Movatterモバイル変換


[0]ホーム

URL:


JPH0475431A - rechargeable power supply - Google Patents

rechargeable power supply

Info

Publication number
JPH0475431A
JPH0475431AJP18799190AJP18799190AJPH0475431AJP H0475431 AJPH0475431 AJP H0475431AJP 18799190 AJP18799190 AJP 18799190AJP 18799190 AJP18799190 AJP 18799190AJP H0475431 AJPH0475431 AJP H0475431A
Authority
JP
Japan
Prior art keywords
battery
voltage
power supply
charging
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18799190A
Other languages
Japanese (ja)
Other versions
JP3031969B2 (en
Inventor
Masataka Yamashita
正隆 山下
Akira Yoshino
彰 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filedlitigationCriticalhttps://patents.darts-ip.com/?family=16215714&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0475431(A)"Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Chemical Industry Co LtdfiledCriticalAsahi Chemical Industry Co Ltd
Priority to JP2187991ApriorityCriticalpatent/JP3031969B2/en
Publication of JPH0475431ApublicationCriticalpatent/JPH0475431A/en
Application grantedgrantedCritical
Publication of JP3031969B2publicationCriticalpatent/JP3031969B2/en
Anticipated expirationlegal-statusCritical
Expired - Lifetimelegal-statusCriticalCurrent

Links

Landscapes

Abstract

PURPOSE:To protect a secondary battery in a charging power unit against overcharge by detecting a battery charging voltage exceeding a chargeable voltage through a control section which then controls a switching element to interrupt a charging circuit. CONSTITUTION:When the voltage across a battery 3 exceeds a predetermined level Voff close to a chargeable voltage, a MOSFET 41 comprising an internal parasitic diode 41A as a switching element makes a transition from conducting state to interrupted state thus interrupting the charging circuit for the battery 3. When the voltage across the battery 3 drops below the Voff due to discharge through the parasitic diode 41A, the MOSFET 41 makes a transition from interrupted state to conducting state and normal discharge takes place.

Description

Translated fromJapanese

【発明の詳細な説明】[産業上の利用分野]本発明は急速充電可能な二次電池を有する充電式電源装
置に関し、特に、過充電防止機能を備えた電源装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a rechargeable power supply device having a rapidly chargeable secondary battery, and particularly to a power supply device having an overcharge prevention function.

[従来の技術1ポータプル機器の発達に伴い、ラジオ、ラジオ付きカセ
ットテープレコーダ、ポータプルVTR、ポータプルコ
ンピュータ等の電子機器、携帯電話等の通信機器、ポー
タプル電動工具等の動力機器の電源に、−次電池および
二次電池が広く使われるようになっている。特に、近年
、二次電池の使用が著しく増加している。
[Prior art 1] With the development of portable equipment, power supplies for electronic equipment such as radios, cassette tape recorders with radios, portable VTRs, portable computers, communication equipment such as mobile phones, and power equipment such as portable power tools are becoming increasingly popular. Batteries and secondary batteries are becoming widely used. In particular, the use of secondary batteries has increased significantly in recent years.

一般の二次電池においては、適正な充電条件を越えて過
充電を行うと電解液の分解に伴ってガスが発生する。
In general secondary batteries, when overcharged beyond proper charging conditions, gas is generated as the electrolyte decomposes.

開放型または排出型の電池においては、発生したガスは
逃がすことができるが、この過充電の結果としてその電
極は多少の損傷を受ける。
In open or drained cells, the gas generated is allowed to escape, but the electrodes suffer some damage as a result of this overcharging.

一方、密閉型の電池では内部でガス圧が高まって爆発事
故を起こす。このため、密閉型電池においては過充電に
対して安全弁を設けることによりガス圧の上昇に対処し
ているものがあるが、これらの安全弁を設けた電池にあ
ってはガス抜きを確実に行えない場合も生じるため信頼
性の面で問題があった。さらに、この安全弁の作動によ
り腐食性の高いガスが放出されたときには、電池が組み
込まれた機器を腐食させるという欠点もあった。
On the other hand, in sealed batteries, the gas pressure builds up inside, causing an explosion. For this reason, some sealed batteries are equipped with safety valves to prevent overcharging in order to cope with the rise in gas pressure, but batteries with these safety valves cannot ensure gas release. There were problems in terms of reliability as this could occur in some cases. Furthermore, when highly corrosive gas is released due to the operation of this safety valve, there is also the drawback that it corrodes equipment in which the battery is installed.

また、過充電が酷い場合には、電池の内部で短絡が起こ
り、電池が破裂に至る場合もあった。
In addition, if overcharging is severe, a short circuit may occur inside the battery, leading to the battery bursting.

それ故、電池が正常な充電条件を越えて、充電を継続さ
せるのを防止する装置が必要とされる。
Therefore, there is a need for a device that prevents batteries from continuing to charge beyond normal charging conditions.

一般に市販されている二次電池では、サーモスタットも
しくは温度フユーズ等を電池に直列に接続し、適切な充
電条件を越えて過充電されたときにはその電池の発熱を
検知し、充電回路を遮断することにより以上のような問
題を解決しようとしでいる。
Generally, with commercially available secondary batteries, a thermostat or temperature fuse is connected in series with the battery, and when the battery is overcharged beyond the appropriate charging conditions, it detects the heat generation of the battery and shuts off the charging circuit. I am trying to solve the above problems.

[発明が解決しようとする課題1しかしながら、サーモスタットもしくは温度フユーズの
ように過充電の際の発熱を検知し、充電回路を遮断する
ような装置では、その検知時には電池は既に適正な充電
条件を越えて過充電が進行しており、電池の性能の劣化
のみならず、漏液、破裂等の異常状態を発生している場
合が多々あった。
[Problem to be Solved by the Invention 1] However, in devices such as thermostats or temperature fuses that detect heat generation during overcharging and shut off the charging circuit, the battery has already exceeded the proper charging condition by the time this is detected. As overcharging progressed, not only did battery performance deteriorate, but abnormal conditions such as leakage and rupture occurred in many cases.

本発明の目的は以上のような問題を解消するために、充
電式電源装置において、当該充電式電源装置の中の二次
電池を過充電から保護し、二次電池の性能の劣化を防止
するとともに、二次電池を過充電によって危険な状態に
至らしめない充電式電源装置を提供することにある。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, an object of the present invention is to protect a secondary battery in a rechargeable power supply device from overcharging and prevent deterioration of performance of the secondary battery in a rechargeable power supply device. Another object of the present invention is to provide a rechargeable power supply device that does not cause a secondary battery to become dangerous due to overcharging.

[課題を解決するための手段1以上の目的を達成するために本発明は充電可能な電池と
、内部に寄生ダイオードを有するスイッチ素子と、前記
電池の両端電圧を検出して前記スイッチ素子を制御する
制御手段とを備え、前記スイッチ素子はその寄生ダイオ
ードの順方向が前記電池の放電方向となるように前記電
池に接続され、前記制御手段は、前記電池の電圧が充電
可能電圧の近傍の第1の電圧より下ったとき前記スイッ
チ素子を導通させ、前記電池の電圧が前記充電可能電圧
の近傍であって前言己第1の電圧より高い第2の電圧よ
り上った時前記スイッチ素子を非導通状態にすることを
特徴とするものである。
[Means for Solving the Problems 1] In order to achieve the above objects, the present invention includes a rechargeable battery, a switch element having a parasitic diode inside, and a voltage across the battery to detect the voltage across the battery to control the switch element. The switching element is connected to the battery such that the forward direction of the parasitic diode is the discharging direction of the battery, and the control means is configured to control the switching element so that the voltage of the battery is near the chargeable voltage. When the voltage of the battery falls below a second voltage, the switch element is made conductive, and when the voltage of the battery rises above a second voltage, which is near the chargeable voltage and higher than the first voltage, the switch element is turned off. It is characterized by being in a conductive state.

[作 用1本発明によれば、電池の充電電圧が充電可能電圧以上に
なったことを、制御部が検出し、スイッチ素子を制御し
て充電回路を遮断する。また、このスイッチ素子は、内
部の寄生ダイオードによって電池の放電回路の一部をも
構成しており、回路の簡素化を図ることができる。
[Function 1] According to the present invention, the control section detects that the charging voltage of the battery has become equal to or higher than the chargeable voltage, and controls the switch element to shut off the charging circuit. Further, this switch element also constitutes a part of the battery discharge circuit by an internal parasitic diode, and the circuit can be simplified.

[実施例1以下、本発明による電源装置の実施例を図面により説明
する。
[Embodiment 1] Hereinafter, an embodiment of the power supply device according to the present invention will be described with reference to the drawings.

第1図は本発明の基本構成を示すブロック図である。第
1図に示すように、負荷もしくは充電器lは、電源装置
2に接続される。電源装置2は、電池3、スイッチ素子
4および制御手段5から構成される。
FIG. 1 is a block diagram showing the basic configuration of the present invention. As shown in FIG. 1, a load or charger l is connected to a power supply device 2. As shown in FIG. The power supply device 2 includes a battery 3, a switch element 4, and a control means 5.

ここで、本発明でいう電池とは、単一の電池のみならず
、複数の電池を互いに接続した組電池、過放電、短絡等
にかかわる安全装置、残容量表示等の機能が付加された
電池および組電池をも包含する。
Here, the term "battery" as used in the present invention refers not only to a single battery, but also to an assembled battery in which multiple batteries are connected to each other, and a battery with additional functions such as safety devices related to over-discharge, short circuit, etc., and remaining capacity display. It also includes assembled batteries.

また、本発明のスイッチ素子としては、電力損失が小さ
く、かつ、通常の使用状態での消費電力を小さくするた
めに、電圧駆動型のスイッチであることが好ましい。こ
の条件を満足するデバイスとして、電界効果型のトラン
ジスター(FET)が好ましい条件を備えているが、そ
の中でも、デバイスの内部に寄生ダイオードを有するM
OS FETを使用すると回路を著しく簡略化、および
、小型化することができる。すなわち、MOS FET
の内部の寄生ダイオードを電源装置の放電回路の一部と
して使用することで、電源装置内の放電回路を省略でき
、しかも、従来の電源装置と同じように2端子の部品と
して使用することができる。ここで、電源装置内の制御
手段を外部からコントロールするための第3の端子等は
必ずしも必要としない。
Furthermore, the switch element of the present invention is preferably a voltage-driven switch in order to reduce power loss and reduce power consumption in normal usage conditions. As a device that satisfies this condition, field-effect transistors (FETs) have favorable conditions.
The use of OS FETs allows the circuit to be significantly simplified and miniaturized. That is, MOS FET
By using the internal parasitic diode as part of the power supply's discharge circuit, the discharge circuit within the power supply can be omitted, and it can also be used as a two-terminal component like a conventional power supply. . Here, a third terminal or the like for externally controlling the control means within the power supply device is not necessarily required.

次に、第2図に過充電防止機能を具備した電源装置の一
実施例を示す。第2図に示すようにスイッチ素子として
、内部寄生ダイオード41Aを有するMOS FET4
1を用いる。電池3は単電池もしくは、直列または並列
に接続された組電池からなる。
Next, FIG. 2 shows an embodiment of a power supply device equipped with an overcharge prevention function. As shown in FIG. 2, a MOS FET 4 having an internal parasitic diode 41A serves as a switching element.
1 is used. The battery 3 consists of a single cell or an assembled battery connected in series or parallel.

制御手段5は、コンパレータと基準電圧回路等から構成
することが可能であり、第2図に示す回路図のように電
源入力と信号入力を兼ねる反転入力端(V−)を電池3
の負極端子に、非反転入力端(V、)を電池3の正極端
子に接続する。制御手段5の出力端はMOS FET4
1のゲートに接続し、電IO!3の負極はMOS FE
T41のドレインに接続し、MOS FET41のソー
スは、電源装置2の負極端子7に接続し、電池3の正極
は電源装置2の正極端子6に接続する。
The control means 5 can be composed of a comparator, a reference voltage circuit, etc., and as shown in the circuit diagram shown in FIG.
The non-inverting input terminal (V, ) is connected to the negative terminal of the battery 3 and the positive terminal of the battery 3. The output end of the control means 5 is MOS FET4
Connect to the gate of 1 and power IO! The negative electrode of 3 is MOS FE
The source of the MOS FET 41 is connected to the negative terminal 7 of the power supply device 2, and the positive electrode of the battery 3 is connected to the positive terminal 6 of the power supply device 2.

割筒手段5の出カバターンの例を第3図に示す。第3図
の(a)および(b)に示すように、制御手段5のオン
時の出力電圧(■。utl。nl)は、MOS FET
41のゲートカットオフ電圧(VGj 1Off+ )
よりも高く、また制御手段5のオフ時の出力電圧(Vo
ut 1offl )は、MOS FET41のゲート
カットオフ電圧(Vas Iot t+ )よりも低い
ことが必要であるが、制御手段5のオン時の出力電圧(
■。utl。7.)は、第3図の(a)または(b)ど
ちらの出力形式であっても差支えない。
An example of the output pattern of the split tube means 5 is shown in FIG. As shown in (a) and (b) of FIG. 3, the output voltage (■.utl.nl) when the control means 5 is turned on is
41 gate cutoff voltage (VGj 1Off+)
, and the output voltage (Vo
ut 1offl ) needs to be lower than the gate cutoff voltage (Vas Iot t+ ) of the MOS FET 41, but the output voltage (Vas Iot t+ ) when the control means 5 is on is
■. utl. 7. ) may be output in either (a) or (b) in FIG.

以上の構成によれば、電池3の両端電圧が充電可能電圧
近傍のある一定の電圧(第3図におけるVor r)以
上になると、制御手段5の出力電圧が■。、。2,1以
上からVast。1.)以下になり、MOS FET4
1が導通状態から遮断状態になり、電池3の充電回路を
遮断する。
According to the above configuration, when the voltage across the battery 3 exceeds a certain voltage (Vor r in FIG. 3) near the chargeable voltage, the output voltage of the control means 5 becomes ■. ,. Vast from 2,1 or more. 1. ) and below, MOS FET4
1 changes from a conductive state to a cutoff state, and the charging circuit of the battery 3 is cut off.

そして、寄生ダイオード41Aを介した放電によって電
池3の両端電圧が前記■。、tよりも低い電圧(第3図
におけるV。1)以下なると、制御手段5の出力電圧ば
■。、(。2.)以下から■。5loff1以上になり
、MOS FET41が遮断状態から導通状態になり、
通常の(低損失の)放電が行われる。
Then, due to discharge via the parasitic diode 41A, the voltage across the battery 3 increases to the above-mentioned (■). , t (V.1 in FIG. 3) or less, the output voltage of the control means 5 becomes {circle around (2)}. , (.2.) From the following ■. 5loff1 or more, MOS FET41 changes from cutoff state to conduction state,
A normal (low loss) discharge takes place.

なお、第2図および第3図に示したスイッチ素子の位置
と制御手段の出カバターンとは、N−チャンネル型のM
OS FETに対応するものであって、他のスイッチ素
子を用いる場合には、そのスイッチ素子の特性に応じた
配置および制御手段の8カバターンを選ぶ必要がある。
Note that the position of the switch element and the output turn of the control means shown in FIGS. 2 and 3 are based on the N-channel type M
When using another switch element that corresponds to the OS FET, it is necessary to select the arrangement and eight cover patterns of the control means according to the characteristics of the switch element.

ここで、充電回路の遮断スイッチとして使用するMOS
 FETを検討した結果、MOS FETとしては、ド
レイン・ソース間のオン抵抗(RD□。nl)が小さい
ものほど好ましく、ドレイン・ソース間のオン抵抗(R
1)=+。。1)は電源装置内の電池の内部抵抗と同程
度、もしくは、それよりも小さいことが必要であること
がわかった。もちろん、MOS FETは並列に使用し
ても差し支えなく、この場合は、MOS FETのドレ
イン・ソース間のオン抵抗(Ro、。。、)の合成抵抗
値が電源装置内の電池の内部抵抗と同程度、もしくは、
それよりも小さいことが必要である。
Here, the MOS used as a cutoff switch for the charging circuit
As a result of examining FETs, we found that for MOS FETs, the smaller the on-resistance (RD□.nl) between the drain and source, the better;
1)=+. . It has been found that 1) needs to be equal to or smaller than the internal resistance of the battery in the power supply device. Of course, MOS FETs can be used in parallel, and in this case, the combined resistance value of the on-resistance (Ro,...) between the drain and source of the MOS FETs is the same as the internal resistance of the battery in the power supply. degree or
It needs to be smaller than that.

MOS FETのドレイン・ソース間のオン抵抗(Ro
s ion+ )が電源装置内の電池の内部抵抗に比べ
て大きい場合は、MOS FETによる電力損失が大き
くなるばかりではな(、その結果、電源装置内の温度偏
差が著しく大きくなり好ましくない。
On-resistance between drain and source of MOS FET (Ro
If s ion+ ) is larger than the internal resistance of the battery in the power supply, not only will the power loss due to the MOS FET become large (as a result, the temperature deviation within the power supply will become significantly large, which is undesirable).

なお、スイッチ素子としてはで内部に寄生ダイオードを
有するデバイスであれば、内部に寄生ダイオードを有す
るMOS FETと同じように寄生ダイオードを放電回
路の一部として使用することによってMOS FETと
同様に電源装置内の回路を簡略化することができる。
Note that if the switch element is a device that has a parasitic diode inside, it can be used in a power supply device like a MOS FET by using the parasitic diode as part of the discharge circuit, just like a MOS FET that has an internal parasitic diode. The internal circuit can be simplified.

ところで、制御手段として使用する電子回路は、バイポ
ーラIC,MOS IC,、CMOS IC,Bi−M
OSIC5および、ハイブリッドIC等で構成すること
ができるが、消費電流が小さいほうが好ましく、少なく
とも、充電式電源装置内の二次電池の自己放電電流より
も小さいことが望ましい。特に、脱着可能な充電式電源
装置としては、充電した状態で電池を保存した場合、使
用しないで放置しているだけで、充電式電源装置の残存
容量が著しく短期間になくなってしまうのでは実用には
堪え難い。
By the way, electronic circuits used as control means include bipolar IC, MOS IC, CMOS IC, Bi-M
Although it can be configured with an OSIC 5, a hybrid IC, etc., it is preferable that the current consumption is small, and it is desirable that the current consumption is at least smaller than the self-discharge current of the secondary battery in the rechargeable power supply device. In particular, as a removable rechargeable power supply device, if the battery is stored in a charged state, the remaining capacity of the rechargeable power supply device will run out in a very short period of time if the battery is left unused. It's unbearable.

さらに、制御手段はスイッチ素子をオフする検知電圧(
■。1.)よりも低いリセット電圧(Von)を有する
ことが必要であり、そのヒステリシスの大きす(v、r
e−v、、)は0.05V 〜5.0V程度あることが
好ましい。
Further, the control means includes a detection voltage (
■. 1. ), and the magnitude of its hysteresis (v, r
e−v, , ) is preferably about 0.05V to 5.0V.

0.05Vよりも小さなヒステリシスでは、充電電流の
遮断による電池端子間電圧の低下によって、再び、リセ
ット電圧(V、、、)を下回ってしまい、その結果、ス
イッチ素子がオンして、電池は断続的に充電が継続され
てしまうことになるので、ヒステリシスが小さすぎるの
は好ましくない。
If the hysteresis is smaller than 0.05V, the voltage between the battery terminals decreases due to the cutoff of the charging current, which causes the voltage to drop below the reset voltage (V,...) again, and as a result, the switch element turns on, causing the battery to run intermittently. It is undesirable for the hysteresis to be too small because charging may continue.

一方、ヒステリシスが5.Ovよりも大きな場合は、電
源装置が充電遮断状態から放電に入った場合、電源装置
内の電池の電圧がリセット電圧(Vo、)を下回らず、
制御手段の出力電圧が上らないのでスイッチ素子がオフ
状態のままとなり、放電電流はスイッチ素子の寄生ダイ
オードのみを流れるので、スイッチ素子での電力損失が
大きい状態が続いてしまう。すなわち、ヒステリシスが
大きすぎるのは好ましくなく、放電開始による電池電圧
の低下によって、ただちに電圧検知手段がリセットされ
る程度のヒステリシスの大きさでなければならない。し
たがって、ヒステリシスの大きさは0.05V〜5.0
V程度あることが好ましい。
On the other hand, hysteresis is 5. If it is larger than Ov, the voltage of the battery in the power supply does not fall below the reset voltage (Vo, ) when the power supply enters discharge from the charging cutoff state;
Since the output voltage of the control means does not rise, the switch element remains in the off state, and the discharge current flows only through the parasitic diode of the switch element, resulting in a state where the power loss in the switch element continues to be large. That is, it is not preferable for the hysteresis to be too large, and the hysteresis must be large enough to immediately reset the voltage detection means when the battery voltage drops due to the start of discharge. Therefore, the magnitude of hysteresis is 0.05V to 5.0
It is preferable to have about V.

つぎに、電池3として特開昭62−90.863号の二
次電池を使用した場合について具体的に説明する。以下
は、電池3として二次電池を2個直列に組み合わせた場
合について詳述する。
Next, a case where the secondary battery disclosed in Japanese Patent Application Laid-Open No. 62-90.863 is used as the battery 3 will be specifically explained. Below, a case where two secondary batteries are combined in series as the battery 3 will be explained in detail.

電池3の標準的な動作電圧範囲は、lセルあたり2.7
5V〜4.2Vであり、電池3を2個直列に組み合わせ
た場合は、 5.5V〜8.4■になる。
Typical operating voltage range for battery 3 is 2.7 per cell
The voltage is 5V to 4.2V, and when two batteries 3 are combined in series, the voltage is 5.5V to 8.4V.

本例ではビデオムービーの電源用として2.0Ahの容
量を有する電源装置を試作した。試作した電源装置は9
0mmX 46mmX 26mmの大きさを有し、0.
15Ω〜0.30Ωの内部抵抗を持つ。なお、電池3の
単セルの内部抵抗は、0.02Ω〜0.08Ωであり、
25℃での自己放電電流は200μm程度ある。
In this example, a power supply device having a capacity of 2.0 Ah was prototyped as a power source for a video movie. The prototype power supply device is 9
It has a size of 0mm x 46mm x 26mm, and 0.
It has an internal resistance of 15Ω to 0.30Ω. In addition, the internal resistance of the single cell of the battery 3 is 0.02Ω to 0.08Ω,
The self-discharge current at 25° C. is about 200 μm.

ここで、電池3は単セルの端子間の電圧が約4.5V以
上になると、通常のサイクル劣化より大きな性能の低下
を引き起こすばかりではなく、安全上好ましくない。さ
らに、単セルの端子間の電圧が約4.8■を越えると異
常発熱を引き起こし、危険な状態になる。したがって、
電池を2個を直列に組み合わせた場合は、充電時に電源
装置の電圧が少なくとも充電可能電圧である9、0V以
上にならないようにすることが安全上必要である。
Here, in the battery 3, when the voltage between the terminals of the single cell becomes about 4.5 V or more, not only does the performance deteriorate more than normal cycle deterioration, but it is also not desirable for safety. Furthermore, if the voltage between the terminals of a single cell exceeds about 4.8 µ, abnormal heat generation will occur, resulting in a dangerous situation. therefore,
When two batteries are combined in series, it is necessary for safety to ensure that the voltage of the power supply device does not exceed at least the chargeable voltage of 9.0 V during charging.

ここで使用するスイッチ素子4としては例えば、23に
1286 (NEC)、23に1136(三菱) 、2
3に1137(三菱) 、2SK1114(東芝)等の
MOS FETを使用すれば、MOS FETのドレイ
ン・ソース間のオン抵抗(RDs 1anl )は、0
.04Ω〜0.12Ωにすることができる。もちろん、
より定格の大きなMOS FETを使用すれば、さらに
、MOS FETのドレイン・ソース間のオン抵抗(R
I、−+。。、)を小さ(することが可能である。
The switch elements 4 used here are, for example, 1286 (NEC) for 23, 1136 (Mitsubishi) for 23, 2
If you use a MOS FET such as 1137 (Mitsubishi) or 2SK1114 (Toshiba) for 3, the on-resistance (RDs 1anl) between the drain and source of the MOS FET will be 0.
.. 0.04Ω to 0.12Ω. of course,
If a MOS FET with a higher rating is used, the on-resistance between the drain and source of the MOS FET (R
I, -+. . ,) can be made small (.

また、制御手段5はコンパレータと基準電圧回路等を用
い、シュミット回路を構成すればよい。
Further, the control means 5 may constitute a Schmitt circuit using a comparator, a reference voltage circuit, etc.

このような回路で、充電遮断電圧(■。1.)を8.5
V〜8.8■に設定する。さらに、制御手段5をCMO
S1、C,等で構成すれば、制御手段5の平均消費電流
を、100μ八以下に押さえるのは容易である。
With this kind of circuit, the charging cutoff voltage (■.1.) can be set to 8.5.
Set to V~8.8■. Furthermore, the control means 5 is
If configured with S1, C, etc., it is easy to suppress the average current consumption of the control means 5 to 100μ8 or less.

以上このような構成にすれば、この電源装置の動作電圧
域(5,5V〜8.4V)では、単に、電池3を2個直
列に接続した場合と全く同じように使用することが可能
であり、MOS FETにおける電力損失は、電源装置
の電力容量の3%以下程度に抑えることができる。
With this configuration, within the operating voltage range of this power supply (5.5V to 8.4V), it can be used in exactly the same way as simply connecting two batteries 3 in series. Therefore, the power loss in the MOS FET can be suppressed to about 3% or less of the power capacity of the power supply device.

ここで、電源装置2が正常な充電条件(充電電流は2A
以下で、かつ、電源装置2の端子間電圧が8.4V以下
の定電圧充電)を越えて充電が行われた場合、電源装置
2内の電池3の端子間電圧が充電遮断電圧(■。2.)
を越えれば、ただちに、充電回路が遮断され、電源装置
2内の電池3が危険な状態に至るのを未然に防止できる
Here, the power supply device 2 is under normal charging conditions (charging current is 2A
If charging is performed at a constant voltage charge of 8.4 V or less and the voltage between the terminals of the power supply device 2 is 8.4 V or less, the voltage between the terminals of the battery 3 in the power supply device 2 is the charging cutoff voltage (■). 2.)
If it exceeds this, the charging circuit is immediately cut off, and it is possible to prevent the battery 3 in the power supply device 2 from reaching a dangerous state.

例えば、二次電池を2個直列に接続した組電池とこの電
源装置2を、2.OAの定電流充電を行った場合で比較
を行えば、電池を2個直列に接続した組電池では、端子
間の電圧が9.6vを越えたあたりから異常発熱を始め
、ついには破裂に至る。ところが、この電源装置2では
電源装置2内の電池3の端子間電圧が充電遮断電圧(■
。□)を越えれば、ただちに、充電回路が遮断される。
For example, if a battery pack in which two secondary batteries are connected in series and this power supply device 2 are used, 2. Comparing the case with constant current charging of OA, a battery with two batteries connected in series starts to generate abnormal heat when the voltage between the terminals exceeds 9.6V, and eventually explodes. . However, in this power supply device 2, the voltage between the terminals of the battery 3 in the power supply device 2 is the charging cutoff voltage (■
. □), the charging circuit is immediately cut off.

すなわち、通常の充電に比べれば、特性の劣化は数%大
きくなる場合もあるが、破裂等の危険な状態は回避され
、その後も安全に使用できる。
That is, compared to normal charging, the deterioration of characteristics may be several percent greater, but dangerous conditions such as explosion are avoided, and the battery can be used safely thereafter.

[発明の効果1以上説明したように、本発明によれば、非常に簡単な構
成で、通常の二次電池と全く同じように使用でき、しか
も正常な充電条件を越えて電池が過充電される以前に、
電源装置の充電回路を遮断し、電源装置内の電池を過充
電から保護することができ、過充電による危険や特性の
劣化の虞れをな(することができる。
[Advantageous Effects of the Invention 1] As explained above, according to the present invention, the structure is very simple and can be used in exactly the same way as a normal secondary battery. Before
It is possible to cut off the charging circuit of the power supply device and protect the battery in the power supply device from overcharging, thereby eliminating the risk of danger and deterioration of characteristics due to overcharging.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本的構成を示すブロック図、第2図は本発明の一実施例の回路図、第3図(a) 、 (b)は制御手段の出カバターンの
例を示す図である。1・・・負荷または充電器、2・・・電源装置、3・・・電池、4・・・スイッチ素子、5・・・制御手段、6・・・正極端子、7・・・負極端子、41・・・MOS FET、41A・・・寄生ダイオード。(Q)Von Voff (V+−V−)(b)第3図
FIG. 1 is a block diagram showing the basic configuration of the present invention, FIG. 2 is a circuit diagram of an embodiment of the present invention, and FIGS. 3(a) and (b) are diagrams showing an example of the output pattern of the control means. It is. DESCRIPTION OF SYMBOLS 1... Load or charger, 2... Power supply device, 3... Battery, 4... Switch element, 5... Control means, 6... Positive electrode terminal, 7... Negative electrode terminal, 41...MOS FET, 41A...parasitic diode. (Q) Von Voff (V+-V-) (b) Figure 3

Claims (1)

Translated fromJapanese
【特許請求の範囲】1)充電可能な電池と、内部に寄生ダイオードを有する
スイッチ素子と、前記電池の両端電圧を検出して前記ス
イッチ素子を制御する制御手段とを備え、前記スイッチ素子はその寄生ダイオードの順方向が前記
電池の放電方向となるように前記電池に接続され、前記制御手段は、前記電池の電圧が充電可能電圧の近傍
の第1の電圧より下ったとき前記スイッチ素子を導通さ
せ、前記電池の電圧が前記充電可能電圧の近傍であって
前記第1の電圧より高い第2の電圧より上った時前記ス
イッチ素子を非導通状態にすることを特徴とする充電式
電源装置。
[Claims] 1) A rechargeable battery, a switch element having a parasitic diode therein, and a control means for detecting a voltage across the battery to control the switch element, the switch element comprising: The parasitic diode is connected to the battery such that the forward direction thereof is the discharge direction of the battery, and the control means conducts the switch element when the voltage of the battery falls below a first voltage near a chargeable voltage. and the switch element is brought into a non-conducting state when the voltage of the battery rises above a second voltage that is near the chargeable voltage and higher than the first voltage. .
JP2187991A1990-07-181990-07-18 Rechargeable power supplyExpired - LifetimeJP3031969B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP2187991AJP3031969B2 (en)1990-07-181990-07-18 Rechargeable power supply

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP2187991AJP3031969B2 (en)1990-07-181990-07-18 Rechargeable power supply

Publications (2)

Publication NumberPublication Date
JPH0475431Atrue JPH0475431A (en)1992-03-10
JP3031969B2 JP3031969B2 (en)2000-04-10

Family

ID=16215714

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP2187991AExpired - LifetimeJP3031969B2 (en)1990-07-181990-07-18 Rechargeable power supply

Country Status (1)

CountryLink
JP (1)JP3031969B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH0837302A (en)*1993-11-301996-02-06Siliconix Inc Bidirectional current blocking switch using MOSFET, switch circuit using the same and power supply selecting method
US5789900A (en)*1994-12-051998-08-04Fuji Photo Film Co., Ltd.Device for protecting a secondary battery from overcharge and overdischarge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH0837302A (en)*1993-11-301996-02-06Siliconix Inc Bidirectional current blocking switch using MOSFET, switch circuit using the same and power supply selecting method
US5789900A (en)*1994-12-051998-08-04Fuji Photo Film Co., Ltd.Device for protecting a secondary battery from overcharge and overdischarge

Also Published As

Publication numberPublication date
JP3031969B2 (en)2000-04-10

Similar Documents

PublicationPublication DateTitle
JP2872365B2 (en) Rechargeable power supply
US7667435B2 (en)Secondary battery protection circuit with over voltage transient protection
JP3212963B2 (en) Secondary battery control circuit
KR100943576B1 (en) Battery pack
US8633677B2 (en)Battery pack and method of charging battery pack
US6222346B1 (en)Battery protection device
US20020113574A1 (en)Charge and discharge controller
JPH04331425A (en)Overcharge preventing device and overdischarge preventing device
KR101264740B1 (en)Battery protection circuit and controlling method thereof
US20240305124A1 (en)Battery pack
JPH08196042A (en)Charging and discharging protection unit for secondary battery
WO2013108336A1 (en)Secondary battery protection circuit, battery pack, and electronic apparatus
JPH06276696A (en)Over-discharge protective circuit of secondary battery
JPH08265985A (en)Charging method for pack battery
JP3622243B2 (en) Charge / discharge protection device for secondary battery
JP2001112182A (en) Secondary battery protection circuit
JP2925241B2 (en) Rechargeable battery device
JPH07105986A (en)Battery pack
JP3524675B2 (en) Battery charge / discharge control device
JPH10290530A (en) Secondary battery protection circuit
JP2000069689A (en) Battery pack device
JPH08237872A (en)Charge or discharge protective apparatus for secondary cell
JP3420672B2 (en) Secondary battery protection circuit
US20050237028A1 (en)Secondary battery protection circuit with over voltage transient protection
JP2004320924A (en) Overcharge protection device for secondary battery, power supply device, and charge control method for secondary battery

Legal Events

DateCodeTitleDescription
FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20080210

Year of fee payment:8

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20090210

Year of fee payment:9

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20090210

Year of fee payment:9

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20100210

Year of fee payment:10

S531Written request for registration of change of domicile

Free format text:JAPANESE INTERMEDIATE CODE: R313531

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20100210

Year of fee payment:10

R350Written notification of registration of transfer

Free format text:JAPANESE INTERMEDIATE CODE: R350

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20100210

Year of fee payment:10

S111Request for change of ownership or part of ownership

Free format text:JAPANESE INTERMEDIATE CODE: R313111

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20100210

Year of fee payment:10

R350Written notification of registration of transfer

Free format text:JAPANESE INTERMEDIATE CODE: R350

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20110210

Year of fee payment:11

EXPYCancellation because of completion of term
FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20110210

Year of fee payment:11


[8]ページ先頭

©2009-2025 Movatter.jp