【発明の詳細な説明】[産業上の利用分野]本発明はエネルギー源、化学合成原料などに有用な水素
の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing hydrogen, which is useful as an energy source, a raw material for chemical synthesis, and the like.
[従来の技術]現在、水素は石油精製、アンモニア合成、半導体製造な
ど、広くいろいろな産業分野で用いられており、将来も
本質的に環境汚染の少ないクリーンエネルギー源として
、ますますその重要性は高まると考える。[Conventional technology] Currently, hydrogen is widely used in various industrial fields such as oil refining, ammonia synthesis, and semiconductor manufacturing, and its importance will continue to grow in the future as a clean energy source with essentially less environmental pollution. I think it will increase.
現在、水素は工業的には水の電気分解法や炭化水素の水
蒸気改質法あるいは部分酸化法により製造されている。Currently, hydrogen is industrially produced by water electrolysis, hydrocarbon steam reforming, or partial oxidation.
しかし、いずれの方法も多量の電気を用いたり、高温高
圧下での反応であるため、多量のネルギーを消費する方
法であるという問題点かある。However, since both methods use a large amount of electricity and involve reactions at high temperatures and high pressures, they have the problem of consuming a large amount of energy.
[発明が解決しようとする課題]本発明は多量のエネルギーを消費することなく、温和な
条件下でも水素を製造できる方法を提供しようとするも
のである。[Problems to be Solved by the Invention] The present invention aims to provide a method that can produce hydrogen even under mild conditions without consuming a large amount of energy.
[課題を解決するための手段]本発明者らは上記の課題を解決するために鋭意研究した
結果、平均粒径2μm以下のけい素の微粉末を水と接触
させることにより水素が発生することを見出し、本発明
を完成するに至った。[Means for Solving the Problems] As a result of intensive research by the present inventors to solve the above problems, it was discovered that hydrogen is generated by contacting fine silicon powder with an average particle size of 2 μm or less with water. They discovered this and completed the present invention.
本発明に使用するけい素粉末の平均粒径の上限は2μ閣
である。使用するけい素粉末は粒径が小さくなればなる
ほど単位けい素重量、単位時間あたりの水素発生量は多
くなるが、平均粒径が2μ■を超えると、実用的な速さ
で水素の発生を認めるのが困難となる。好ましい平均粒
径は1μm以下である。なお、ここでいう平均粒径とは
、粒径をストークス径で表わしたときのモード径のこと
である。けい素の純度は高ければ高いほど性能は良く、
50vt%以上であることが好ましい。The upper limit of the average particle size of the silicon powder used in the present invention is 2μ. The smaller the particle size of the silicon powder used, the more hydrogen will be generated per unit silicon weight and unit time, but if the average particle size exceeds 2 μ■, it will not be possible to generate hydrogen at a practical rate. It becomes difficult to admit. The preferred average particle size is 1 μm or less. Note that the average particle size here refers to the mode diameter when the particle size is expressed as a Stokes diameter. The higher the purity of silicon, the better the performance.
It is preferable that it is 50vt% or more.
本発明に使用する水は必ずしも純粋である必要はなく、
一般の水道水や工業用水等の電解質や有機物を含んだ水
でもよく、特に限定はない。The water used in the present invention does not necessarily have to be pure;
Water containing electrolytes and organic substances such as general tap water or industrial water may be used, and there is no particular limitation.
pHの限定も特にないが、pHが高いほど、水素の発生
速度は速くなる傾向にある。Although there is no particular limitation on the pH, the higher the pH, the faster the hydrogen generation rate tends to be.
けい素粉束と水との接触は、例えば、けい素粉束を水中
に分散させるなどして行うことができる。The silicon powder bundle can be brought into contact with water by, for example, dispersing the silicon powder bundle in water.
この時、必要に応じて撹拌、あるいは振とうを加えるこ
とができる。撹拌、あるいは振とうを加えることにより
、水素の発生速度は速くなる傾向がある。At this time, stirring or shaking can be added as necessary. Adding stirring or shaking tends to increase the rate of hydrogen generation.
温度に関しても特に限定はないが、温度か高いほど、水
素の発生速度は速くなる傾向にある。Although there are no particular limitations regarding the temperature, the higher the temperature, the faster the rate of hydrogen generation tends to be.
〔実施例コ以下、実施例、比較例等により本発明を更に詳細かつ具
体的に説明する。[Example] The present invention will be explained in more detail and concretely below using Examples, Comparative Examples, etc.
実施例1平均粒径0.25μm1純度98wt%のけい素粉束1
5gを、温度30℃、pH5,8の蒸留水10100O
中に撹拌しながら分散させたところガスが発生してきた
。Example 1 Silicon powder bundle 1 with an average particle size of 0.25 μm and a purity of 98 wt%
5g in 10100O distilled water with a temperature of 30℃ and a pH of 5.8.
When the mixture was dispersed while stirring, gas was generated.
このガスをガスクロマトグラフで分析したところ、純水
素であった。その発生量は1時間当り0.71mmol
てあった。When this gas was analyzed using a gas chromatograph, it was found to be pure hydrogen. The amount generated is 0.71 mmol per hour
There was.
実施例2〜12及び比較例1上記実施例1を基本とし、けい素粉束、水及び分散手段
等の条件をそれぞれ変化させた各実施例及び比較例の条
件とガスの発生量との関係を下記第1表に示す。Examples 2 to 12 and Comparative Example 1 The relationship between the conditions and the amount of gas generated in each of the Examples and Comparative Examples based on Example 1 above, with the conditions of the silicon powder bundle, water, dispersion means, etc. changed respectively. are shown in Table 1 below.
第1表[発明の効果]以上説明したように、本発明の方法によって、環境汚染
の少ない方法で水素を製造することができる。Table 1 [Effects of the Invention] As explained above, by the method of the present invention, hydrogen can be produced with less environmental pollution.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2165765AJPH0459601A (en) | 1990-06-26 | 1990-06-26 | Production of hydrogen |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2165765AJPH0459601A (en) | 1990-06-26 | 1990-06-26 | Production of hydrogen |
| Publication Number | Publication Date |
|---|---|
| JPH0459601Atrue JPH0459601A (en) | 1992-02-26 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2165765APendingJPH0459601A (en) | 1990-06-26 | 1990-06-26 | Production of hydrogen |
| Country | Link |
|---|---|
| JP (1) | JPH0459601A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1998051612A1 (en)* | 1997-05-13 | 1998-11-19 | Yosohiro Sugie | Method and apparatus for generating hydrogen gas by direct thermal decomposition of water |
| WO2002060578A1 (en)* | 2001-01-30 | 2002-08-08 | Honda Giken Kogyo Kabushiki Kaisha | Apparatus for activating substance using active structure and apparatus for generating gas |
| WO2002090257A1 (en)* | 2001-05-03 | 2002-11-14 | Wacker-Chemie Gmbh | Method for the generation of energy |
| WO2003064318A1 (en)* | 2002-01-29 | 2003-08-07 | Honda Giken Kogyo Kabushiki Kaisha | Hydrogen generating apparatus, hydrogen generating system and use thereof |
| US6630119B1 (en) | 2000-05-15 | 2003-10-07 | Yosohiro Sugie | Hydrogen gas generating method |
| JP2005504695A (en)* | 2001-05-03 | 2005-02-17 | ワッカー・ヒェミー・ゲーエムベーハー | Energy generation method |
| JP2006509702A (en)* | 2002-12-11 | 2006-03-23 | ワッカー・ヒェミー・ゲーエムベーハー | Hydrogen production method |
| JP2006273609A (en)* | 2005-03-28 | 2006-10-12 | Hitachi Maxell Ltd | Hydrogen generator and fuel cell using the same |
| JP2006273644A (en)* | 2005-03-29 | 2006-10-12 | Yuzuru Kaneko | Generation method of hydrogen gas |
| JP2007099535A (en)* | 2005-09-30 | 2007-04-19 | Itec Co Ltd | Hydrogen production equipment |
| US7261822B2 (en) | 2002-01-29 | 2007-08-28 | Honda Giken Kogyo Kabushiki Kaisha | Method and apparatus for activating water |
| US7452451B2 (en) | 2003-09-05 | 2008-11-18 | Honda Motor Co., Ltd. | Electrode plate and electrolysis apparatus for electrolyis, electrode plate unit, and method for electrolyzing compound comprising hydrogen |
| US20130341234A1 (en)* | 2011-03-09 | 2013-12-26 | Institut National Des Sciences Appliquees De Lyon | Process for manufacturing silicon-based nanoparticles from metallurgical-grade silicon or refined metallurgical-grade silicon |
| WO2015033815A1 (en)* | 2013-09-05 | 2015-03-12 | 株式会社Kit | Hydrogen production device, hydrogen production method, silicon fine particles for hydrogen production, and production method for silicon fine particles for hydrogen production |
| WO2021199792A1 (en)* | 2020-04-02 | 2021-10-07 | 国立大学法人大阪大学 | Formulation for preventing or treating pneumonia |
| JP2022124857A (en)* | 2021-02-16 | 2022-08-26 | 信越化学工業株式会社 | Hydrogen production method |
| KR20230110730A (en) | 2020-11-20 | 2023-07-25 | 니혼 스핀들 세이조 가부시키가이샤 | Manufacturing method of slurry for negative electrode and slurry for negative electrode |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1998051612A1 (en)* | 1997-05-13 | 1998-11-19 | Yosohiro Sugie | Method and apparatus for generating hydrogen gas by direct thermal decomposition of water |
| KR100522964B1 (en)* | 1997-05-13 | 2005-10-24 | 요소히로 스기에 | Method and apparatus for generating hydrogen gas by direct thermal decomposition of water |
| US6630119B1 (en) | 2000-05-15 | 2003-10-07 | Yosohiro Sugie | Hydrogen gas generating method |
| WO2002060576A1 (en)* | 2001-01-30 | 2002-08-08 | Honda Giken Kogyo Kabushiki Kaisha | Active structure, apparatus for activating substance, and method of activating substance |
| WO2002060577A1 (en)* | 2001-01-30 | 2002-08-08 | Honda Giken Kogyo Kabushiki Kaisha | Active structure, use thereof, and method of activating substance with active structure |
| WO2002060578A1 (en)* | 2001-01-30 | 2002-08-08 | Honda Giken Kogyo Kabushiki Kaisha | Apparatus for activating substance using active structure and apparatus for generating gas |
| WO2002090257A1 (en)* | 2001-05-03 | 2002-11-14 | Wacker-Chemie Gmbh | Method for the generation of energy |
| JP2005504695A (en)* | 2001-05-03 | 2005-02-17 | ワッカー・ヒェミー・ゲーエムベーハー | Energy generation method |
| JP4756256B2 (en)* | 2001-05-03 | 2011-08-24 | ワッカー ケミー アクチエンゲゼルシャフト | Energy generation method |
| WO2003064318A1 (en)* | 2002-01-29 | 2003-08-07 | Honda Giken Kogyo Kabushiki Kaisha | Hydrogen generating apparatus, hydrogen generating system and use thereof |
| US7261822B2 (en) | 2002-01-29 | 2007-08-28 | Honda Giken Kogyo Kabushiki Kaisha | Method and apparatus for activating water |
| US7485160B2 (en) | 2002-01-29 | 2009-02-03 | Honda Giken Kogyo Kabushiki Kaisha | Hydrogen generating apparatus, hydrogen generating system and use thereof |
| JP2006509702A (en)* | 2002-12-11 | 2006-03-23 | ワッカー・ヒェミー・ゲーエムベーハー | Hydrogen production method |
| US7452451B2 (en) | 2003-09-05 | 2008-11-18 | Honda Motor Co., Ltd. | Electrode plate and electrolysis apparatus for electrolyis, electrode plate unit, and method for electrolyzing compound comprising hydrogen |
| JP2006273609A (en)* | 2005-03-28 | 2006-10-12 | Hitachi Maxell Ltd | Hydrogen generator and fuel cell using the same |
| JP2006273644A (en)* | 2005-03-29 | 2006-10-12 | Yuzuru Kaneko | Generation method of hydrogen gas |
| JP2007099535A (en)* | 2005-09-30 | 2007-04-19 | Itec Co Ltd | Hydrogen production equipment |
| US9352969B2 (en)* | 2011-03-09 | 2016-05-31 | Institut National Des Sciences Appliquees De Lyon | Process for manufacturing silicon-based nanoparticles from metallurgical-grade silicon or refined metallurgical-grade silicon |
| US20130341234A1 (en)* | 2011-03-09 | 2013-12-26 | Institut National Des Sciences Appliquees De Lyon | Process for manufacturing silicon-based nanoparticles from metallurgical-grade silicon or refined metallurgical-grade silicon |
| JPWO2015033815A1 (en)* | 2013-09-05 | 2017-03-02 | 小林 光 | Hydrogen production apparatus, hydrogen production method, silicon fine particles for hydrogen production, and method for producing silicon fine particles for hydrogen production |
| WO2015033815A1 (en)* | 2013-09-05 | 2015-03-12 | 株式会社Kit | Hydrogen production device, hydrogen production method, silicon fine particles for hydrogen production, and production method for silicon fine particles for hydrogen production |
| JP2019089699A (en)* | 2013-09-05 | 2019-06-13 | 小林 光 | Hydrogen production apparatus, hydrogen production method, silicon fine particles for hydrogen production, and method of producing silicon fine particles for hydrogen production |
| JP2022028696A (en)* | 2013-09-05 | 2022-02-16 | 日新化成株式会社 | Hydrogen production equipment, hydrogen production method, and method for producing silicon fine particles for hydrogen production |
| JP2023109985A (en)* | 2013-09-05 | 2023-08-08 | 日新化成株式会社 | Silicon fine particles for hydrogen production |
| US11840450B2 (en) | 2013-09-05 | 2023-12-12 | Nisshin Kasei Co., Ltd. | Hydrogen production apparatus, hydrogen production method, silicon fine particles for hydrogen production, and production method for silicon fine particles for hydrogen production |
| WO2021199792A1 (en)* | 2020-04-02 | 2021-10-07 | 国立大学法人大阪大学 | Formulation for preventing or treating pneumonia |
| JPWO2021199792A1 (en)* | 2020-04-02 | 2021-10-07 | ||
| KR20230110730A (en) | 2020-11-20 | 2023-07-25 | 니혼 스핀들 세이조 가부시키가이샤 | Manufacturing method of slurry for negative electrode and slurry for negative electrode |
| JP2022124857A (en)* | 2021-02-16 | 2022-08-26 | 信越化学工業株式会社 | Hydrogen production method |
| Publication | Publication Date | Title |
|---|---|---|
| JPH0459601A (en) | Production of hydrogen | |
| Gogoi et al. | Enhanced photocatalytic hydrogen evolution using green carbon quantum dots modified 1-D CdS nanowires under visible light irradiation | |
| Jin et al. | Rational design of hydroxyl‐rich Ti3C2Tx MXene quantum dots for high‐performance electrochemical N2 reduction | |
| Adebisi et al. | Green production of silica nanoparticles from maize stalk | |
| Arul Dhas et al. | Preparation of luminescent silicon nanoparticles: a novel sonochemical approach | |
| Zhao et al. | Amino group-rich porous g-C3N4 nanosheet photocatalyst: Facile oxalic acid-induced synthesis and improved H2-evolution activity | |
| Ni et al. | Preparation, conversion, and comparison of the photocatalytic and electrochemical properties of ZnS (en) 0.5, ZnS, and ZnO | |
| US5151260A (en) | Process for preparing fine powders of aluminum nitride | |
| Ni et al. | Synthesis of 1D Cu (OH) 2 nanowires and transition to 3D CuO microstructures under ultrasonic irradiation, and their electrochemical property | |
| JP2004115349A (en) | Hydrogen generation method | |
| Majdinasab et al. | Microwave synthesis of zeolites from waste glass cullet using landfill leachate as a novel alternative solvent | |
| Sun et al. | A low‐cost and efficient pathway for preparation of 2D MoN nanosheets via Na2CO3‐assisted nitridation of MoS2 with NH3 | |
| Yoko et al. | Supercritical Hydrothermal Synthesis of Organic‐Modified Ce1‐xZrxO2‐δ (0≤ x≤ 1) Nanoparticles as a Low‐Temperature Oxygen Carrier | |
| Malviya et al. | Ultrasound assisted synthesis of CaF2: Eu3+ phosphor nanoparticles | |
| JPS616118A (en) | Amorphous silica particles, their production method and their use | |
| Zhou et al. | Harvesting vibration energy for efficiently piezocatalytic degradation of organic dyes by Bi11VO19 nanosheets | |
| Yamada et al. | Exclusive growth of low-aspect ratio, polyhedral h-BN crystals in molten Li2CO3 as the reactive flux | |
| CN109796974B (en) | A kind of preparation method of graphene quantum dots with adjustable fluorescence properties | |
| Jiang et al. | An efficient way of recycling silicon kerf waste for synthesis of high‐quality SiC | |
| Li et al. | Yolk‐Shell‐Structured CuO− ZnO− In2O3 Trimetallic Oxide Mesocrystal Microspheres as an Efficient Catalyst for Trichlorosilane Production | |
| JPH0788209B2 (en) | Ultra fine particle fluorinated graphite with excellent water and oil repellency | |
| JP2018118876A (en) | Formic acid decomposition method and formic acid decomposition apparatus | |
| CN101249958B (en) | Method for the continuous synthesis of a large number of high specific surface area and high graphitized carbon nanocages by bubbling method | |
| CN107827148B (en) | A kind of cross type indium oxide nano material preparation method | |
| CN109806891A (en) | A kind of preparation method and application of Ag2Se/GO micro flower structure nanomaterial |