substances is generally one molecule to several tens of molecules per receptor molecule, and even if it is particularly large, it is several hundred molecules, and there is a limitation on the introduction of the labeling substance.

【0008】これらの手法は一般には結合したもの(bou
nd) と結合しなかったもの(free)を分離する操作を実施
する。このB/F分離により高感度な測定が可能とな
る。この手法では遊離(free)の標識レセプターをどれだ
け除くことができるかが大きなポイントとなっている。
従ってB/F分離はこの手法においては重要であり、従
ってその操作も複雑で、時間もかかる。B/F分離を行
わない方法としてEMIT法(enzyme multiplied immun
oassaytechnique) が報告された(Rubenstein,K.E. et.
al.;Biochem.Biophys.Res.Commun.,47,846,1972) 。こ
の方法では標識として酵素を用い、抗体が抗原と結合す
ると酵素の活性部位に変化が生じ(活性化または活性阻
害)、その活性の変化を測定するというものである。同
じ手法で酵素基質を抗原に標識として結合させた方法が
商品化されている(SLFIA;Substrate-labeled flu
orescentimmunoassay;Ames 社)。これは、検体中の抗
原と標識抗原を競合させると抗体と反応した標識基質は
立体障害のため後から添加した酵素の基質となりえず、
遊離の標識抗原のみ酵素反応の基質となり、酵素による
生成物の量が検体中の抗原の量に比例するという手法で
ある。
These approaches are generally combined (bou
nd) and the one that was not combined (free) is separated. This B / F separation enables highly sensitive measurement. The major point of this method is how much free labeled receptor can be removed.
Therefore, B / F separation is important in this method, and its operation is complicated and time-consuming. As a method of not performing B / F separation, the EMIT method (enzyme multiplied immun
oassaytechnique) was reported (Rubenstein, KE et.
al.; Biochem.Biophys.Res.Commun., 47, 846, 1972). In this method, an enzyme is used as a label, and when an antibody binds to an antigen, a change occurs in the active site of the enzyme (activation or activity inhibition), and the change in the activity is measured. A method in which an enzyme substrate is bound to an antigen as a label by the same method is commercialized (SLFIA; Substrate-labeled flu).
orescentimmunoassay; Ames). This is because when the antigen in the sample and the labeled antigen compete with each other, the labeled substrate that has reacted with the antibody cannot serve as a substrate for the enzyme added later due to steric hindrance.
This is a method in which only the free labeled antigen serves as a substrate for the enzymatic reaction, and the amount of the product of the enzyme is proportional to the amount of the antigen in the sample.

【0009】また免疫蛍光偏光解消法と呼ばれる手法が
開発された。本法では蛍光標識した抗原を抗体と反応さ
せると蛍光標識抗原のブラウン運動が制限され、標識蛍
光を偏光で励起すると偏光の解消が抑制されることを利
用したものである。この場合、競合法を用いており、薬
物、ハプテンのような低分子物質しか測定出来ず蛋白質
等の高分子には応用できない。
A technique called immunofluorescence depolarization method has also been developed. This method utilizes the fact that when a fluorescently labeled antigen is reacted with an antibody, Brownian motion of the fluorescently labeled antigen is restricted, and when the labeled fluorescence is excited by polarized light, the depolarization is suppressed. In this case, the competitive method is used, and only low molecular weight substances such as drugs and haptens can be measured and it cannot be applied to high molecules such as proteins.

【0010】一方、高分子のホモジニアスアッセイとし
てペルオキシダーゼ標識を用いる方法がある。すなわ
ち、ペルオキシダーゼを標識とし、酵素の活性測定時に
基質である過酸化水素の濃度を高い状態に保つと、未反
応すなわち遊離のペルオキシダーゼは高濃度の過酸化水
素により阻害されて活性を示さず、一方抗原抗体反応に
より免疫複合体の中に取り込まれたペルオキシダーゼは
立体障害により高濃度の過酸化水素にさらされることが
なく活性を示すという方法である。しかしこの方法では
溶血検体では血球中のカタラーゼ様活性により偽陽性を
示すことが知られており、特異性上問題がある。
On the other hand, there is a method of using a peroxidase label as a homogeneous assay for polymers. That is, when peroxidase is used as a label and the concentration of hydrogen peroxide, which is a substrate, is maintained at a high level during enzyme activity measurement, unreacted or free peroxidase is inhibited by high concentration hydrogen peroxide and does not show activity. This is a method in which peroxidase incorporated into an immune complex by an antigen-antibody reaction is active without being exposed to a high concentration of hydrogen peroxide due to steric hindrance. However, in this method, it is known that a hemolyzed sample shows false positives due to catalase-like activity in blood cells, which is problematic in terms of specificity.

【0011】ラテックス凝集、赤血球凝集による測定で
は一般にB/F分離は行わないが、これらはスクリーニ
ング検査として用いられており、感度は高くはない。ラ
テックス凝集を粒子計測装置で測定する方法が開示され
ている(前田真木子他;日本臨床検査自動化学会会誌,
14,231,1990.,特表昭63−502875号公報)。こ
れらの手法は粒子を検出する際に、一つ一つの粒子が凝
集粒子であるか非凝集粒子であるかを検出する方法であ
り、検出時に遊離(free)と結合(bound) を判断すること
ができるので感度が高く、且つ前処理としての洗浄操作
を必要としない簡便な方法である。この方法で高感度を
達成するには、粒度分布のできるだけ小さな粒子を用い
ること、粒子が単粒子であるか、二個以上の複数粒子で
あるかを正確に検出することである。粒子の粒度分布を
できるだけ小さく保つことは困難であり、これを達成す
ることはそのまま粒子の製造コストに影響する。また、
粒子が単粒子であるか、二個以上の複数粒子であるかを
正確に検出することは、測定機器の測定精度を高くする
ことで可能であるが、高価な機器を必要とする。一方、
粒子を単粒子として分散状態に保つこと、すなわち自然
凝集による粒子の複数粒子化を抑制することが本法の感
度向上につながるが、この粒子の分散は容易ではないの
で、リガンドの濃度が低く、凝集が非常に少ない場合、
リガンドと反応して凝集したものか自然凝集によるもの
かの識別が困難であり、自然凝集の粒子数以下の測定は
不可能となる。従って、この方法の測定感度は一般の酵
素標識サンドイッチ法と大差がなく、放射性標識法より
感度は低い。
B / F separation is not generally performed in measurement by latex agglutination and red blood cell agglutination, but these are used as screening tests and their sensitivity is not high. A method of measuring latex agglutination with a particle measuring device is disclosed (Makiko Maeda et al .; Journal of Japan Society for Clinical Laboratory Automation,
14 , 231, 1990., Tokushusho Sho 63-502875). These methods are to detect whether each particle is an aggregate particle or a non-aggregate particle when detecting particles, and to judge free (bound) and bound (bound) at the time of detection. It is a simple method that has high sensitivity and does not require a washing operation as a pretreatment. In order to achieve high sensitivity with this method, it is necessary to use particles having a particle size distribution as small as possible and to accurately detect whether the particles are single particles or plural particles of two or more particles. It is difficult to keep the particle size distribution of the particles as small as possible, and achieving this directly affects the production cost of the particles. Also,
Accurate detection of whether a particle is a single particle or a plurality of particles of two or more is possible by increasing the measurement accuracy of the measuring device, but requires an expensive device. on the other hand,
Keeping the particles in a dispersed state as single particles, that is, suppressing the formation of multiple particles by spontaneous aggregation leads to an improvement in the sensitivity of this method, but since the dispersion of these particles is not easy, the concentration of the ligand is low, If there is very little aggregation,
It is difficult to discriminate whether they are aggregated by reacting with a ligand or by natural aggregation, and it is impossible to measure the number of particles of natural aggregation or less. Therefore, the measurement sensitivity of this method is not much different from that of general enzyme-labeled sandwich method, and the sensitivity is lower than that of radiolabeled method.

【0012】[0012]

【発明が解決しようとする課題】本発明の目的は、ラテ
ックス凝集を粒子計測装置で測定する方法においてリガ
ンドとの反応による粒子の凝集を、粒子の自然凝集から
分離区別して測定し、低濃度のリガンドまでも測定でき
る高感度アッセイを達成する方法を提供することであ
る。また、B/F分離を検出時に行なうことにより測定
操作を簡便化し、測定時間の短縮を達成する方法を提供
することである。本発明の他の目的はリガンド・レセプ
ター検出法においてレセプターに多量の標識を導入する
方法を提供することである。本発明は更に当該検出方法
に使用する測定キットも提供する。
SUMMARY OF THE INVENTION An object of the present invention is to measure agglomeration of particles due to a reaction with a ligand separately from natural agglomeration of particles in a method of measuring latex agglutination with a particle measuring apparatus, and It is to provide a method for achieving a highly sensitive assay that can measure even a ligand. It is another object of the present invention to provide a method for simplifying the measurement operation by performing B / F separation at the time of detection and shortening the measurement time. Another object of the present invention is to provide a method for introducing a large amount of label into a receptor in a ligand / receptor detection method. The present invention also provides a measurement kit used in the detection method.

【0013】[0013]

【課題を解決するための手段】本発明は、試料溶液中の
被検物質濃度を以下の工程からなるリガンド・レセプタ
ー反応を利用して測定するリガンド・レセプター反応の
高感度検出法である。 a.被検物質中の特異性のある部分[a]に選択的に結
合する物質を結合させた蛍光波長[X]の蛍光微粒子
[A・X]と、被検物質中の上記[a]とは異なる、特
異性のある部分[b]に選択的に結合する物質を結合さ
せた蛍光波長[Y]の蛍光微粒子[B・Y]と、被検物
質を含む試料溶液の3つを所定時間、所定温度で反応さ
せ、被検物質に蛍光微粒子[A・X]と蛍光微粒子[B
・Y]の両者を特異的に結合させ、 b.工程a.で得られた混合液をフローサイトメーター
に一定量流し、上記溶液中の蛍光微粒子の発する前方散
乱光、上記蛍光波長[X]及び[Y]をそれぞれ含む2
種類の蛍光を測定し、 c.蛍光強度に基づき、蛍光微粒子[A・X]の単体、
蛍光微粒子[A・X]同士の凝集体、蛍光微粒子[B・
Y]の単体、蛍光微粒子[B・Y]同士の凝集体、及び
蛍光微粒子[A・X]と蛍光微粒子[B・Y]との凝集
体を区別し、少なくとも蛍光微粒子[A・X]と蛍光微
粒子[B・Y]の凝集体の数を計数し、 d.工程b.記載の一定量中の蛍光微粒子〔A・X〕と蛍
光微粒子〔B・Y〕の凝集体の試料溶液中の被検物質濃
度を算出する。
The present invention is a highly sensitive method for detecting a ligand-receptor reaction, which comprises measuring the concentration of a test substance in a sample solution using the ligand-receptor reaction, which comprises the following steps. a. The fluorescent fine particles [A · X] having a fluorescence wavelength [X] in which a substance that selectively binds to the specific portion [a] in the test substance is bound, and the above-mentioned [a] in the test substance Fluorescent fine particles [BY] having a fluorescence wavelength [Y] to which a substance that selectively binds to a different and specific portion [b] is bound, and three sample solutions containing the test substance are given for a predetermined time. The reaction is performed at a predetermined temperature, and the fluorescent fine particles [AX] and the fluorescent fine particles [B] are added to the test substance.
• Y] specifically bound to each other, b. Step a. A certain amount of the mixed solution obtained in step 1 is flown through a flow cytometer, and the forward scattered light emitted from the fluorescent fine particles in the solution and the fluorescent wavelengths [X] and [Y] are contained respectively.
Measuring the type of fluorescence, c. Based on the fluorescence intensity, the fluorescent fine particles [AX] alone,
An aggregate of fluorescent fine particles [A / X], fluorescent fine particles [B / X]
Y] alone, aggregates of fluorescent fine particles [B · Y] and aggregates of fluorescent fine particles [A · X] and fluorescent fine particles [B · Y] are distinguished, and at least fluorescent fine particles [A · X] Counting the number of aggregates of fluorescent fine particles [BY], d. The concentration of the test substance in the sample solution of the aggregate of fluorescent fine particles [AX] and fluorescent fine particles [BY] in the fixed amount described in step b. Is calculated.

【0014】本発明においては、被検物質に特異的であ
り、被検物質の異なる部位に結合する異なる性質(異な
る蛍光)の微粒子で被検物質をサンドイッチ状態とし、
フローサイトメーター法において、B/F分離なしに反
応混合物をそのままフローサイトメーターに流し、未反
応の蛍光微粒子、自然凝集した未反応微粒子及び反応し
て2種類の蛍光を発する凝集粒子を区別、計数する。
In the present invention, the test substance is sandwiched by microparticles that are specific to the test substance and have different properties (different fluorescence) that bind to different sites of the test substance,
In the flow cytometer method, the reaction mixture is directly flown to the flow cytometer without B / F separation to distinguish and count unreacted fluorescent fine particles, spontaneously aggregated unreacted fine particles and aggregated particles that emit two types of fluorescence upon reaction. To do.

【0015】以下、本発明を詳細に説明する。試料溶液
中の被検物質濃度を以下の工程からなるリガンド・レセ
プター反応を利用して測定するリガンド・レセプター反
応の高感度検出法において、 a.被検物質中の特異性のある部分[a]に選択的に結
合する物質を結合させた蛍光波長[X]の蛍光性微粒子
[A・X]と、被検物質中の上記[a]とは異なる、特
異性のある部分[b]に選択的に結合する物質を結合さ
せた蛍光波長[Y]の蛍光性微粒子[B・Y]と、被検
物質を含む試料溶液の3つを所定時間、所定温度で反応
させ、被検物質に蛍光性微粒子[A・X]と[B・Y]
の両者を結合させる。試料中の被検物質とは抗原抗体反
応を利用するイムノアッセイでは抗原または抗体であ
り、核酸の相補性を利用する核酸プローブ測定ではDN
AまたはRNAであり、生理活性物質とそのレセプター
の特異的結合を利用する測定ではホルモンや毒素などで
ある。
The present invention will be described in detail below. A highly sensitive method for detecting a ligand-receptor reaction, which comprises measuring the concentration of a test substance in a sample solution by using the ligand-receptor reaction, which comprises the steps of: a. Fluorescent fine particles [A · X] having a fluorescence wavelength [X] in which a substance that selectively binds to a specific portion [a] in the test substance is bound, and the above-mentioned [a] in the test substance Are fluorescent fine particles [BY] having a fluorescence wavelength [Y] to which a substance that selectively binds to a different specificity [b] is bound, and a sample solution containing a test substance. The reaction is carried out for a certain time at a predetermined temperature, and fluorescent fine particles [AX] and [BY] are added to the test substance.
Both are combined. The test substance in the sample is an antigen or an antibody in an immunoassay utilizing an antigen-antibody reaction, and is a DN in a nucleic acid probe measurement utilizing the complementarity of nucleic acids.
A or RNA, which is a hormone or a toxin in the measurement utilizing the specific binding between the physiologically active substance and its receptor.

【0016】被検物質中の特異性のある部分とは、被検
物質の一部分で被検物質を代表する特異性を持った部分
を言う。すなわち抗原抗体反応や核酸プローブ測定など
において他の物質と交差反応を示さない特定の部分を選
択することが重要である。蛍光微粒子とは蛍光物質を結
合または含有する微粒子を言う。蛍光物質としてフルオ
レセイン、ローダミン6G、エオシンY等のキサンテン
環含有染料、ウンベリフェロン、クマリン6等のクマリ
ン環含有染料、アクリジン系染料、フィコエリスリン、
アロフィコシアニン等のフィコビリ蛋白、ベンツイミダ
ゾール環含有染料、フェナンスリジウム系染料、アジン
系染料、チオキサンテン系染料、チアジン系染料、シア
ニン系染料、スチリル系染料、オキサジン系染料、トリ
アリールメタン系染料、ジアリールメタン系染料、その
他などが選択される。ここで単一波長で蛍光波長の異な
る二つの蛍光物質が共に励起されるような波長及び蛍光
物質を選択することにより、単一波長により二つの蛍光
微粒子を区別して測定することができる。
The specific portion of the test substance means a part of the test substance which has a specificity and is representative of the test substance. That is, it is important to select a specific portion that does not cross-react with other substances in the antigen-antibody reaction or nucleic acid probe measurement. The fluorescent fine particles are fine particles containing or containing a fluorescent substance. As fluorescent substances, xanthene ring-containing dyes such as fluorescein, rhodamine 6G, and eosin Y, umbelliferone, coumarin ring-containing dyes such as coumarin 6, acridine dyes, phycoerythrin,
Phycobiliproteins such as allophycocyanin, benzimidazole ring-containing dyes, phenanthridium dyes, azine dyes, thioxanthene dyes, thiazine dyes, cyanine dyes, styryl dyes, oxazine dyes, triarylmethane dyes, Diarylmethane dyes, etc. are selected. Here, by selecting a wavelength and a fluorescent substance that excite together two fluorescent substances having different fluorescent wavelengths at a single wavelength, two fluorescent fine particles can be distinguished and measured by a single wavelength.

【0017】また微粒子の素材としてはフローサイトメ
ーターで測定が可能な水と屈折率が異なり、比重が0.
9〜2.0で水溶液に分散できるものならばどのような
微粒子も用いることができる。例えばポリスチレン、ポ
リビニールトルエン、ポリメチルメタクリレート、ポリ
ジビニールベンゼン、ポリアクロレイン、ポリブタジエ
ン、及びこれらの混合組成の工業的ラテックス粒子、あ
るいはカジノキ花粉、キノコ胞子、鶏、羊等の固定赤血
球、ヒト固定リンパ球、固定胸腺細胞等の生物学的粒子
のようなものが選択される。このような蛍光微粒子とし
て、例えばデュークサイエンティフィック(Duke Scien
tific Corp. )社のコバスフェアーズ(Covaspheres
TM)蛍光粒子、バイオクリン(Bioclean)蛍光粒子、
フローサイトメトリースタンダード(Flowcytometry St
andard Corp.)社のミクロビーズアライメントスタンダ
ード(MicrobeadsAlignment Standards)粒子、ローヌ
プーラン(Rhone-Poulenc Specialities Chimiques)社
のシリー(Serie )PSI蛍光粒子、ポリサイエンス
(Polyscience )社のフルオーズブライトカルボキシレ
イト(FluoresbriteTM Carboxylate)粒子、ポリビーズ
(Polybead)蛍光微粒子、コールターエレクトロニクス
(Coulter Electronics )社のフルオレッセントアライ
メントスタンダード(Fluorescent Alignment Standar
d)粒子、シグマ(Sigma )社のグルタルアルデヒド固
定の鶏赤血球、七面鳥赤血球、オルソダイアグノスティ
ック(Ortho Diagnostic)社のフルオロトロール(Fluo
rotrol)GF、その他などが選択される。
The material for the fine particles has a refractive index different from that of water which can be measured by a flow cytometer and has a specific gravity of 0.
Any fine particles can be used as long as they can be dispersed in an aqueous solution at 9 to 2.0. For example, polystyrene, polyvinyltoluene, polymethylmethacrylate, polydivinylbenzene, polyacrolein, polybutadiene, and industrial latex particles of a mixed composition thereof, or fixed red blood cells of casino pollen, mushroom spores, chickens, sheep, etc., human fixed lymphocytes. , Biological particles such as fixed thymocytes are selected. Examples of such fluorescent fine particles include Duke Scientific (Duke Scien
tific Corp.'s Covaspheres
TM ) fluorescent particles, Bioclean fluorescent particles,
Flow cytometry standard
and Bead Corp. Microbeads Alignment Standards particles, Rhone-Poulenc Specialities Chimiques Serie PSI fluorescent particles, Polyscience Fluoresbrite Fluoresbrite Carboxylate particles, Polybead fluorescent particles, Coulter Electronics' Fluorescent Alignment Standar
d) Particles, glutaraldehyde-fixed chicken erythrocytes from Sigma, turkey erythrocytes, Fluorotrol (Fluo from Ortho Diagnostic)
rotrol) GF, etc. are selected.

【0018】選択的結合物質と微粒子の結合は二官能基
の縮合反応や架橋反応として一般に知られた方法により
容易に実施出来る。例えばグルタルアルデヒドによるア
ミノ基同士の架橋、カルボジイミドによるアミノ基とカ
ルボキシル基との架橋による共有結合、アジドの光分解
による挿入反応、アミノ基とトシル基の交換反応、アミ
ノ基とカルボキシル基とのイオン結合などにより実施出
来る。また微粒子表面は選択的結合物質を結合させた後
に、不活性化処理を行なうことにより非特異的な結合を
防止しておくことができる。この不活性化処理はサケ精
子DNA部分分解物、ランダムオリゴヌクレオチド、ウ
シ血清アルブミンなどで処理する方法や未反応の官能基
をエタノールアミンなど公知の方法で処理することによ
り達成される。
The selective binding substance and the fine particles can be easily bound by a method generally known as a condensation reaction or a crosslinking reaction of bifunctional groups. For example, cross-linking of amino groups with glutaraldehyde, covalent bond with cross-linking of amino group and carboxyl group with carbodiimide, insertion reaction by photolysis of azide, exchange reaction of amino group with tosyl group, ionic bond of amino group with carboxyl group. It can be implemented by Further, the surface of the fine particles can be prevented from non-specific binding by performing an inactivation treatment after binding a selective binding substance. This inactivation treatment can be achieved by a method of treating a partially decomposed product of salmon sperm DNA, a random oligonucleotide, bovine serum albumin or the like, or a known method such as ethanolamine of unreacted functional groups.

【0019】b.工程a.で得られた混合液をフローサ
イトメーターに一定量流し、上記溶液中の蛍光微粒子の
発する前方散乱光、上記蛍光波長[X]及び[Y]をそ
れぞれ含む2種類の蛍光を測定する。フローサイトメー
ターとしては、例えばベクトンディッキンソン(Becton
-Dickinson)社のファクスキャン(FACScan )、ファッ
クスター(FACStar )、ファックス(FACS)IV等、コ
ールターエレクトロニクス(Coulter Electronics )社
のエピックスプロファイル(EPICS profile )II、エ
ピックスエリート(EPICS Elite)、エピックスC(EPI
CS C,Model 750 )等、オルソダイアグノスティックス
(Ortho Diagnostics )社のスぺクトラム(SPECTRUM)
III、サイトフルオログラフ(Cytofluorograph )
等、日本分光工業のサイトエース(Cyto Ace)150、
FCM-ID等、オルソダイアグノスティックジャパン(Orth
o Diagnostic Japan)社のサイトロン(Cytoron )など
が選択される。測定はこれらの測定マニュアルに従って
実施することで達成される。測定パラメーターとして
は、前方散乱光、側方散乱光、吸光度、粒子体積、2〜
4種の蛍光、蛍光偏光などがあるが、これらのうち少な
くとも前方散乱光、蛍光波長[X]及び[Y]をそれぞ
れ測定すればよい。
B. Step a. A certain amount of the mixed solution obtained in (1) is flown through a flow cytometer, and the forward scattered light emitted from the fluorescent fine particles in the solution and the two types of fluorescence including the fluorescence wavelengths [X] and [Y] are measured. As a flow cytometer, for example, Becton Dickinson (Becton
-Dickinson's FACScan, FACStar, Fax IV, etc., Coulter Electronics' EPICS profile II, EPICS Elite, Epics C (EPI
CS C, Model 750) etc. ortho diagnostics (SPECTRUM)
III, Cytofluorograph
Etc., Cyto Ace 150 from JASCO Corporation,
FCM-ID etc. Ortho Diagnostic Japan (Orth
o Diagnostic Japan's Cytoron is selected. The measurement is achieved by carrying out according to these measurement manuals. Measurement parameters include forward scattered light, side scattered light, absorbance, particle volume, 2 to
There are four types of fluorescence, fluorescence polarization, and the like. Of these, at least forward scattered light and fluorescence wavelengths [X] and [Y] may be measured.

【0020】c.蛍光強度に基づき、蛍光微粒子[A・
X]の単体、蛍光微粒子[A・X]同士の凝集体、蛍光
微粒子[B・Y]の単体、蛍光微粒子[B・Y]同士の
凝集体、及び蛍光微粒子[A・X]と蛍光微粒子[B・
Y]との凝集体を区別し、少なくとも蛍光微粒子[A・
X]と蛍光微粒子[B・Y]の凝集体の数を計数する。
C. Based on the fluorescence intensity, fluorescent fine particles [A
X] alone, aggregates of fluorescent fine particles [A / X], aggregates of fluorescent fine particles [BY / Y], aggregates of fluorescent fine particles [BY / Y], and fluorescent fine particles [A / X] and fluorescent fine particles [B
Y] to distinguish the aggregates and at least the fluorescent fine particles [A.
The number of aggregates of X] and fluorescent fine particles [BY] is counted.

【0021】d.工程b.記載の一定量中の蛍光微粒子
[A・X]と蛍光微粒子[B・Y]の凝集体の数より試
料溶液中の被検物質濃度を算出する。計数および計算
は、フローサイトメーターシステム内のコンピューター
ソフトにより容易に実施出来る。
D. Step b. The concentration of the test substance in the sample solution is calculated from the number of aggregates of the fluorescent fine particles [AX] and the fluorescent fine particles [BY] in the specified amount. Counting and calculation can be easily performed by computer software in the flow cytometer system.

【0022】蛍光強度の測定は一般の蛍光光度計を用い
て測定できる。一般にリガンド・レセプター検出法にお
いて、レセプターを固相に固定するために、反応速度は
液相の反応に比べて遅くなることが知られている。しか
し本発明では微粒子を用いることで反応速度の低下を抑
制することが可能であり、反応液を攪拌することで更に
抑制できる。従って固相を用いることによる反応速度低
下の不利益を抑えることができる。
The fluorescence intensity can be measured using a general fluorescence photometer. In the ligand / receptor detection method, it is generally known that the reaction rate is slower than that in the liquid phase reaction because the receptor is immobilized on the solid phase. However, in the present invention, it is possible to suppress the decrease in the reaction rate by using the fine particles, and it is possible to further suppress by stirring the reaction solution. Therefore, the disadvantage of decreasing the reaction rate due to the use of the solid phase can be suppressed.

【0023】本発明の二つの蛍光微粒子を用いる方法で
は、いわゆるB/F分離を必要とせず、大幅に時間短縮
及び操作の簡便化を計ることができる。すなわち、リガ
ンドと特異的に反応した微粒子は一つの凝集物の中に異
なる蛍光を持っており、この異なる蛍光が同時にフロー
サイトメーターを流れ、同時に二つの蛍光が計測され
る。一方、未反応の蛍光微粒子はそれぞれ一方の蛍光し
かもたず、一方のみしか計測されない。従って計測時に
反応粒子(bound)であるか未反応粒子(free)であるかの
区別がなされ、B/F分離を達成することができる。ま
た、検出にはフローサイトメーターを用いるので、測定
20秒、解析30秒程度で検体測定が可能であり、この
点でも従来法に比べ大幅な時間短縮が可能である。また
それぞれの蛍光微粒子を別々に保存し、反応時に試料と
混合することにより、自然凝集によるブランク値の上昇
を抑えることができる。すなわち一般にラテックス粒子
のような微粒子は保存により自然凝集が増加する。この
自然凝集はリガンド−レセプター反応時の凝集と区別が
つかず非特異的な凝集としてブランク値を上昇させ、測
定感度を著しく低下させる。しかし、本発明の蛍光微粒
子では二つの異なる蛍光微粒子の凝集物のみを測定する
ので、ふたつの蛍光微粒子を別々に保存することで、保
存中の微粒子の自然凝集は、一方の蛍光微粒子単独の凝
集物として計測され、ブランク値として認識されない。
また反応も比較的速く且つB/F分離操作を必要としな
いので、反応時間が短く、反応時間中に同時に起こる蛍
光微粒子間の自然及び非特異凝集はほとんど無視でき
る。
In the method of using the two fluorescent fine particles of the present invention, so-called B / F separation is not required, and the time can be greatly shortened and the operation can be simplified. That is, the fine particles that have specifically reacted with the ligand have different fluorescence in one aggregate, and the different fluorescence simultaneously flows through the flow cytometer, and two fluorescences are measured at the same time. On the other hand, each unreacted fluorescent fine particle has only one fluorescence, and only one is measured. Therefore, at the time of measurement, it is possible to distinguish between the reactive particles (bound) and the unreacted particles (free), and B / F separation can be achieved. Since a flow cytometer is used for detection, the sample can be measured in about 20 seconds for measurement and about 30 seconds for analysis, and in this respect as well, the time can be significantly shortened compared to the conventional method. Further, by storing each fluorescent fine particle separately and mixing with the sample at the time of reaction, it is possible to suppress an increase in the blank value due to spontaneous aggregation. That is, in general, fine particles such as latex particles have an increased natural agglomeration upon storage. This spontaneous agglutination is indistinguishable from the agglutination at the time of the ligand-receptor reaction and increases the blank value as non-specific agglutination, and significantly lowers the measurement sensitivity. However, since the fluorescent fine particles of the present invention measure only the aggregates of two different fluorescent fine particles, by storing the two fluorescent fine particles separately, the natural aggregation of the fine particles during storage is the aggregation of one fluorescent fine particle alone. It is measured as an object and is not recognized as a blank value.
Further, since the reaction is relatively fast and B / F separation operation is not required, the reaction time is short, and spontaneous and non-specific aggregation between fluorescent fine particles that occur simultaneously during the reaction time can be almost ignored.

【0024】[0024]

【発明の効果】本発明により、ラテックス凝集を粒子計
測装置で測定する方法において、リガンドとの反応によ
る粒子の凝集を、二つの異なる蛍光を有する粒子の凝集
をとらえることで、自然凝集から分離区別して測定する
ことが可能となり、低濃度のリガンドまでも測定できる
高感度検出を達成することができる。また、B/F分離
を検出時に行なう事により測定操作を簡便化し測定時間
の短縮を達成することができる。
According to the present invention, in the method of measuring latex agglutination with a particle measuring apparatus, the agglutination of particles due to the reaction with a ligand is separated from the natural agglutination by capturing the agglomeration of particles having two different fluorescences. It is possible to measure separately, and it is possible to achieve high-sensitivity detection capable of measuring even low concentrations of ligand. Further, by performing the B / F separation at the time of detection, the measurement operation can be simplified and the measurement time can be shortened.

【0025】[0025]

【実施例】以下に、本発明の実施例を例示することによ
って、本発明の効果をより一層明確なものとするが、こ
れら実施例によって本発明の範囲は限定されるものでは
ない。 (実施例1)核酸プローブの調製 核酸プローブとして、腸炎ビブリオの耐熱性毒素に相補
的なオリゴヌクレオチドを用いた。オリゴヌクレオチド
は、DNA合成機 380A 型(アプライド・バイオシステ
ムズ社)を用いて、ホスホアミダイト法により合成し
た。塩基配列は、 5'-CCCCGGTTCT GAXGAGATAT TGTN-3' (TDH1) および 5'-CAGGTACTAA AXGGTTGACA TCCTN-3' (TDH2) 配列中Nは5位にリンカーアームを有するデオキシウリ
ジンを示す。この5位にリンカーアームを有するデオキ
シウリジンは、特表昭60-500717 号公報に開示された合
成法により、デオキシウリジンから化学合成により調製
し、オリゴヌクレオチドに導入した。
EXAMPLES The effects of the present invention will be further clarified below by exemplifying Examples of the present invention, but the scope of the present invention is not limited by these Examples. (Example 1) Preparation of nucleic acid probe As a nucleic acid probe, an oligonucleotide complementary to the heat-resistant toxin of Vibrio parahaemolyticus was used. Oligonucleotides were synthesized by the phosphoamidite method using a DNA synthesizer Model 380A (Applied Biosystems). The nucleotide sequence of the 5'-CCCCGGTTCT GAXGAGATAT TGTN-3 '(TDH1) and 5'-CAGGTACTAA AXGGTTGACA TCCTN-3' (TDH2) sequences, N represents deoxyuridine having a linker arm at the 5-position. The deoxyuridine having a linker arm at the 5-position was prepared by chemical synthesis from deoxyuridine by the synthetic method disclosed in JP-A-60-500717 and introduced into an oligonucleotide.

【0026】合成されたオリゴヌクレオチドは、27%ア
ンモニア水で55℃、4 時間脱保護処理を施した後、陰イ
オン交換高速液体クロマトグラフィーMono-Q FPLC (フ
ァルマシア社)を用いて精製した。0.2 μmol スケール
の合成を行ない、約11.5A260(260nm における吸光度
より求めた絶対量)のオリゴヌクレオチドを得た。
The synthesized oligonucleotide was deprotected with 27% aqueous ammonia at 55 ° C. for 4 hours and then purified using anion exchange high performance liquid chromatography Mono-Q FPLC (Pharmacia). 0.2 μmol scale synthesis was performed to obtain an oligonucleotide of about 11.5A260 (absolute amount determined from absorbance at 260 nm).

【0027】(実施例2)核酸プローブ結合蛍光粒子の
調製 蛍光ビーズとして、デュークサイエンティフィック社
(Duke Scientific Corp.,CA,USA)製のコバスフェア
(CovaspheresTM)CX ミクロスフェア(microspher
es)の直径1.0μm の緑蛍光(励起極大波長461n
m、蛍光極大波長472nm)粒子及び直径1.0μm の
赤蛍光(励起極大波長560nm、蛍光極大波長577n
m)粒子を用いた。この−NH2基含有核酸プローブと−
COOH基含有蛍光粒子との結合反応は常法のカルボジ
イミド法により行なった。すなわち100μl のコバフ
ェア粒子(2.71×109粒子)、58.7μmol の
EDC(ethyl-3'-dimethylaminopropyl carbodiimide
hydrochloride )及び5.87nmolの−NH2基含有核
酸プローブをpH5のMES(2-[N-Morpholino]ethane
sulfonic acid )緩衝液中で混合(最終2ml)し、37
℃で4時間反応させた後、587μmol のモノエタノー
ルアミン塩酸水溶液を加え、更に37℃で30分間反応
させた。反応液を15,000rpm で5分間遠心し、上清を除
いた後、5回10mlの水で洗浄遠心(15,000rpm 、5分
間)をおこなった後、2.71mlの1%ウシ血清アルブ
ミンを含むHEPES緩衝液(20mM,pH7.0)に再懸濁
し超音波処理(20KHz,50W,2秒間)し、4℃で保存
した。
Example 2 Preparation of Nucleic Acid Probe-Binding Fluorescent Particles As fluorescent beads, Covaspheres CX microspheres (microspheres) manufactured by Duke Scientific Corp. (CA, USA) were used.
es) green fluorescence with a diameter of 1.0 μm (excitation maximum wavelength 461n)
m, fluorescence maximum wavelength 472 nm) particles and red fluorescence of 1.0 μm in diameter (excitation maximum wavelength 560 nm, fluorescence maximum wavelength 577n)
m) Particles were used. This and -NH2 group-containing nucleic acid probe -
The binding reaction with the COOH group-containing fluorescent particles was carried out by the conventional carbodiimide method. That is, 100 μl of cobasphere particles (2.71 × 109 particles) and 58.7 μmol of EDC (ethyl-3′-dimethylaminopropyl carbodiimide).
hydrochloride) and 5.87 nmol of —NH2 group-containing nucleic acid probe were added to MES (2- [N-Morpholino] ethane at pH 5).
sulfonic acid) mix in buffer (final 2 ml), 37
After reacting at 4 ° C for 4 hours, 587 µmol of monoethanolamine hydrochloric acid aqueous solution was added and further reacted at 37 ° C for 30 minutes. The reaction solution was centrifuged at 15,000 rpm for 5 minutes, the supernatant was removed, and the mixture was washed and centrifuged 5 times with 10 ml of water (15,000 rpm for 5 minutes), and then 2.71 ml of HEPES containing 1% bovine serum albumin. The cells were resuspended in a buffer solution (20 mM, pH 7.0), sonicated (20 KHz, 50 W, 2 seconds), and stored at 4 ° C.

【0028】粒子に結合したプローブ数は以下の方法で
測定した。TDH1プローブ結合緑蛍光粒子懸濁液10
μl(107ビーズ)に×20ハイブリダイゼーション液(ク
エン酸ナトリウム( 二水塩、以下同じ)8.8%、Na
Cl 17.5%、ウシ血清アルブミン2%、ポリビニ
ールピロリドン2.0%、ドデシル硫酸ナトリウム4.
0%) 10μl を加え、40pmolの32P 標識したantiT
DH1(TDH1の相補鎖)プローブ20μl を加え、
50℃で15分間ハイブリダイゼーション後、15,000rp
m で5分間遠心し上清を除き、洗浄液1(クエン酸ナト
リウム0.44%、NaCl 0.875%、ドデシル
硫酸ナトリウム1%)1mlに粒子を懸濁させ、50℃で
5分間洗浄し、15,000rpm で5分間遠心し上清を除い
た。同様に洗浄液2(クエン酸ナトリウム0.44%、
NaCl0.875%、トリトンX−100 1%)、
洗浄液3(クエン酸ナトリウム0.44%、NaCl
0.875%)で洗浄した。40μl の水に再懸濁した
粒子の10μl をメンブレンフィルター(0.22μm
)で濾過し、1mlの水で5回洗浄した後、メンブレン
フィルター上の粒子の32P をシンチレーションカウンタ
ー(アロカ社)で測定した。結果は652,000CPMで粒子1
個当り約177,000 分子のTDH1プローブが結合されて
いた。同様にTDH2標識赤蛍光粒子を32P 標識したan
tiTDH2プローブで検定した結果は、744,000CPMで粒
子1個当り約186,000 分子のTDH2プローブが結合さ
れていた。
The number of probes bound to the particles was measured by the following method. TDH1 probe binding green fluorescent particle suspension 10
To 20 μl (107 beads) x 20 hybridization solution (sodium citrate (dihydrate, the same below) 8.8%, Na
Cl 17.5%, bovine serum albumin 2%, polyvinylpyrrolidone 2.0%, sodium dodecyl sulfate 4.
0%) 10 μl was added, and 40 pmol of32 P-labeled antiT was added.
Add 20 μl of DH1 (complementary strand of TDH1) probe,
After hybridization for 15 minutes at 50 ℃, 15,000rp
Centrifuge at 5 m for 5 minutes to remove the supernatant, suspend the particles in 1 ml of washing solution 1 (sodium citrate 0.44%, NaCl 0.875%, sodium dodecyl sulfate 1%) and wash at 50 ° C for 5 minutes. The supernatant was removed by centrifugation at 15,000 rpm for 5 minutes. Similarly, wash solution 2 (sodium citrate 0.44%,
NaCl 0.875%, Triton X-100 1%),
Wash solution 3 (sodium citrate 0.44%, NaCl
0.875%). 10 μl of the particles resuspended in 40 μl of water was transferred to a membrane filter (0.22 μm
) And washed 5 times with 1 ml of water,32 P of particles on the membrane filter was measured with a scintillation counter (Aloka Co.). The result is 1 particle at 652,000 CPM
About 177,000 molecules of TDH1 probe were bound per one. Similarly, TDH2-labeled red fluorescent particles were labeled with32 P
As a result of assaying with the tiTDH2 probe, it was found that about 186,000 molecules of TDH2 probe were bound per particle at 744,000 CPM.

【0029】(実施例3)ハイブリダイゼーション反応
のフローサイトメーターによる測定 A.フローサイトメーターの調整 フローサイトメーターはFACScan(Becton-Dicki
nson& Co.,CA,USA )またはCytoron(Ortho Dia
gnostics Japan,東京)を用いた。まず緑蛍光粒子の測
定感度(FSc,SSc,Gr.Fl(Fl1) )の調
整及び、赤蛍光粒子の測定感度(FSc,SSc,R
d.Fl(Fl2) )の調整を行ない、両方の粒子が共
に測定できる感度を設定し、二つの粒子を混合したもの
を測定し、各粒子の少なくとも1〜3量体が画面内に入
る様確認または調整した後、コンペンセーションをか
け、緑蛍光強度、赤蛍光強度を調節した。 各装置での
測定条件は以下のごとく設定した。
Example 3 Measurement of Hybridization Reaction by Flow Cytometer A. Adjusting the flow cytometer The flow cytometer is a FACScan (Becton-Dicki
nson & Co., CA, USA) or Cytoron (Ortho Dia
gnostics Japan, Tokyo) was used. First, adjustment of measurement sensitivity (FSc, SSc, Gr.Fl (Fl1)) of green fluorescent particles and measurement sensitivity of red fluorescent particles (FSc, SSc, R).
d. Fl (Fl2)) is adjusted, the sensitivity at which both particles can be measured is set, the mixture of two particles is measured, and it is confirmed that at least 1 to 3 mer of each particle falls within the screen or After the adjustment, compensation was applied to adjust the green fluorescence intensity and the red fluorescence intensity. The measurement conditions of each device were set as follows.

【0030】[0030]

【0031】B.ハイブリダイゼーション反応 TDH1プローブ標識緑蛍光粒子1μl(1.0×106ビー
ズ)、TDH2プローブ標識赤蛍光粒子1μl(1.0 ×10
6ビーズ)、熱変性した腸炎ビブリオDNA抽出液80
μl 、及び×16ハイブリダイゼーション液38μl を混
合し、50℃で15分間ハイブリダイゼーションを行な
い、洗浄液1を280μl 添加した後、その内の20μ
l をフローサイトメーターで測定した(図3、図5、図
6)。
B. Hybridization reaction TDH1 probe-labeled green fluorescent particles 1 μl (1.0 × 106 beads), TDH2 probe-labeled red fluorescent particles 1 μl (1.0 × 106 beads)
6 beads), heat-denatured Vibrio parahaemolyticus DNA extract 80
20 μl of the washing solution 1 was mixed with 38 μl of the 16 μl hybridization solution and 38 μl of the x16 hybridization solution, followed by hybridization at 50 ° C. for 15 minutes.
l was measured with a flow cytometer (FIG. 3, FIG. 5, FIG. 6).

【0032】C.結果 結果を図3に示した。5×102〜5×105ゲノム/
mlが定量的に測定できた。
C. Results The results are shown in FIG. 5 × 102 to 5 × 105 genomes /
ml could be measured quantitatively.

【配列表】[Sequence list]

【0033】配列番号:1 配列の長さ:25 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成核酸 配列の特徴 特徴を表す記号:modified base 存在位置:1 特徴を決定した方法:E 他の情報:5-(N-(7'''- アミノヘプチル) アクリルアミ
ド-2''- イル) デオキシ ウリジン (5-(N-(7'''-amino
heptyl) acrylamido-2''-yl)deoxy uridine) 存在位置:2 ..25 他の特徴:ビブリオ パラヘモリティカス(Vibrio para
haemolyticus) の耐熱性毒素(thermostable direct hem
olycin: TDH1) 産生部位に相補的配列 NCCCCGGTTC TGATGAGATA TTGTT 25
SEQ ID NO: 1 Sequence length: 25 Sequence type: Nucleic acid Number of strands: Single strand Topology: Linear Sequence type: Other nucleic acid Synthetic nucleic acid Sequence features Characteristic symbols: modified base existence Position: 1 Method of characterizing: E Other information: 5- (N- (7 '''-aminoheptyl)acrylamido-2''-yl) deoxyuridine (5- (N- (7'''- amino
heptyl) acrylamido-2``-yl) deoxy uridine) Location: 2 ..25 Other characteristics: Vibrio para hemolyticus (Vibrio para
haemolyticus) thermostable toxin (thermostable direct hem)
olycin: TDH1) Complementary sequence to production site NCCCCGGTTC TGATGAGATA TTGTT 25

【配列表】[Sequence list]

【0034】配列番号:2 配列の長さ:25 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成核酸 配列の特徴 特徴を表す記号:modified base 存在位置:1 特徴を決定した方法:E 他の情報:5-(N-(7'''- アミノヘプチル) アクリルアミ
ド-2''- イル) デオキシ ウリジン (5-(N-(7'''-amino
heptyl) acrylamido-2''-yl)deoxy uridine) 存在位置:2 ..25 他の特徴:ビブリオ パラヘモリティカス(Vibrio para
haemolyticus) の耐熱性毒素(thermostable direct hem
olycin: TDH2) 産生部位に相補的配列 NCAGGTACTA AATGGCTGAC ATCCT 25
SEQ ID NO: 2 Sequence length: 25 Sequence type: Nucleic acid Number of strands: Single strand Topology: Linear Sequence type: Other nucleic acid Synthetic nucleic acid Characteristic of sequence Characteristic symbol: existence of modified base Position: 1 Method of characterizing: E Other information: 5- (N- (7 '''-aminoheptyl)acrylamido-2''-yl) deoxyuridine (5- (N- (7'''- amino
heptyl) acrylamido-2``-yl) deoxy uridine) Location: 2 ..25 Other characteristics: Vibrio para hemolyticus (Vibrio para
haemolyticus) thermostable toxin (thermostable direct hem)
olycin: TDH2) Complementary sequence to the production site NCAGGTACTA AATGGCTGAC ATCCT 25

【図面の簡単な説明】[Brief description of drawings]

【図1】2種の蛍光粒子を用いた核酸プローブの反応を
説明する図である。
FIG. 1 is a diagram illustrating a reaction of a nucleic acid probe using two types of fluorescent particles.

【図2】フローサイトメトリーで異なる2種の蛍光粒子
を測定した場合の粒子の分布を示す図である。
FIG. 2 is a diagram showing the distribution of particles when two different types of fluorescent particles are measured by flow cytometry.

【図3】実施例3における腸炎ビブリオDNAの検量線
を示す。
FIG. 3 shows a calibration curve of Vibrio parahaemolyticus DNA in Example 3.

【図4】実施例3における凝集粒子数に重みづけを行な
った係数を示す。
FIG. 4 shows a coefficient obtained by weighting the number of agglomerated particles in Example 3.

【図5】実施例3における腸炎ビブリオDNA濃度5×
102のときの測定結果を示す。
FIG. 5: Vibrio parahaemolyticus DNA concentration 5 × in Example 3
The measurement results at 102 are shown.

【図6】実施例3における腸炎ビブリオDNA濃度5×
106のときの測定結果を示す。
FIG. 6 Vibrio parahaemolyticus DNA concentration 5 × in Example 3
The measurement results at 106 are shown.

【符号の説明】[Explanation of symbols]

図1中、1は標的核酸、2は共存する核酸、3は標的核
酸の特異的な配列a、4は標的核酸の他の特異的な配列
b、5は3の配列に相補的な配列を持った核酸プロー
ブ、6は4の配列に相補的な配列を持った核酸プロー
ブ、7は蛍光粒子、8は7とは異なる蛍光を持った蛍光
粒子を示す。また、9は7の蛍光粒子同士の自然または
非特異凝集、10は8の蛍光粒子同士の自然または非特
異凝集、11は標的核酸と3−5のハイブリダイゼーシ
ョンにより特異的に標的核酸1に結合した蛍光粒子、1
2は標的核酸と4−6のハイブリダイゼーションにより
特異的に標的核酸1に結合した蛍光粒子を示す。図2
中、aは2種の蛍光粒子それぞれ単独粒子を示し、bは
2種の蛍光粒子それぞれの凝集体を示す。またcは2種
の蛍光粒子がそれぞれ1個づつ結合した凝集体を示し、
dは2種の蛍光粒子が複数個結合した凝集体を示す。
In FIG. 1, 1 is a target nucleic acid, 2 is a coexisting nucleic acid, 3 is a specific sequence a of the target nucleic acid, 4 is another specific sequence b of the target nucleic acid, 5 is a sequence complementary to the sequence of 3. The nucleic acid probe 6 has a nucleic acid probe 6 having a sequence complementary to the sequence 4, a fluorescent particle 7 and a fluorescent particle 8 having a fluorescence different from 7. Further, 9 is natural or non-specific aggregation of 7 fluorescent particles, 10 is natural or non-specific aggregation of 8 fluorescent particles, 11 is specifically bound to target nucleic acid 1 by hybridization with target nucleic acid 3-5 Fluorescent particles, 1
Reference numeral 2 denotes a fluorescent particle which is specifically bound to the target nucleic acid 1 by the hybridization of 4-6 with the target nucleic acid. Figure 2
In the figure, a represents a single particle of each of two types of fluorescent particles, and b represents an aggregate of each of two types of fluorescent particles. Further, c represents an aggregate in which two kinds of fluorescent particles are bonded one by one,
d represents an aggregate in which a plurality of two types of fluorescent particles are bonded.

Claims (8)

Translated fromJapanese
【特許請求の範囲】[Claims]【請求項1】 試料溶液中の被検物質濃度を以下の工程
からなるリガンド・レセプター反応を利用して測定する
リガンド・レセプター反応の高感度検出法。 a.被検物質中の特異性のある部分[a]に選択的に結
合する物質を結合させた蛍光波長[X]の蛍光微粒子
[A・X]と、被検物質中の上記[a]とは異なる、特
異性のある部分[b]に選択的に結合する物質を結合さ
せた蛍光波長[Y]の蛍光微粒子[B・Y]と、被検物
質を含む試料溶液の3つを所定時間、所定温度で反応さ
せ、被検物質に蛍光微粒子[A・X]と蛍光微粒子[B
・Y]の両者を特異的に結合させ、 b.工程a.で得られた混合液をフローサイトメーター
に一定量流し、上記溶液中の蛍光微粒子の発する前方散
乱光、上記蛍光波長[X]及び[Y]をそれぞれ含む2
種類の蛍光を測定し、 c.蛍光強度に基づき、蛍光微粒子[A・X]の単体、
蛍光微粒子[A・X]同士の凝集体、蛍光微粒子[B・
Y]の単体、蛍光微粒子[B・Y]同士の凝集体、及び
蛍光微粒子[A・X]と蛍光微粒子[B・Y]との凝集
体を区別し、少なくとも蛍光微粒子[A・X]と蛍光微
粒子[B・Y]の凝集体の数を計数し、 d.工程b.記載の一定量中の蛍光微粒子〔A・X〕と
蛍光微粒子〔B・Y〕の凝集体の数より試料中の被検物
質濃度を算出する。
1. A highly sensitive method for detecting a ligand-receptor reaction, which comprises measuring the concentration of a test substance in a sample solution using the ligand-receptor reaction, which comprises the following steps. a. The fluorescent fine particles [A · X] having a fluorescence wavelength [X] in which a substance that selectively binds to the specific portion [a] in the test substance is bound, and the above-mentioned [a] in the test substance Fluorescent fine particles [BY] having a fluorescence wavelength [Y] to which a substance that selectively binds to a different and specific portion [b] is bound, and three sample solutions containing the test substance are given for a predetermined time. The reaction is performed at a predetermined temperature, and the fluorescent fine particles [AX] and the fluorescent fine particles [B] are added to the test substance.
• Y] specifically bound to each other, b. Step a. A certain amount of the mixed solution obtained in step 1 is flown through a flow cytometer, and the forward scattered light emitted from the fluorescent fine particles in the solution and the fluorescent wavelengths [X] and [Y] are contained respectively.
Measuring the type of fluorescence, c. Based on the fluorescence intensity, the fluorescent fine particles [AX] alone,
An aggregate of fluorescent fine particles [A / X], fluorescent fine particles [B / X]
Y] alone, aggregates of fluorescent fine particles [B · Y] and aggregates of fluorescent fine particles [A · X] and fluorescent fine particles [B · Y] are distinguished, and at least fluorescent fine particles [A · X] Counting the number of aggregates of fluorescent fine particles [BY], d. Step b. The concentration of the test substance in the sample is calculated from the number of aggregates of the fluorescent fine particles [AX] and the fluorescent fine particles [BY] in the specified amount.
【請求項2】 蛍光微粒子[A・X]及び蛍光微粒子
[B・Y]がレーザーの単一波長で共に励起され、蛍光
を発する請求項1のリガンド・レセプター反応の高感度
検出法。
2. The highly sensitive method for detecting a ligand-receptor reaction according to claim 1, wherein the fluorescent fine particles [AX] and the fluorescent fine particles [BY] are excited together by a single wavelength of a laser to emit fluorescence.
【請求項3】 混合溶液をB/F分離せずにそのままフ
ローサイトメーターで測定する請求項1及び2のリガン
ド・レセプター反応の高感度検出法。
3. The highly sensitive detection method for a ligand-receptor reaction according to claim 1, wherein the mixed solution is directly measured by a flow cytometer without B / F separation.
【請求項4】 前方散乱光強度に基づき蛍光微粒子の存
在を検出し、一定の前方散乱光強度を有するものだけ蛍
光の分析を行なう請求項1〜3のリガンド・レセプター
反応の高感度検出法。
4. The high-sensitivity detection method for a ligand-receptor reaction according to claim 1, wherein the presence of fluorescent fine particles is detected based on the forward scattered light intensity, and fluorescence is analyzed only for those having a certain forward scattered light intensity.
【請求項5】 被検物質がDNAあるいはRNAであ
り、選択的に結合する物質がオリゴヌクレオチドである
請求項1のリガンド・レセプター反応の高感度検出法。
5. The method for highly sensitive detection of a ligand-receptor reaction according to claim 1, wherein the test substance is DNA or RNA, and the substance that selectively binds is an oligonucleotide.
【請求項6】 被検物質が抗原または抗体であり、選択
的に結合する物質が対応する抗体または抗原である請求
項1のリガンド・レセプター反応の高感度検出法。
6. The method for highly sensitive detection of a ligand-receptor reaction according to claim 1, wherein the test substance is an antigen or an antibody, and the substance that selectively binds is the corresponding antibody or antigen.
【請求項7】 被検物質が生理活性物質であり、選択的
に結合する物質がそのレセプターである請求項1のリガ
ンド・レセプター反応の高感度検出法。
7. The highly sensitive method for detecting a ligand-receptor reaction according to claim 1, wherein the test substance is a physiologically active substance, and the substance which selectively binds is its receptor.
【請求項8】 蛍光微粒子[A・X]及び蛍光微粒子
[B・Y]を組み込んだ、試料溶液中の被検物質濃度を
リガンド・レセプター反応を利用して測定するリガンド
・レセプター反応の高感度検出キット。
8. A highly sensitive ligand-receptor reaction for measuring the concentration of a test substance in a sample solution, which incorporates fluorescent fine particles [AX] and fluorescent fine particles [BY], using the ligand-receptor reaction. Detection kit.
JP3559191A1991-02-041991-02-04High-sensitivity detection method of ligand/receptor reactionPendingJPH05107249A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP3559191AJPH05107249A (en)1991-02-041991-02-04High-sensitivity detection method of ligand/receptor reaction

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP3559191AJPH05107249A (en)1991-02-041991-02-04High-sensitivity detection method of ligand/receptor reaction

Publications (1)

Publication NumberPublication Date
JPH05107249Atrue JPH05107249A (en)1993-04-27

Family

ID=12446037

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP3559191APendingJPH05107249A (en)1991-02-041991-02-04High-sensitivity detection method of ligand/receptor reaction

Country Status (1)

CountryLink
JP (1)JPH05107249A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
AU719315B2 (en)*1995-04-032000-05-04Australian Water Technologies Pty LtdMethod for detecting microorganisms
US6184043B1 (en)1992-09-142001-02-06FODSTAD øYSTEINMethod for detection of specific target cells in specialized or mixed cell population and solutions containing mixed cell populations
US6225046B1 (en)1995-04-032001-05-01Macquarie Research Ltd.Method for detecting microorganisms
US6265229B1 (en)1994-03-102001-07-24Oystein FodstadMethod and device for detection of specific target cells in specialized or mixed cell populations and solutions containing mixed cell populations
US7198787B2 (en)1996-03-132007-04-03Oystein FodstadMethod of killing target cells in harvested cell populations with one or more immuno-toxins
US7442553B2 (en)2004-09-062008-10-28Fuji Xerox Co., Ltd.Method for determining the amount of the maleimidyl groups of a particle
WO2011065753A3 (en)*2009-11-242011-11-17가톨릭대학교 산학협력단Flow cytometry method through the control of fluorescence intensities

Cited By (9)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6184043B1 (en)1992-09-142001-02-06FODSTAD øYSTEINMethod for detection of specific target cells in specialized or mixed cell population and solutions containing mixed cell populations
US6893881B1 (en)1992-09-142005-05-17Abbott Laboratories, Inc.Method for detection of specific target cells in specialized or mixed cell population and solutions containing mixed cell populations
USRE43979E1 (en)1992-09-142013-02-05Abbott LaboratoriesMethod for detection of specific target cells in specialized or mixed cell population and solutions containing mixed cell populations
US6265229B1 (en)1994-03-102001-07-24Oystein FodstadMethod and device for detection of specific target cells in specialized or mixed cell populations and solutions containing mixed cell populations
AU719315B2 (en)*1995-04-032000-05-04Australian Water Technologies Pty LtdMethod for detecting microorganisms
US6225046B1 (en)1995-04-032001-05-01Macquarie Research Ltd.Method for detecting microorganisms
US7198787B2 (en)1996-03-132007-04-03Oystein FodstadMethod of killing target cells in harvested cell populations with one or more immuno-toxins
US7442553B2 (en)2004-09-062008-10-28Fuji Xerox Co., Ltd.Method for determining the amount of the maleimidyl groups of a particle
WO2011065753A3 (en)*2009-11-242011-11-17가톨릭대학교 산학협력단Flow cytometry method through the control of fluorescence intensities

Similar Documents

PublicationPublication DateTitle
US10670592B2 (en)Detection of analytes using metal nanoparticle probes and dynamic light scattering
EP0462644B1 (en)Biologically active reagents prepared from carboxy-containing polymer, analytical element and methods of use
JP3468750B2 (en) Microparticles with multiple fluorescent signals
EP0608370B1 (en)Binding assay employing labelled reagent
EP0625211B1 (en)Amplification of assay reporters by nucleic acid replication
JPH06509417A (en) Method and configuration for simultaneous analysis of multiple samples
JPH06317593A (en) Assay using a biospecific solid phase carrier
US20030054356A1 (en)Multiple reporter read-out for bioassays
JP2010148494A (en)Method for detecting nucleic acid in sample
WO2004009848A1 (en)Microparticle based signal amplification for the detection of analytes
AU679008B2 (en)Mixed luminescent conjugate test assays
JPH09504094A (en) Method for assaying immunological substances using magnetic latex particles and non-magnetic particles
CN101672848A (en)Microsphere surface fluorescence color coding liquid biochip diagnostic kit, method and device for detecting material to be detected by using diagnostic kit and application of diagnostic kit
JPH05107249A (en)High-sensitivity detection method of ligand/receptor reaction
JP2005509858A (en) Method and apparatus for multiple flow cytometry analysis of mixed analytes derived from body fluid samples
JPS61286755A (en)Solid phase immunity testing method and composition using light-emitting fine particle
JP3545158B2 (en) Gene detection method
WO2002024959A2 (en)Multiple reporter read-out for bioassays
JPH05281230A (en)Method for highly sensitive detection of ligand-receptor reaction
JP3695178B2 (en) Antigen / antibody measurement method
Kellar et al.Multiplexed microsphere assays for protein and DNA binding reactions
JP3188303B2 (en) Polynucleotide detection method
JP3681873B2 (en) Method for measuring substances
JP2509840B2 (en) Immunoassay method and immunoassay reagent kit
JPWO2008007773A1 (en) Method for confirming analyte detection activity of microparticles

[8]ページ先頭

©2009-2025 Movatter.jp