Movatterモバイル変換


[0]ホーム

URL:


JPH0473113B2 - - Google Patents

Info

Publication number
JPH0473113B2
JPH0473113B2JP59023897AJP2389784AJPH0473113B2JP H0473113 B2JPH0473113 B2JP H0473113B2JP 59023897 AJP59023897 AJP 59023897AJP 2389784 AJP2389784 AJP 2389784AJP H0473113 B2JPH0473113 B2JP H0473113B2
Authority
JP
Japan
Prior art keywords
battery
voltage
value
harmonic voltage
harmonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59023897A
Other languages
Japanese (ja)
Other versions
JPS60166876A (en
Inventor
Susumu Okazaki
Shunichi Higuchi
Osamu Nakamura
Yoshio Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and TechnologyfiledCriticalAgency of Industrial Science and Technology
Priority to JP59023897ApriorityCriticalpatent/JPS60166876A/en
Priority to US06/699,090prioritypatent/US4687996A/en
Publication of JPS60166876ApublicationCriticalpatent/JPS60166876A/en
Publication of JPH0473113B2publicationCriticalpatent/JPH0473113B2/ja
Grantedlegal-statusCriticalCurrent

Links

Landscapes

Description

Translated fromJapanese

【発明の詳細な説明】発明の分野 本発明は、電池の残存容量を知る方法及びその
ための装置類に関するものである。尚、本明細書
に於いては、「残存容量」とは、電池に残されて
いる放電容量のみならず、充電直後又は充電中の
電池に充電された放電しうる容量をも意味するも
のとする。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method and apparatus for determining the remaining capacity of a battery. In this specification, "residual capacity" refers not only to the remaining discharge capacity of the battery, but also to the dischargeable capacity of the battery immediately after charging or during charging. do.

従来技術とその問題点 電池の残存容量を知る従来の方法としては、電
池の端子電圧、インピーダンス等を測定すること
が行なわれている。それらの値は、通常の使用範
囲での電池の残存容量の変化に対して極めて僅か
しか変化せず(例えば、マンガン乾電池では1.6
〜0.9V、1〜2Ω(31.2Hzのとき、Ever Ready
SP11))、加えて測定誤差等のため正確に残存容
量を知ることは困難である。しかもインピーダン
スの容量依存性は極小値を有するなど直線的でな
い場合が多い。また、最も広く用いられている二
次電池である鉛蓄電池では、電解液としての希硫
酸の比重を測定することによつて残存容量を求め
ている。これらの方法では、電池より所要量の希
硫酸を取出さねばならず、測定は極めて不便であ
る。また、フロート或いは屈折率測定セルを電池
内に組込んだものが考案されてはいるが、前者の
欠点は、振動に弱い、フロートのひつかかり、気
泡の付着等により誤差が大きい等であり、後者の
欠点としては、セルのよごれ、光源の強度の不安
定さ等による精度の低下が挙げられる。電池内に
第2ミニセルを設け、この第2ミニセルにより希
硫酸濃度を測定する方法も行なわれているが、こ
の方法では、電池の構造が複雑になること、及び
この第2ミニセル自身の劣化等の欠点がある。
Prior Art and its Problems The conventional method of determining the remaining capacity of a battery is to measure the terminal voltage, impedance, etc. of the battery. These values change very little with changes in the battery's remaining capacity over normal usage (for example, 1.6
~0.9V, 1~2Ω (Ever Ready at 31.2Hz)
SP11)) In addition, it is difficult to accurately determine the remaining capacity due to measurement errors, etc. Moreover, the capacitance dependence of impedance is often not linear, such as having a minimum value. Furthermore, in lead-acid batteries, which are the most widely used secondary batteries, the remaining capacity is determined by measuring the specific gravity of dilute sulfuric acid as an electrolyte. In these methods, the required amount of dilute sulfuric acid must be removed from the battery, making measurement extremely inconvenient. In addition, batteries have been devised in which a float or a refractive index measurement cell is incorporated into a battery, but the disadvantages of the former are that they are susceptible to vibrations, the float gets stuck, and there are large errors due to the adhesion of air bubbles, etc. Disadvantages of the latter include a decrease in accuracy due to dirt on the cell, instability in the intensity of the light source, and the like. There is also a method in which a second minicell is provided in the battery and the concentration of dilute sulfuric acid is measured using this second minicell, but this method complicates the structure of the battery and causes problems such as deterioration of the second minicell itself. There are drawbacks.

発明の目的 本発明は電池の残存容量を、正確に、容易に、
且つ電池それ自身に特別な装置を施すことなく知
る方法及びそのための装置類を提供することを目
的とする。本発明の対象である電池は、マンガン
乾電池、水銀電池、アルカリ・マンガン乾電池、
酸化銀電池、塩化銀電池、空気電池、リチウム電
池等の一次電池、及び鉛蓄電池、アルカリ蓄電
池、ニツケル−カドミウム電池等の二次電池のい
ずれをも包含するものである。
Purpose of the invention The present invention accurately and easily measures the remaining capacity of a battery.
Another object of the present invention is to provide a method of knowing the battery without requiring any special equipment on the battery itself, and devices therefor. Batteries that are the object of the present invention include manganese dry batteries, mercury batteries, alkaline manganese dry batteries,
It includes primary batteries such as silver oxide batteries, silver chloride batteries, air batteries, and lithium batteries, and secondary batteries such as lead-acid batteries, alkaline batteries, and nickel-cadmium batteries.

発明の構成 上記目的を達成するための、本発明方法及び装
置類は、電池の予め判つている各残存容量状態に
おいて、電池に電池による直流電流に重畳して交
流電流を印加して回路の電圧の第n次高調波電圧
(nは2以上の整数を示し、n=1の場合は基本
波電圧を示すものとする。)に対応する値を測定
して、電池の残存容量と第n次高調波電圧に対応
する値との関係を予め求めておき、前記電池と同
種の電池に該電池による直流電流に重畳して前記
交流電流と同種の交流電流を印加して回路の電圧
の第n次高調波電圧に対応する値を測定し、測定
された第n次高調波電圧対応値と前記関係とを比
較することによつて電池の残存容量を知る方法、
電池の予め判つている各残存容量状態において、
電池に電池による直流電流に重畳して交流電流を
印加して回路の電圧の第n次高調波電圧に対応す
る値を測定することによつて得られる該第n次高
調波電圧対応値を、電池の残存容量又は電池の残
存容量に相当する量に関して表わした電池の残存
容量を知るためのグラフ、及び電池の両端子に接
続される回路、交流電流を発生する手段、電池に
よる直流電流に重畳して該交流電流を該回路に印
加する手段、及び該回路の電圧の第n次高調波電
圧に対応する値を測定する手段を備えたことを特
徴とする電池の残存容量を知るための装置であ
る。
Composition of the Invention In order to achieve the above object, the method and apparatus of the present invention apply an alternating current to the battery in each predetermined remaining capacity state of the battery, thereby increasing the voltage of the circuit Measure the value corresponding to the nth harmonic voltage (n is an integer of 2 or more, and if n = 1 indicates the fundamental wave voltage), and calculate the remaining capacity of the battery and the nth harmonic voltage. The relationship between the harmonic voltage and the value corresponding to the harmonic voltage is determined in advance, and an alternating current of the same type as the alternating current is applied to a battery of the same type as the above-mentioned battery, superimposed on the direct current of the battery, and the voltage of the circuit is nth A method for determining the remaining capacity of a battery by measuring a value corresponding to the harmonic voltage and comparing the measured value corresponding to the n-th harmonic voltage with the relationship;
In each predetermined remaining capacity state of the battery,
The nth harmonic voltage corresponding value obtained by applying an alternating current to the battery superimposed on the direct current generated by the battery and measuring the value corresponding to the nth harmonic voltage of the circuit voltage, A graph for determining the remaining capacity of the battery expressed in terms of the remaining capacity of the battery or an amount equivalent to the remaining capacity of the battery, a circuit connected to both terminals of the battery, a means for generating alternating current, and a graph superimposed on the direct current generated by the battery. and means for measuring the value corresponding to the nth harmonic voltage of the voltage of the circuit. It is.

本発明は、電池の端子に電池による直流電流に
重畳して交流電流を印加した場合、電池の残存容
量の減少に従つて回路の電圧中の高調波成分、及
び基本波成分と高調波成分との比が大きく変化す
るという全く新しい知見に基づいて成された新規
な電池の残存容量を知る方法及びそのための装置
類を提供するものである。
According to the present invention, when an alternating current is applied to the terminals of a battery in addition to the direct current generated by the battery, harmonic components, fundamental wave components, and harmonic components in the circuit voltage decrease as the remaining capacity of the battery decreases. The present invention provides a novel method for determining the remaining capacity of a battery based on the completely new knowledge that the ratio of the battery's capacity changes greatly, and devices therefor.

前記各第n次高調波電圧対応値は、前記各電圧
の第n次高調波電圧の値でも、或いは前記各電圧
の基本波電圧の値と第n次高調波電圧の値との比
でもよい。
Each of the n-th harmonic voltage corresponding values may be a value of the n-th harmonic voltage of each of the voltages, or a ratio between a value of the fundamental voltage of each of the voltages and a value of the n-th harmonic voltage. .

また前記第n次高調波電圧は前記各電圧の高調
波スペクトルにおいて最も大きなスペクトル成分
を有する次数のものが有利である。
Further, it is advantageous that the n-th harmonic voltage has an order having the largest spectral component in the harmonic spectrum of each of the voltages.

前記第n次高調波電圧対応値測定手段は、電圧
の第n次高調波電圧の値を測定するものでも、あ
るいは、電圧の基本波電圧の値と第n次高調波電
圧の値との比を測定するものでもよい。
The n-th harmonic voltage corresponding value measuring means may measure the value of the n-th harmonic voltage of the voltage, or may measure the ratio between the value of the fundamental wave voltage and the value of the n-th harmonic voltage of the voltage. It may also be something that measures.

本発明で用いられる交流電流の周波数及び振幅
は、電池の種類、容量によつて異なるが、周波数
は0.01Hz〜20kHzが、振幅は10mApp〜100Appが
適当である。
The frequency and amplitude of the alternating current used in the present invention vary depending on the type and capacity of the battery, but the appropriate frequency is 0.01 Hz to 20 kHz, and the amplitude is 10 mApp to 100 App.

発明の実施例 本発明の実施例を添附図面を用いて説明する。Examples of the invention Embodiments of the present invention will be described with reference to the accompanying drawings.

第1図は、本発明を実施するための装置の1例
の概略ブロツク回路図である。
FIG. 1 is a schematic block diagram of one example of an apparatus for carrying out the invention.

周波数可変、振幅可変であることが好ましい発
振器2の出力交流電圧は、ガルバノスタツト3に
より交流電流に変換され、この電流は該ガルバノ
スタツトにより被測定電池1の両端子に接続され
た回路6を通して電池による直流電流に重畳して
印加される。高調波フイルタ4及び交流電圧計5
より成る回路が第1図の様に接続されており、電
池1の両端の電圧の高周波成分は、フイルタ4を
介して出力され、電圧計5により測定される。フ
イルタ4は所望の任意の次数の高調波成分を出力
できるものであることが好ましい。被測定電池又
はそれと同種の電池の第n次高調波電圧対応値対
電池の残存容量の特性曲線を予め求めておけば、
測定された高調波電圧対応値より被測定電池の残
存容量を知ることができる。
The output AC voltage of the oscillator 2, which is preferably variable in frequency and amplitude, is converted into an AC current by a galvanostat 3, and this current is passed through a circuit 6 connected to both terminals of the battery under test 1 by the galvanostat. is applied superimposed on the DC current generated by the battery. Harmonic filter 4 and AC voltmeter 5
A circuit consisting of the following is connected as shown in FIG. It is preferable that the filter 4 is capable of outputting harmonic components of any desired order. If the characteristic curve of the n-th harmonic voltage corresponding value of the battery under test or a battery of the same type versus the remaining capacity of the battery is determined in advance,
The remaining capacity of the battery to be measured can be determined from the measured harmonic voltage corresponding value.

次に、被測定電池として、マンガン乾電池を用
いた場合を以下に詳細に説明する。
Next, the case where a manganese dry battery is used as the battery to be measured will be described in detail below.

第1図の如くに、発振器2、ガルバノスタツト
3、高調波フイルタ4及び電圧計5を接続した。
被測定電池として、公称電圧1.5Vの市販のマン
ガン乾電池(単)を用いた。この電池を、適宜
の抵抗負荷回路に接続し、直流(0.2A)で一定
時間(30分)放電させて、その後、該電池と測定
回路を第1図の如くに接続し、発振器2より、電
池の両端子において振幅0.14Arms、周波数10Hz
の正弦波摂動電流を公知のガルバノスタツト3を
介して回路6に印加し、電池1の両端の電圧の第
2次高調波成分の値を測定した。この放電、印
加、測定の行程を、電池が完全放電状態になるま
で室温下に繰返した。
As shown in FIG. 1, an oscillator 2, a galvanostat 3, a harmonic filter 4, and a voltmeter 5 were connected.
A commercially available manganese dry battery (single) with a nominal voltage of 1.5V was used as the battery to be measured. This battery is connected to a suitable resistive load circuit and discharged with direct current (0.2A) for a certain period of time (30 minutes).Then, the battery and the measurement circuit are connected as shown in Fig. 1, and from the oscillator 2, Amplitude 0.14Arms, frequency 10Hz at both terminals of the battery
A sinusoidal perturbation current was applied to the circuit 6 via a known galvanostat 3, and the value of the second harmonic component of the voltage across the battery 1 was measured. This process of discharging, applying, and measuring was repeated at room temperature until the battery was completely discharged.

測定した第2次高調波電圧の値(V)の、放電
した容量(Ah)、残存容量(Ah)及び残存容量
率(%)に対するグラフを第2図に示す。ここ
で、残存容量率とは次式で表わされるものとす
る。
FIG. 2 shows a graph of the measured second harmonic voltage value (V) versus discharged capacity (Ah), remaining capacity (Ah), and remaining capacity ratio (%). Here, the remaining capacity rate is expressed by the following equation.

残存容量率 =最大放電可能容量−放電した容量/最大放電可能
容量×100(%) 第2図に示す残存容量対応値に対する第2次高
調波電圧の曲線は、残存容量の減少に対して大き
く変化しており、このようなグラフを予め求めて
おけば、同種の電池に対して第2次高調波電圧の
値を測定することによつて残存容量を容易に、正
確に且つ電池に特別な装置を組込むことなく測定
し得ることが判る。
Remaining capacity rate = Maximum dischargeable capacity - Discharged capacity / Maximum dischargeable capacity x 100 (%) The curve of the second harmonic voltage for the remaining capacity corresponding value shown in Figure 2 shows that the curve of the second harmonic voltage with respect to the remaining capacity decreases greatly. If you obtain such a graph in advance, you can easily and accurately determine the remaining capacity by measuring the value of the second harmonic voltage for batteries of the same type. It can be seen that measurements can be made without incorporating any equipment.

尚、高調波フイルタ4を、回路の電圧の基本波
成分をも出力可能なものとし、第n次高調波電圧
の値とともに基本波電圧の値をも測定するように
してもよい。この場合の、上記と同様にして測定
して得られた基本波電圧の値と第2次高調波電圧
の値との比(百分率)の第2図と同様の図を第3
図に示す。
The harmonic filter 4 may also be configured to be capable of outputting the fundamental wave component of the voltage of the circuit, and may be configured to measure the value of the fundamental wave voltage as well as the value of the n-th harmonic voltage. In this case, the same diagram as Figure 2 shows the ratio (percentage) of the value of the fundamental wave voltage and the value of the second harmonic voltage obtained by measuring in the same manner as above.
As shown in the figure.

第3図に示す残存容量対応値に対する基本波電
圧の値と第n次高調波電圧対応値の値との比の曲
線も、残存容量の減少に対して大きく変化してお
り、このようなグラフを予め求めておけば、同種
の電池に対して基本波電圧の値及び第2次高調波
電圧の値を測定することによつて残存容量を容易
に、正確に且つ電池それ自身に特別な装置を組込
むことなく測定し得ることが判る。
The curve of the ratio of the fundamental wave voltage value to the value corresponding to the n-th harmonic voltage with respect to the remaining capacity corresponding value shown in Fig. 3 also changes greatly as the remaining capacity decreases, and such a graph If you determine this in advance, you can easily and accurately determine the remaining capacity by measuring the fundamental wave voltage value and the second harmonic voltage value for the same type of battery, and you can also use a special device for the battery itself. It can be seen that measurements can be made without incorporating.

上述の実施例では、判定に用いる高調波電圧と
して第2次高調波電圧を用いたが、測定する高調
波電圧成分は第2次高調波電圧に限定されるもの
ではなく、被測定電池の種類、印加する交流電流
の振幅、周波数によつては、より高い次数の高調
波電圧を測定してもよい。第4図は、ペースト式
鉛蓄電池(6N12A−2C)に振幅0.8Arms、周波
数1Hzの交流電流を印加した場合の電圧の高調波
スペクトルを示すものであり、横軸は高調波電圧
の次数(n)、縦軸は第n次高調波電圧の振幅
(Vrms)である。第5図は、同じ蓄電池を用い、
交流電流の周波数を100Hzとした場合の、第4図
と同様の高調波スペクトルである。第4図と第5
図を比較すれば、周波数を100Hzとした場合には、
第3次高調波成分を測定した方が有利であること
が判る。
In the above example, the second harmonic voltage was used as the harmonic voltage used for determination, but the harmonic voltage component to be measured is not limited to the second harmonic voltage, and may vary depending on the type of battery to be measured. Depending on the amplitude and frequency of the applied alternating current, higher harmonic voltages may be measured. Figure 4 shows the voltage harmonic spectrum when an alternating current with an amplitude of 0.8 Arms and a frequency of 1 Hz is applied to a paste type lead-acid battery (6N12A-2C), and the horizontal axis represents the harmonic voltage order (n ), and the vertical axis is the amplitude (Vrms) of the nth harmonic voltage. Figure 5 shows that using the same storage battery,
This is the same harmonic spectrum as in Fig. 4 when the frequency of the alternating current is 100Hz. Figures 4 and 5
Comparing the figures, if the frequency is 100Hz,
It turns out that it is more advantageous to measure the third harmonic component.

尚、第1図に例示されているような本発明方法
を実施するための装置は、公知のマイクロエレク
トロニクス技術により容易に小形化し得るので、
例えば自動車の計器盤にあるいは電池を電源とす
る小型の測定機器等に容易に組み込むことができ
る。第2図または第3図の如き特性曲線を不揮発
性メモリに記憶させておき、マイクロプロセツサ
により該メモリの内容と測定装置の出力とを比較
して、残存容量を自動的に表示させるようにある
いは充電装置を制御するようにすることもでき
る。
Incidentally, since the apparatus for implementing the method of the present invention as illustrated in FIG. 1 can be easily miniaturized using known microelectronics technology,
For example, it can be easily incorporated into an automobile instrument panel or into a small measuring device powered by a battery. A characteristic curve as shown in Fig. 2 or 3 is stored in a non-volatile memory, and a microprocessor compares the contents of the memory with the output of the measuring device to automatically display the remaining capacity. Alternatively, the charging device can also be controlled.

高調波電圧とあるいは基本波電圧及び高調波電
圧と残存容量との関係は、電池の種類、容量等に
よつて異なるので、前記メモリを取替可能とし、
電池交換の際に、新しく用いる電池に適合した内
容を記憶したメモリと交換することによつて、電
池を交換しても測定装置全体を取替えることなく
既存の測定装置によつて残存容量を知ることがで
きる。この場合、メモリには印加すべき交流電流
の振幅値、周波数、測定すべき高調波の次数等を
も記憶させておき、この記憶内容に従つて発振器
等を制御して、電池の種類、容易等に応じた測定
をするのが有利である。
The relationship between the harmonic voltage, or the fundamental voltage and harmonic voltage, and the remaining capacity varies depending on the type and capacity of the battery, so the memory is made replaceable,
By replacing the battery with a memory that stores the contents that are compatible with the new battery when replacing the battery, it is possible to know the remaining capacity using the existing measuring device without having to replace the entire measuring device even if the battery is replaced. I can do it. In this case, the memory also stores the amplitude value and frequency of the alternating current to be applied, the order of harmonics to be measured, etc., and controls the oscillator etc. according to the stored contents to easily determine the type of battery and It is advantageous to make measurements accordingly.

電池内の化学反応は、周囲の温度及び使用充放
電回数によつて異なるので、前以つて何種類かの
環境温度及び使用回数による特性を求めてメモリ
に記憶させておき、マイクロプロセツサにより測
定の温度補償及び回数補償を行なうようにするの
が適当である。
The chemical reactions inside the battery vary depending on the ambient temperature and the number of times it is used, so the characteristics depending on several types of environmental temperature and number of times used are determined and stored in memory, and then measured using a microprocessor. It is appropriate to perform temperature compensation and frequency compensation.

発明の効果 斯くして、本発明によれば、電池の残存容量を
正確に、且つ電池それ自身に特別な装置を施すこ
となく知ることのできる方法及びそのための装置
類が提供される。
Effects of the Invention Thus, according to the present invention, there is provided a method and devices for determining the remaining capacity of a battery accurately and without providing any special equipment to the battery itself.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するための装置の1例の
概略ブロツク図、第2図は第2次高調波電圧と残
存容量との関係を示すグラフ、第3図は第2次高
調波電圧対基本波電圧の比と残存容量との関係を
示すグラフ、第4図は1Hzの交流電圧を印加した
場合の高調波電圧スペクトル、第5図は100Hzの
交流電圧を印加した場合の高調波電圧スペクトル
を示す。 1……被測定電池、2……発振器、3……ガル
バノスタツト、4……高調波フイルタ、5……電
圧計、6……回路。
Fig. 1 is a schematic block diagram of an example of a device for carrying out the present invention, Fig. 2 is a graph showing the relationship between second harmonic voltage and remaining capacity, and Fig. 3 is a graph showing the relationship between second harmonic voltage and remaining capacity. A graph showing the relationship between the ratio of voltage to the fundamental wave and the remaining capacity. Figure 4 shows the harmonic voltage spectrum when a 1Hz AC voltage is applied. Figure 5 shows the harmonic voltage when a 100Hz AC voltage is applied. The spectrum is shown. 1... Battery to be measured, 2... Oscillator, 3... Galvanostat, 4... Harmonic filter, 5... Voltmeter, 6... Circuit.

Claims (1)

Translated fromJapanese
【特許請求の範囲】1 電池の予め判つている各残存容量状態におい
いて、電池に電池による直流電流に重畳して交流
電流を印加して回路の電圧の第n次高調波電圧
(nは2以上の整数)に対応する値を測定して、
電池の残存容量と第n次高調波電圧に対応する値
との関係を予め求めておき、前記電池と同種の電
池に該電池による直流電流に重畳して前記交流電
流と同種の交流電流を印加して回路の電圧の第n
次高調波電圧に対応する値を測定し、測定された
第n次高調波電圧対応値と前記関係とを比較する
ことによつて電池の残存容量を知る方法。2 前記各第n次高調波電圧対応値が、前記各電
流の第n次高調波電圧の値である特許請求の範囲
第1項に記載の方法。3 前記各第n次高調波電圧対応値が、前記各電
圧の基本波電圧の値と第n次高調波電圧の値との
比である特許請求の範囲第1項に記載の方法。4 前記各第n次高調波電圧が、前記各電圧の高
調波スペクトルにおいて最も大きなスペクトル成
分を有するものである特許請求の範囲第1項から
第3項のいずれかに記載の方法。5 電池の予め判つている各残存容量状態におい
て、電池に電池による直流電流に重畳して交流電
流を印加して回路の電圧の第n次高調波電圧(n
は2以上の整数)に対応する値を測定することに
よつて得られる該第n次高調波電圧対応値を、電
池の残存容量又は電池の残存容量に相当する量に
関して表わした電池の残存容量を知るためのグラ
フ。6 前記第n次高調波電圧対応値が、前記電圧の
第n次高調波電圧の値である特許請求の範囲第5
項に記載のグラフ。7 前記第n次高調波電圧対応値が、前記電圧の
基本波電圧の値と第n次高調波電圧の値との比で
ある特許請求の範囲第5項に記載のグラフ。8 前記第n次高調波電圧が、前記電圧の高調波
スペクトルにおいて最も大きなスペクトル成分を
有するものである特許請求の範囲第5項から第7
項のいずれかに記載のグラフ。9 電池の両端子に接続される回路、交流電流を
発生する手段、電池による直流電流に重畳して該
交流電流を該回路に印加する手段、及び該回路の
電圧の第n次高調波電圧(nは2以上の整数)に
対応する値を測定する手段を備えたことを特徴と
する電池の残存容量を知るための装置。10 前記第n次高調波電圧対応値測定手段が、
前記電圧の第n次高調波電圧の値を測定するもの
である特許請求の範囲第9項に記載の装置。11 前記第n次高調波電圧対応値測定手段が、
前記電圧の基本波電圧の値と第n次高調波電圧の
値とを測定するものである特許請求の範囲第9項
に記載の装置。
[Scope of Claims] 1. In each predetermined remaining capacity state of the battery, alternating current is applied to the battery superimposed on the direct current generated by the battery to generate the nth harmonic voltage of the circuit voltage (n is 2 (an integer greater than or equal to)
The relationship between the remaining capacity of the battery and the value corresponding to the n-th harmonic voltage is determined in advance, and an alternating current of the same type as the alternating current is applied to a battery of the same type as the above-mentioned battery, superimposed on the direct current generated by the battery. and the nth voltage of the circuit
A method of determining the remaining capacity of a battery by measuring a value corresponding to the harmonic voltage and comparing the measured value corresponding to the n-th harmonic voltage with the above relationship. 2. The method according to claim 1, wherein each of the nth harmonic voltage corresponding values is a value of the nth harmonic voltage of each of the currents. 3. The method according to claim 1, wherein each of the n-th harmonic voltage corresponding values is a ratio of the value of the fundamental wave voltage and the value of the n-th harmonic voltage of each of the voltages. 4. The method according to any one of claims 1 to 3, wherein each of the n-th harmonic voltages has the largest spectral component in the harmonic spectrum of each of the voltages. 5 In each predetermined remaining capacity state of the battery, an alternating current is applied to the battery superimposed on the direct current generated by the battery to generate the nth harmonic voltage (n
is an integer of 2 or more), and the n-th harmonic voltage corresponding value is expressed in terms of the remaining capacity of the battery or the amount equivalent to the remaining capacity of the battery. A graph to understand. 6. Claim 5, wherein the nth harmonic voltage corresponding value is a value of the nth harmonic voltage of the voltage.
Graph described in section. 7. The graph according to claim 5, wherein the n-th harmonic voltage corresponding value is a ratio between the value of the fundamental wave voltage and the value of the n-th harmonic voltage of the voltage. 8. Claims 5 to 7, wherein the n-th harmonic voltage has the largest spectral component in the harmonic spectrum of the voltage.
Graphs described in any of the sections. 9 A circuit connected to both terminals of the battery, a means for generating an alternating current, a means for applying the alternating current to the circuit in a manner superimposed on the direct current generated by the battery, and an nth harmonic voltage of the voltage of the circuit ( 1. A device for determining the remaining capacity of a battery, comprising means for measuring a value corresponding to (n is an integer of 2 or more). 10 The nth harmonic voltage corresponding value measuring means,
10. The device according to claim 9, which measures the value of the nth harmonic voltage of the voltage. 11 The nth harmonic voltage corresponding value measuring means,
10. The device according to claim 9, which measures the value of the fundamental wave voltage and the value of the nth harmonic voltage of the voltage.
JP59023897A1984-02-091984-02-09Method and apparatus for knowing residual capacity of batteryGrantedJPS60166876A (en)

Priority Applications (2)

Application NumberPriority DateFiling DateTitle
JP59023897AJPS60166876A (en)1984-02-091984-02-09Method and apparatus for knowing residual capacity of battery
US06/699,090US4687996A (en)1984-02-091985-02-07Method and apparatus for measuring remaining charge of galvanic cell

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP59023897AJPS60166876A (en)1984-02-091984-02-09Method and apparatus for knowing residual capacity of battery

Publications (2)

Publication NumberPublication Date
JPS60166876A JPS60166876A (en)1985-08-30
JPH0473113B2true JPH0473113B2 (en)1992-11-19

Family

ID=12123245

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP59023897AGrantedJPS60166876A (en)1984-02-091984-02-09Method and apparatus for knowing residual capacity of battery

Country Status (1)

CountryLink
JP (1)JPS60166876A (en)

Also Published As

Publication numberPublication date
JPS60166876A (en)1985-08-30

Similar Documents

PublicationPublication DateTitle
JP2536257B2 (en) Determining the life of stationary lead-acid batteries
US10527680B2 (en)Systems and methods for determining battery state of charge
US6495990B2 (en)Method and apparatus for evaluating stored charge in an electrochemical cell or battery
US5808445A (en)Method for monitoring remaining battery capacity
US4743855A (en)Method of and apparatus for measuring the state of discharge of a battery
JPH03282276A (en)Method for judging life of lead storage battery
JPH03274479A (en)Method of determining lifetime of lead storage battery
JPH0759135B2 (en) Rechargeable nickel-cadmium battery charge status indicator
JP2000019234A (en)Method and device for measuring capacity of battery using voltage response signal of pulse current
WO2003079033A1 (en)Electronic battery tester with battery failure temperature determination
US20110215761A1 (en)Method for determining the state of charge of a battery in charging or discharging phase
US4687996A (en)Method and apparatus for measuring remaining charge of galvanic cell
JP3412355B2 (en) Nickel-based battery deterioration determination method
JPH0473113B2 (en)
JPH0473112B2 (en)
JPH03182063A (en) How to detect the deterioration state of sealed lead-acid batteries
JP2001242204A (en)Direct current resistance measuring method of capacitor and its device
JPS61109264A (en) Storage battery monitoring device
JP2974157B2 (en) Remaining life judgment method of lead storage battery
KR101145993B1 (en)Prediction method of soc for battery
Karden et al.The non-linear low-frequency impedance of lead/acid batteries during discharge, charge and float operation
JPH11101832A (en)Capacitance-measuring instrument
JP2792064B2 (en) Method for detecting remaining capacity of lead-acid battery
JPS6238662B2 (en)
JP3057502B2 (en) Electronic equipment with secondary battery check function

Legal Events

DateCodeTitleDescription
EXPYCancellation because of completion of term

[8]ページ先頭

©2009-2025 Movatter.jp