【発明の詳細な説明】[発明の目的コ(産業上の利用分野)本発明は、MR撮影時被検体に接続されてECG信号を
検出するためのMHI装置用ECG信号ケーブルに関す
る。DETAILED DESCRIPTION OF THE INVENTION [Purpose of the Invention (Industrial Application Field) The present invention relates to an ECG signal cable for an MHI device that is connected to a subject during MR imaging and detects an ECG signal.
(従来の技術)MRI(磁気共鳴イメージング)装置は、主磁石によっ
て形成される静磁場に傾斜磁場用コイルによって形成さ
れる位置情報を検出するための傾斜磁場を重゛ねた磁場
内に撮影すべき被検体を配置し、送信用コイルによって
被検体に高周波磁場を加えることにより対象核種を励起
して、高周波磁場の印加を停止したときその対象核種か
ら発生されたMR倍信号磁気共鳴信号)を受信用コイル
で検出し、それに基いて所望部位の画像を再構成してモ
ニタに表示して診断に供するようにしたものである。(Prior Art) An MRI (Magnetic Resonance Imaging) device takes images in a magnetic field in which a gradient magnetic field for detecting position information formed by a gradient magnetic field coil is superimposed on a static magnetic field formed by a main magnet. A high-frequency magnetic field is applied to the subject by a transmitting coil to excite the target nuclide, and when the application of the high-frequency magnetic field is stopped, the MR multiplied signal (magnetic resonance signal) generated from the target nuclide is detected. This is detected by a receiving coil, and based on the detected image, an image of a desired region is reconstructed and displayed on a monitor for diagnosis.
このようなMRI装置で胸部特に心臓の画像を撮影する
場合には、心臓の拍動の影響を受けて正確な画像の撮影
が困難となる。このため心電図(E 1ectro−C
ardio−Gr am)を利用して心拍の一定の相か
らだけの画像を撮影するようにした、いわゆるECG同
期撮影法が実施されている。When taking images of the chest, particularly the heart, with such an MRI apparatus, it is difficult to take accurate images due to the influence of heart beats. For this reason, the electrocardiogram (E 1 electro-C
A so-called ECG-synchronized imaging method has been implemented in which images are taken only from a certain phase of a heartbeat using a radio-gram.
第5図はこのようなECG同期撮影法の原理を説明する
もので、ECG信号で心室の収縮に相当している最も急
峻なピークであるR波を目印にして、このR波から一定
時間Δを遅れてから送信コイルによって900パルスを
加え、続いて180°パルスを加えることによりMR倍
信号エコー信号)を得ることができる。同様にしてR波
が検出されるごとに前記動作を繰返すことにより、心室
の収縮期、拡張期にタイミングを合せて心臓の撮影を行
うことができるので、拍動の影響を受けることなく正確
な撮影ができるようになる。なおtは1心拍の時間を示
し、tRは繰返し時間を示し両者は等しく設定される。Figure 5 explains the principle of such an ECG synchronized imaging method. Using the R wave, which is the steepest peak of the ECG signal that corresponds to the contraction of the ventricle, as a landmark, a certain period of time Δ is detected from this R wave. MR multiplied signal (echo signal) can be obtained by applying 900 pulses by the transmitting coil after delaying the signal, followed by a 180° pulse. By repeating the above operation every time an R wave is detected in the same way, it is possible to take images of the heart in synchronization with the systole and diastole of the ventricle, allowing for accurate imaging without being affected by the heartbeat. You will be able to take pictures. Note that t indicates the time for one heartbeat, and tR indicates the repetition time, and both are set equal.
第4図はこのようにECG同期撮影を行う場合の概略を
示すもので、MRI装置内に配置された被検体6の体表
には第5図のようなECG信号を検出するためのケーブ
ル1が電極IAを介して複数本例えば3本接続されて信
号処理回路に導かれる。前記のように被検体6からのE
CG信号を検出することにより所定のタイミングで高周
波磁場を加えることによりMR撮影が行われる。FIG. 4 shows an outline of the case where ECG synchronized imaging is performed in this way, and a cable 1 for detecting ECG signals as shown in FIG. A plurality of, for example three, are connected via the electrode IA and guided to the signal processing circuit. As mentioned above, E from subject 6
MR imaging is performed by detecting a CG signal and applying a high frequency magnetic field at a predetermined timing.
(発明が解決しようとする課題)ところでこのようなECG同期撮影に用いられる従来の
ECG信号ケーブルは、MR撮影時高周波磁場が加えら
れるとこの高周波磁場と鎖交する形でECG信号ケーブ
ル相互と被検体とが高周波電流に対する電流ループをつ
くることがあるので、この電流ループに高周波電流が誘
導されて流れるという問題がある。すなわち第4図に示
すように高周波磁場Hが加えられている状態でこれと鎖
交する形で高周波電流ループLがつくられ、このループ
Lに高周波誘導電流が流れるようになる。(Problem to be Solved by the Invention) However, when a high-frequency magnetic field is applied to the conventional ECG signal cables used for such ECG synchronized imaging, the ECG signal cables are exposed to each other in a manner that is linked to the high-frequency magnetic field during MR imaging. Since the specimen may form a current loop for high-frequency current, there is a problem in that high-frequency current is induced and flows in this current loop. That is, as shown in FIG. 4, when a high frequency magnetic field H is applied, a high frequency current loop L is created interlinking with the high frequency magnetic field H, and a high frequency induced current flows through this loop L.
このためECG信号ケーブル又はECGケーブル電極が
発熱し、ひどい場合には被検体がやけどしてしまうこと
がある。For this reason, the ECG signal cable or the ECG cable electrode generates heat, and in severe cases, the subject may be burned.
本発明は以上のような問題に対処してなされたもので、
高周波誘導電流を抑制するようにしたMRI装置用EC
G信号ケーブルを提供することを目的とするものである
。The present invention has been made in response to the above-mentioned problems.
EC for MRI equipment that suppresses high-frequency induced current
The purpose is to provide a G signal cable.
[発明の構成](課題を解決するための手段)上記目的を達成するために本発明は、MR撮影時被検体
に接続されてECG信号を検出するためのケーブルであ
って、少なくとも一部に高周波誘導電流を抑制する抵抗
体を設けたことを特徴とするものである。[Structure of the Invention] (Means for Solving the Problem) In order to achieve the above object, the present invention provides a cable for detecting an ECG signal by being connected to a subject during MR imaging, the cable comprising at least a portion of the cable. This is characterized by the provision of a resistor that suppresses high-frequency induced current.
(作 用)ケーブルの少なくとも一部に高周波誘導電流を抑制する
抵抗体を設けたことにより、高周波誘導電流は抑制され
るのでECG信号ケーブル又はECGケーブル電極の発
熱は抑えられる。よって被検体がやけどするおそれはな
くなる。(Function) By providing a resistor for suppressing high-frequency induced current in at least a portion of the cable, high-frequency induced current is suppressed, and therefore heat generation of the ECG signal cable or ECG cable electrode is suppressed. Therefore, there is no risk of the subject getting burned.
(実施例)以下図面を参照して本発明の詳細な説明する。(Example)The present invention will be described in detail below with reference to the drawings.
第1図は本発明のMRr装置用ECG信号ケーブルの実
施例を示す構成図で、ECG信号ケーブル1の一端はE
CGケーブル電極IAを介して被検体に接続可能に構成
されると共に他端は信号処理回路に導かれる。ケーブル
1は金属線材、カーボン繊維等から構成されており、途
中には高周波誘導電流を抑制するための抵抗素子2が接
続されている。この抵抗素子2は圧着、半田付は等によ
る接続部3を介してケーブル1に接続される。FIG. 1 is a configuration diagram showing an embodiment of the ECG signal cable for MRr device of the present invention, in which one end of the ECG signal cable 1 is
The CG cable is configured to be connectable to the subject via the electrode IA, and the other end is led to a signal processing circuit. The cable 1 is made of metal wire, carbon fiber, etc., and a resistance element 2 for suppressing high-frequency induced current is connected along the cable. This resistive element 2 is connected to the cable 1 via a connecting portion 3 by crimping, soldering, or the like.
第2図は第1図のECG信号ケーブル1が組込まれたM
RI装置を示すもので、4は静磁場発生部で例えば超電
導コイル5を利用した超電導磁石によって構成されてい
る。8はドームで撮影すべき被検体6をガイドする空間
部で、このドーム8にはイメージングに必要な高周波コ
イル9及び傾斜磁場形成用コイル10が配置される。1
1は高周波コイル9に被検体6への励起パルスを与える
高周波(RF)パルス送信部、12は傾斜磁場形成用コ
イル10に静磁場に重ねて傾斜磁場を発生する傾斜磁場
発生部である。この傾斜磁場発生部12はイメージング
に必要なスライシング用傾斜磁場1位相エンコーディン
グ用傾斜磁場及び読出し用傾斜磁場を各々発生するよう
になっている。Figure 2 shows an M in which the ECG signal cable 1 shown in Figure 1 is incorporated.
This shows an RI device, in which numeral 4 denotes a static magnetic field generator, which is constructed of a superconducting magnet using a superconducting coil 5, for example. Reference numeral 8 denotes a space that guides the subject 6 to be imaged in a dome, and in this dome 8, a high frequency coil 9 and a gradient magnetic field forming coil 10 necessary for imaging are arranged. 1
Reference numeral 1 designates a radio frequency (RF) pulse transmitting unit that applies an excitation pulse to the subject 6 to a high frequency coil 9, and reference numeral 12 designates a gradient magnetic field generating unit that generates a gradient magnetic field superimposed on a static magnetic field in a gradient magnetic field forming coil 10. The gradient magnetic field generating section 12 is designed to generate a slicing gradient magnetic field, a one-phase encoding gradient magnetic field, and a read gradient magnetic field, respectively, which are necessary for imaging.
13は被検体6からのMR倍信号受信する信号収集部、
14は信号収集部13によって受信されたMR倍信号取
り込んで被検体6のMR像(磁気共鳴像)を再構成する
画像作成部、15はこの画像作成部14によって形成さ
れたMR像を可視化する画像表示部である。16はイメ
ージングコントローラで前記RFパルス送信部11.傾
斜磁場発生部12.信号収集部13等の制御動作を行う
ためのものである。17はカバ一部である。13 is a signal collection unit that receives the MR multiplied signal from the subject 6;
Reference numeral 14 denotes an image creation unit that takes in the MR multiplied signals received by the signal collection unit 13 and reconstructs an MR image (magnetic resonance image) of the subject 6, and 15 visualizes the MR image formed by the image creation unit 14. This is an image display section. 16 is an imaging controller which connects the RF pulse transmitter 11. Gradient magnetic field generator 12. This is for controlling the signal collecting section 13 and the like. 17 is a part of the cover.
ドーム8にガイドされた被検体6の体表には第1図のE
CG信号ケーブル1が電極IAを介して複数本接続され
る。ECG信号ケーブル1の他端はイメージングコント
ローラ16に接続されて信号処理が行われる。The body surface of the subject 6 guided by the dome 8 is marked E in Figure 1.
A plurality of CG signal cables 1 are connected via electrodes IA. The other end of the ECG signal cable 1 is connected to an imaging controller 16 for signal processing.
このような第2図のMRI装置を用いてMR撮影を行え
ば、MR撮影時RFパルス送信部11から被検体6に高
周波磁場を加えたとき第4図のようにこの高周波磁場と
鎖交する形でECG信号ケーブル1相互と被検体6とが
高周波電流に対する電流ループをつくったとしても、こ
れによるケーブル1を流れる高周波誘導電流は抵抗素子
2が設けられていることによりこれによって抑制される
ようになる。従ってECG信号ケーブル1又はECGケ
ーブル電極IAの発熱は抑えられるようになるので、被
検体6をやけどさせるようなおそれはなくなる。If MR imaging is performed using such an MRI apparatus as shown in FIG. 2, when a high-frequency magnetic field is applied to the subject 6 from the RF pulse transmitter 11 during MR imaging, it interlinks with this high-frequency magnetic field as shown in FIG. Even if the ECG signal cable 1 and the subject 6 create a current loop for high-frequency current, the high-frequency induced current flowing through the cable 1 due to this is suppressed by the provision of the resistive element 2. become. Therefore, the heat generation of the ECG signal cable 1 or the ECG cable electrode IA can be suppressed, so that there is no risk of burning the subject 6.
第3図は本発明のほかの実施例によるECG信号ケーブ
ルの構成を示すもので、ケーブル1の途中位置に抵抗領
域2Aを設けるようにしたものである。これは金属線材
、カーボン繊維等から成るリードの特定領域に対して不
純物を混入することにより、この領域の抵抗率を他の部
分よりも上げることで容易に形成することができる。す
なわち、リード1の特定領域の不純物濃度を変化させる
ことで抵抗率を上げることができる。FIG. 3 shows the configuration of an ECG signal cable according to another embodiment of the present invention, in which a resistance region 2A is provided in the middle of the cable 1. This can be easily formed by mixing impurities into a specific region of a lead made of metal wire, carbon fiber, etc. to increase the resistivity of this region compared to other parts. That is, by changing the impurity concentration in a specific region of the lead 1, the resistivity can be increased.
[発明の効果]以上述べたように本発明によれば、ECG信号ケーブル
の一部に高周波誘導電流を抑制する抵抗体を設けるよう
にしたので、ECG信号ケーブルに流れる高周波誘導電
流を抑制することができECG信号ケーブル又はECG
ケーブル電極の発熱を抑えることができる。[Effects of the Invention] As described above, according to the present invention, since a resistor for suppressing high-frequency induced current is provided in a part of the ECG signal cable, the high-frequency induced current flowing in the ECG signal cable can be suppressed. Can ECG signal cable or ECG
Heat generation of the cable electrode can be suppressed.
第1図は本発明のMRI装置用ECG信号ケーブルの実
施例を示す構成図、第2図は本実施例ケーブルが組込ま
れたMRI装置を示す構成図、第3図は本発明の他の実
施例を示す構成図、第4図は従来の問題点の説明図、第
5図はECG同期撮影法を説明するタイミングチャート
である。1・・・MRI装置用ECG信号ケーブル、1A・・・
ECGケーブル電極、2・・・抵抗素子、2A・・・抵
抗領域、4・・・静磁場発生部、6・・・被検体、9・
・・高周波コイル、10・・・傾斜磁場形成用コイル、16・・・イメージングコントローラ。第 1 図代理人 弁理士 三 澤 正 義6核咬A本第図FIG. 1 is a block diagram showing an embodiment of an ECG signal cable for an MRI apparatus according to the present invention, FIG. 2 is a block diagram showing an MRI apparatus in which the cable of this embodiment is incorporated, and FIG. 3 is a block diagram showing another embodiment of the present invention. FIG. 4 is a diagram illustrating the conventional problem, and FIG. 5 is a timing chart illustrating the ECG synchronized imaging method. 1...ECG signal cable for MRI device, 1A...
ECG cable electrode, 2... Resistance element, 2A... Resistance region, 4... Static magnetic field generating section, 6... Subject, 9...
...High frequency coil, 10... Coil for forming gradient magnetic field, 16... Imaging controller. Figure 1 Agent Patent Attorney Masayoshi Misawa 6th Nucleus A Book Figure 1
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2184456AJPH0471536A (en) | 1990-07-12 | 1990-07-12 | Ecg signal cable for mri device |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2184456AJPH0471536A (en) | 1990-07-12 | 1990-07-12 | Ecg signal cable for mri device |
| Publication Number | Publication Date |
|---|---|
| JPH0471536Atrue JPH0471536A (en) | 1992-03-06 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2184456APendingJPH0471536A (en) | 1990-07-12 | 1990-07-12 | Ecg signal cable for mri device |
| Country | Link |
|---|---|
| JP (1) | JPH0471536A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1488738A1 (en)* | 2003-06-19 | 2004-12-22 | Instrumentarium Corporation | Patient cable for medical measurements |
| JP2007510440A (en)* | 2003-09-30 | 2007-04-26 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Electroacoustic cable for magnetic resonance applications |
| US7363090B2 (en) | 2001-04-13 | 2008-04-22 | Greatbatch Ltd. | Band stop filter employing a capacitor and an inductor tank circuit to enhance MRI compatibility of active implantable medical devices |
| US7529402B2 (en) | 2004-05-21 | 2009-05-05 | Sony Corporation | Image information processing apparatus, image information processing method, and program |
| US7702387B2 (en) | 2006-06-08 | 2010-04-20 | Greatbatch Ltd. | Tank filters adaptable for placement with a guide wire, in series with the lead wires or circuits of active medical devices to enhance MRI compatibility |
| US7787958B2 (en) | 2001-04-13 | 2010-08-31 | Greatbatch Ltd. | RFID detection and identification system for implantable medical lead systems |
| EP2238898A1 (en) | 2009-03-30 | 2010-10-13 | Bruker BioSpin AG | Device for monitoring an organism during a magnetic resonance experiment |
| US7853325B2 (en) | 2001-04-13 | 2010-12-14 | Greatbatch Ltd. | Cylindrical bandstop filters for medical lead systems |
| US7899551B2 (en) | 2001-04-13 | 2011-03-01 | Greatbatch Ltd. | Medical lead system utilizing electromagnetic bandstop filters |
| JP2011067629A (en)* | 2009-09-23 | 2011-04-07 | General Electric Co <Ge> | System and method for magnetic resonance coil actuation |
| US7945322B2 (en) | 2005-11-11 | 2011-05-17 | Greatbatch Ltd. | Tank filters placed in series with the lead wires or circuits of active medical devices to enhance MRI compatibility |
| US8108042B1 (en) | 2006-11-09 | 2012-01-31 | Greatbatch Ltd. | Capacitor and inductor elements physically disposed in series whose lumped parameters are electrically connected in parallel to form a bandstop filter |
| US8224462B2 (en) | 2005-11-11 | 2012-07-17 | Greatbatch Ltd. | Medical lead system utilizing electromagnetic bandstop filters |
| US8301243B2 (en) | 2006-06-08 | 2012-10-30 | Greatbatch Ltd. | Method of tuning bandstop filters for implantable medical leads |
| US9706961B2 (en) | 2012-01-10 | 2017-07-18 | Koninklije Philips N.V. | Electro-cardiograph sensor mat |
| USRE46699E1 (en) | 2013-01-16 | 2018-02-06 | Greatbatch Ltd. | Low impedance oxide resistant grounded capacitor for an AIMD |
| US9931514B2 (en) | 2013-06-30 | 2018-04-03 | Greatbatch Ltd. | Low impedance oxide resistant grounded capacitor for an AIMD |
| US10080889B2 (en) | 2009-03-19 | 2018-09-25 | Greatbatch Ltd. | Low inductance and low resistance hermetically sealed filtered feedthrough for an AIMD |
| US10285608B2 (en) | 2012-05-25 | 2019-05-14 | Koninklijke Philips N.V. | Magnetic resonance safe cable for biopotential measurements |
| US10559409B2 (en) | 2017-01-06 | 2020-02-11 | Greatbatch Ltd. | Process for manufacturing a leadless feedthrough for an active implantable medical device |
| US10561837B2 (en) | 2011-03-01 | 2020-02-18 | Greatbatch Ltd. | Low equivalent series resistance RF filter for an active implantable medical device utilizing a ceramic reinforced metal composite filled via |
| US10589107B2 (en) | 2016-11-08 | 2020-03-17 | Greatbatch Ltd. | Circuit board mounted filtered feedthrough assembly having a composite conductive lead for an AIMD |
| JP2020509815A (en)* | 2017-03-08 | 2020-04-02 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | ECG cable for connecting ECG monitor |
| US10905888B2 (en) | 2018-03-22 | 2021-02-02 | Greatbatch Ltd. | Electrical connection for an AIMD EMI filter utilizing an anisotropic conductive layer |
| US12135361B2 (en) | 2021-02-16 | 2024-11-05 | Canon Medical Systems Corporation | Image processing apparatus |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7363090B2 (en) | 2001-04-13 | 2008-04-22 | Greatbatch Ltd. | Band stop filter employing a capacitor and an inductor tank circuit to enhance MRI compatibility of active implantable medical devices |
| US7787958B2 (en) | 2001-04-13 | 2010-08-31 | Greatbatch Ltd. | RFID detection and identification system for implantable medical lead systems |
| US8244370B2 (en) | 2001-04-13 | 2012-08-14 | Greatbatch Ltd. | Band stop filter employing a capacitor and an inductor tank circuit to enhance MRI compatibility of active medical devices |
| US7853325B2 (en) | 2001-04-13 | 2010-12-14 | Greatbatch Ltd. | Cylindrical bandstop filters for medical lead systems |
| US7899551B2 (en) | 2001-04-13 | 2011-03-01 | Greatbatch Ltd. | Medical lead system utilizing electromagnetic bandstop filters |
| US7294785B2 (en) | 2003-06-19 | 2007-11-13 | Ge Healthcare Finland Oy | Patient cable for medical measurements |
| EP1488738A1 (en)* | 2003-06-19 | 2004-12-22 | Instrumentarium Corporation | Patient cable for medical measurements |
| JP2007510440A (en)* | 2003-09-30 | 2007-04-26 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Electroacoustic cable for magnetic resonance applications |
| US7529402B2 (en) | 2004-05-21 | 2009-05-05 | Sony Corporation | Image information processing apparatus, image information processing method, and program |
| US7945322B2 (en) | 2005-11-11 | 2011-05-17 | Greatbatch Ltd. | Tank filters placed in series with the lead wires or circuits of active medical devices to enhance MRI compatibility |
| US8224462B2 (en) | 2005-11-11 | 2012-07-17 | Greatbatch Ltd. | Medical lead system utilizing electromagnetic bandstop filters |
| US8200328B2 (en) | 2005-11-11 | 2012-06-12 | Greatbatch Ltd. | Tank filters placed in series with the lead wires or circuits of active medical devices to enhance MRI compatibility |
| US8301243B2 (en) | 2006-06-08 | 2012-10-30 | Greatbatch Ltd. | Method of tuning bandstop filters for implantable medical leads |
| US7702387B2 (en) | 2006-06-08 | 2010-04-20 | Greatbatch Ltd. | Tank filters adaptable for placement with a guide wire, in series with the lead wires or circuits of active medical devices to enhance MRI compatibility |
| US8577453B1 (en) | 2006-06-08 | 2013-11-05 | Greatbatch Ltd. | Header embedded filter for implantable medical device |
| US8649857B2 (en) | 2006-06-08 | 2014-02-11 | Greatbatch Ltd. | Tank filters placed in series with the lead wires or circuits of active medical devices to enhance MRI compatibility |
| US8175700B2 (en) | 2006-11-09 | 2012-05-08 | Greatbatch Ltd. | Capacitor and inductor elements physically disposed in series whose lumped parameters are electrically connected in parallel to form a bandstop filter |
| US8108042B1 (en) | 2006-11-09 | 2012-01-31 | Greatbatch Ltd. | Capacitor and inductor elements physically disposed in series whose lumped parameters are electrically connected in parallel to form a bandstop filter |
| US10080889B2 (en) | 2009-03-19 | 2018-09-25 | Greatbatch Ltd. | Low inductance and low resistance hermetically sealed filtered feedthrough for an AIMD |
| DE102009001984A1 (en) | 2009-03-30 | 2010-10-14 | Bruker Biospin Ag | Device for monitoring a living being during a magnetic resonance experiment |
| EP2238898A1 (en) | 2009-03-30 | 2010-10-13 | Bruker BioSpin AG | Device for monitoring an organism during a magnetic resonance experiment |
| US8299792B2 (en) | 2009-03-30 | 2012-10-30 | Bruker Biospin Ag | Device for monitoring a living object during a magnetic resonance experiment |
| JP2011067629A (en)* | 2009-09-23 | 2011-04-07 | General Electric Co <Ge> | System and method for magnetic resonance coil actuation |
| US10561837B2 (en) | 2011-03-01 | 2020-02-18 | Greatbatch Ltd. | Low equivalent series resistance RF filter for an active implantable medical device utilizing a ceramic reinforced metal composite filled via |
| US10596369B2 (en) | 2011-03-01 | 2020-03-24 | Greatbatch Ltd. | Low equivalent series resistance RF filter for an active implantable medical device |
| US11071858B2 (en) | 2011-03-01 | 2021-07-27 | Greatbatch Ltd. | Hermetically sealed filtered feedthrough having platinum sealed directly to the insulator in a via hole |
| US9706961B2 (en) | 2012-01-10 | 2017-07-18 | Koninklije Philips N.V. | Electro-cardiograph sensor mat |
| US10638977B2 (en) | 2012-01-10 | 2020-05-05 | Koninklijke Philips N.V. | Electro-cardiograph sensor mat |
| US10285608B2 (en) | 2012-05-25 | 2019-05-14 | Koninklijke Philips N.V. | Magnetic resonance safe cable for biopotential measurements |
| USRE46699E1 (en) | 2013-01-16 | 2018-02-06 | Greatbatch Ltd. | Low impedance oxide resistant grounded capacitor for an AIMD |
| US9931514B2 (en) | 2013-06-30 | 2018-04-03 | Greatbatch Ltd. | Low impedance oxide resistant grounded capacitor for an AIMD |
| US10589107B2 (en) | 2016-11-08 | 2020-03-17 | Greatbatch Ltd. | Circuit board mounted filtered feedthrough assembly having a composite conductive lead for an AIMD |
| US10559409B2 (en) | 2017-01-06 | 2020-02-11 | Greatbatch Ltd. | Process for manufacturing a leadless feedthrough for an active implantable medical device |
| JP2020509815A (en)* | 2017-03-08 | 2020-04-02 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | ECG cable for connecting ECG monitor |
| US10905888B2 (en) | 2018-03-22 | 2021-02-02 | Greatbatch Ltd. | Electrical connection for an AIMD EMI filter utilizing an anisotropic conductive layer |
| US12135361B2 (en) | 2021-02-16 | 2024-11-05 | Canon Medical Systems Corporation | Image processing apparatus |
| Publication | Publication Date | Title |
|---|---|---|
| JPH0471536A (en) | Ecg signal cable for mri device | |
| US6148229A (en) | System and method for compensating for motion artifacts in a strong magnetic field | |
| US8494620B2 (en) | Electrocardiograph for magnetic resonance imaging and electrode patch for same | |
| JP2001000417A (en) | Magnetic resonance imaging method for heart using multiple slabs and multiple windows | |
| JPH03173534A (en) | Device and method for non-penetrating inspection | |
| US20060247509A1 (en) | ECG cable for use in MRI | |
| EP1661513A1 (en) | Magnetic resonance imaging method and device | |
| WO2001025810A1 (en) | Magnetic resonance imaging method | |
| US4719424A (en) | Magnetic resonance imaging system | |
| US6845261B2 (en) | System for correlation of MR images with physiological data | |
| JP2007202905A (en) | Electrocardiograph and MRI apparatus using the same | |
| Felblinger et al. | Synchronization device for electrocardiography-gated echo-planar imaging. | |
| CN110018430B (en) | Carotid Coils for Magnetic Resonance Systems | |
| JP2523470B2 (en) | Nuclear magnetic resonance imaging method | |
| JP3424524B2 (en) | Biomagnetic field measurement device | |
| JPH031842A (en) | Apparatus for magnetic resonance imaging | |
| JP3237581B2 (en) | Biological signal measurement device | |
| JPH02224740A (en) | Magnetic resonance image photographing device | |
| JP2859264B2 (en) | Magnetic resonance imaging equipment | |
| JPH02109545A (en) | Heart image pickup device by ecg signal of mri | |
| JPH07255691A (en) | Equipment and method for magnetic resonance pursuit | |
| JPH04200533A (en) | Nuclear magnetic resonance examination device | |
| Felblinger et al. | Echo-planar Imaging | |
| JPH0549608A (en) | Magnetic resonance video device | |
| Maeda et al. | 4902974 Phase correcting method in a magnetic resonance imaging system and device for realizing the same |