Movatterモバイル変換


[0]ホーム

URL:


JPH0459601A - Production of hydrogen - Google Patents

Production of hydrogen

Info

Publication number
JPH0459601A
JPH0459601AJP2165765AJP16576590AJPH0459601AJP H0459601 AJPH0459601 AJP H0459601AJP 2165765 AJP2165765 AJP 2165765AJP 16576590 AJP16576590 AJP 16576590AJP H0459601 AJPH0459601 AJP H0459601A
Authority
JP
Japan
Prior art keywords
hydrogen
particle size
water
silicon powder
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2165765A
Other languages
Japanese (ja)
Inventor
Noboru Kubota
昇 久保田
Satoshi Yanase
聡 柳瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co LtdfiledCriticalAsahi Chemical Industry Co Ltd
Priority to JP2165765ApriorityCriticalpatent/JPH0459601A/en
Publication of JPH0459601ApublicationCriticalpatent/JPH0459601A/en
Pendinglegal-statusCriticalCurrent

Links

Classifications

Landscapes

Abstract

Translated fromJapanese

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

Translated fromJapanese

【発明の詳細な説明】[産業上の利用分野]本発明はエネルギー源、化学合成原料などに有用な水素
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing hydrogen, which is useful as an energy source, a raw material for chemical synthesis, and the like.

[従来の技術]現在、水素は石油精製、アンモニア合成、半導体製造な
ど、広くいろいろな産業分野で用いられており、将来も
本質的に環境汚染の少ないクリーンエネルギー源として
、ますますその重要性は高まると考える。
[Conventional technology] Currently, hydrogen is widely used in various industrial fields such as oil refining, ammonia synthesis, and semiconductor manufacturing, and its importance will continue to grow in the future as a clean energy source with essentially less environmental pollution. I think it will increase.

現在、水素は工業的には水の電気分解法や炭化水素の水
蒸気改質法あるいは部分酸化法により製造されている。
Currently, hydrogen is industrially produced by water electrolysis, hydrocarbon steam reforming, or partial oxidation.

しかし、いずれの方法も多量の電気を用いたり、高温高
圧下での反応であるため、多量のネルギーを消費する方
法であるという問題点かある。
However, since both methods use a large amount of electricity and involve reactions at high temperatures and high pressures, they have the problem of consuming a large amount of energy.

[発明が解決しようとする課題]本発明は多量のエネルギーを消費することなく、温和な
条件下でも水素を製造できる方法を提供しようとするも
のである。
[Problems to be Solved by the Invention] The present invention aims to provide a method that can produce hydrogen even under mild conditions without consuming a large amount of energy.

[課題を解決するための手段]本発明者らは上記の課題を解決するために鋭意研究した
結果、平均粒径2μm以下のけい素の微粉末を水と接触
させることにより水素が発生することを見出し、本発明
を完成するに至った。
[Means for Solving the Problems] As a result of intensive research by the present inventors to solve the above problems, it was discovered that hydrogen is generated by contacting fine silicon powder with an average particle size of 2 μm or less with water. They discovered this and completed the present invention.

本発明に使用するけい素粉末の平均粒径の上限は2μ閣
である。使用するけい素粉末は粒径が小さくなればなる
ほど単位けい素重量、単位時間あたりの水素発生量は多
くなるが、平均粒径が2μ■を超えると、実用的な速さ
で水素の発生を認めるのが困難となる。好ましい平均粒
径は1μm以下である。なお、ここでいう平均粒径とは
、粒径をストークス径で表わしたときのモード径のこと
である。けい素の純度は高ければ高いほど性能は良く、
50vt%以上であることが好ましい。
The upper limit of the average particle size of the silicon powder used in the present invention is 2μ. The smaller the particle size of the silicon powder used, the more hydrogen will be generated per unit silicon weight and unit time, but if the average particle size exceeds 2 μ■, it will not be possible to generate hydrogen at a practical rate. It becomes difficult to admit. The preferred average particle size is 1 μm or less. Note that the average particle size here refers to the mode diameter when the particle size is expressed as a Stokes diameter. The higher the purity of silicon, the better the performance.
It is preferable that it is 50vt% or more.

本発明に使用する水は必ずしも純粋である必要はなく、
一般の水道水や工業用水等の電解質や有機物を含んだ水
でもよく、特に限定はない。
The water used in the present invention does not necessarily have to be pure;
Water containing electrolytes and organic substances such as general tap water or industrial water may be used, and there is no particular limitation.

pHの限定も特にないが、pHが高いほど、水素の発生
速度は速くなる傾向にある。
Although there is no particular limitation on the pH, the higher the pH, the faster the hydrogen generation rate tends to be.

けい素粉束と水との接触は、例えば、けい素粉束を水中
に分散させるなどして行うことができる。
The silicon powder bundle can be brought into contact with water by, for example, dispersing the silicon powder bundle in water.

この時、必要に応じて撹拌、あるいは振とうを加えるこ
とができる。撹拌、あるいは振とうを加えることにより
、水素の発生速度は速くなる傾向がある。
At this time, stirring or shaking can be added as necessary. Adding stirring or shaking tends to increase the rate of hydrogen generation.

温度に関しても特に限定はないが、温度か高いほど、水
素の発生速度は速くなる傾向にある。
Although there are no particular limitations regarding the temperature, the higher the temperature, the faster the rate of hydrogen generation tends to be.

〔実施例コ以下、実施例、比較例等により本発明を更に詳細かつ具
体的に説明する。
[Example] The present invention will be explained in more detail and concretely below using Examples, Comparative Examples, etc.

実施例1平均粒径0.25μm1純度98wt%のけい素粉束1
5gを、温度30℃、pH5,8の蒸留水10100O
中に撹拌しながら分散させたところガスが発生してきた
Example 1 Silicon powder bundle 1 with an average particle size of 0.25 μm and a purity of 98 wt%
5g in 10100O distilled water with a temperature of 30℃ and a pH of 5.8.
When the mixture was dispersed while stirring, gas was generated.

このガスをガスクロマトグラフで分析したところ、純水
素であった。その発生量は1時間当り0.71mmol
てあった。
When this gas was analyzed using a gas chromatograph, it was found to be pure hydrogen. The amount generated is 0.71 mmol per hour
There was.

実施例2〜12及び比較例1上記実施例1を基本とし、けい素粉束、水及び分散手段
等の条件をそれぞれ変化させた各実施例及び比較例の条
件とガスの発生量との関係を下記第1表に示す。
Examples 2 to 12 and Comparative Example 1 The relationship between the conditions and the amount of gas generated in each of the Examples and Comparative Examples based on Example 1 above, with the conditions of the silicon powder bundle, water, dispersion means, etc. changed respectively. are shown in Table 1 below.

第1表[発明の効果]以上説明したように、本発明の方法によって、環境汚染
の少ない方法で水素を製造することができる。
Table 1 [Effects of the Invention] As explained above, by the method of the present invention, hydrogen can be produced with less environmental pollution.

Claims (1)

Translated fromJapanese
【特許請求の範囲】[Claims]平均粒径2μm以下のけい素の微粉末と水を接触させる
ことを特徴とする水素の製造方法。
A method for producing hydrogen, which comprises bringing water into contact with fine silicon powder having an average particle size of 2 μm or less.
JP2165765A1990-06-261990-06-26Production of hydrogenPendingJPH0459601A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP2165765AJPH0459601A (en)1990-06-261990-06-26Production of hydrogen

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP2165765AJPH0459601A (en)1990-06-261990-06-26Production of hydrogen

Publications (1)

Publication NumberPublication Date
JPH0459601Atrue JPH0459601A (en)1992-02-26

Family

ID=15818619

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP2165765APendingJPH0459601A (en)1990-06-261990-06-26Production of hydrogen

Country Status (1)

CountryLink
JP (1)JPH0459601A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO1998051612A1 (en)*1997-05-131998-11-19Yosohiro SugieMethod and apparatus for generating hydrogen gas by direct thermal decomposition of water
WO2002060578A1 (en)*2001-01-302002-08-08Honda Giken Kogyo Kabushiki KaishaApparatus for activating substance using active structure and apparatus for generating gas
WO2002090257A1 (en)*2001-05-032002-11-14Wacker-Chemie GmbhMethod for the generation of energy
WO2003064318A1 (en)*2002-01-292003-08-07Honda Giken Kogyo Kabushiki KaishaHydrogen generating apparatus, hydrogen generating system and use thereof
US6630119B1 (en)2000-05-152003-10-07Yosohiro SugieHydrogen gas generating method
JP2005504695A (en)*2001-05-032005-02-17ワッカー・ヒェミー・ゲーエムベーハー Energy generation method
JP2006509702A (en)*2002-12-112006-03-23ワッカー・ヒェミー・ゲーエムベーハー Hydrogen production method
JP2006273609A (en)*2005-03-282006-10-12Hitachi Maxell Ltd Hydrogen generator and fuel cell using the same
JP2006273644A (en)*2005-03-292006-10-12Yuzuru Kaneko Generation method of hydrogen gas
JP2007099535A (en)*2005-09-302007-04-19Itec Co Ltd Hydrogen production equipment
US7261822B2 (en)2002-01-292007-08-28Honda Giken Kogyo Kabushiki KaishaMethod and apparatus for activating water
US7452451B2 (en)2003-09-052008-11-18Honda Motor Co., Ltd.Electrode plate and electrolysis apparatus for electrolyis, electrode plate unit, and method for electrolyzing compound comprising hydrogen
US20130341234A1 (en)*2011-03-092013-12-26Institut National Des Sciences Appliquees De LyonProcess for manufacturing silicon-based nanoparticles from metallurgical-grade silicon or refined metallurgical-grade silicon
WO2015033815A1 (en)*2013-09-052015-03-12株式会社KitHydrogen production device, hydrogen production method, silicon fine particles for hydrogen production, and production method for silicon fine particles for hydrogen production
WO2021199792A1 (en)*2020-04-022021-10-07国立大学法人大阪大学Formulation for preventing or treating pneumonia
JP2022124857A (en)*2021-02-162022-08-26信越化学工業株式会社 Hydrogen production method
KR20230110730A (en)2020-11-202023-07-25니혼 스핀들 세이조 가부시키가이샤 Manufacturing method of slurry for negative electrode and slurry for negative electrode

Cited By (29)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO1998051612A1 (en)*1997-05-131998-11-19Yosohiro SugieMethod and apparatus for generating hydrogen gas by direct thermal decomposition of water
KR100522964B1 (en)*1997-05-132005-10-24요소히로 스기에Method and apparatus for generating hydrogen gas by direct thermal decomposition of water
US6630119B1 (en)2000-05-152003-10-07Yosohiro SugieHydrogen gas generating method
WO2002060576A1 (en)*2001-01-302002-08-08Honda Giken Kogyo Kabushiki KaishaActive structure, apparatus for activating substance, and method of activating substance
WO2002060577A1 (en)*2001-01-302002-08-08Honda Giken Kogyo Kabushiki KaishaActive structure, use thereof, and method of activating substance with active structure
WO2002060578A1 (en)*2001-01-302002-08-08Honda Giken Kogyo Kabushiki KaishaApparatus for activating substance using active structure and apparatus for generating gas
WO2002090257A1 (en)*2001-05-032002-11-14Wacker-Chemie GmbhMethod for the generation of energy
JP2005504695A (en)*2001-05-032005-02-17ワッカー・ヒェミー・ゲーエムベーハー Energy generation method
JP4756256B2 (en)*2001-05-032011-08-24ワッカー ケミー アクチエンゲゼルシャフト Energy generation method
WO2003064318A1 (en)*2002-01-292003-08-07Honda Giken Kogyo Kabushiki KaishaHydrogen generating apparatus, hydrogen generating system and use thereof
US7261822B2 (en)2002-01-292007-08-28Honda Giken Kogyo Kabushiki KaishaMethod and apparatus for activating water
US7485160B2 (en)2002-01-292009-02-03Honda Giken Kogyo Kabushiki KaishaHydrogen generating apparatus, hydrogen generating system and use thereof
JP2006509702A (en)*2002-12-112006-03-23ワッカー・ヒェミー・ゲーエムベーハー Hydrogen production method
US7452451B2 (en)2003-09-052008-11-18Honda Motor Co., Ltd.Electrode plate and electrolysis apparatus for electrolyis, electrode plate unit, and method for electrolyzing compound comprising hydrogen
JP2006273609A (en)*2005-03-282006-10-12Hitachi Maxell Ltd Hydrogen generator and fuel cell using the same
JP2006273644A (en)*2005-03-292006-10-12Yuzuru Kaneko Generation method of hydrogen gas
JP2007099535A (en)*2005-09-302007-04-19Itec Co Ltd Hydrogen production equipment
US9352969B2 (en)*2011-03-092016-05-31Institut National Des Sciences Appliquees De LyonProcess for manufacturing silicon-based nanoparticles from metallurgical-grade silicon or refined metallurgical-grade silicon
US20130341234A1 (en)*2011-03-092013-12-26Institut National Des Sciences Appliquees De LyonProcess for manufacturing silicon-based nanoparticles from metallurgical-grade silicon or refined metallurgical-grade silicon
JPWO2015033815A1 (en)*2013-09-052017-03-02小林 光 Hydrogen production apparatus, hydrogen production method, silicon fine particles for hydrogen production, and method for producing silicon fine particles for hydrogen production
WO2015033815A1 (en)*2013-09-052015-03-12株式会社KitHydrogen production device, hydrogen production method, silicon fine particles for hydrogen production, and production method for silicon fine particles for hydrogen production
JP2019089699A (en)*2013-09-052019-06-13小林 光 Hydrogen production apparatus, hydrogen production method, silicon fine particles for hydrogen production, and method of producing silicon fine particles for hydrogen production
JP2022028696A (en)*2013-09-052022-02-16日新化成株式会社 Hydrogen production equipment, hydrogen production method, and method for producing silicon fine particles for hydrogen production
JP2023109985A (en)*2013-09-052023-08-08日新化成株式会社 Silicon fine particles for hydrogen production
US11840450B2 (en)2013-09-052023-12-12Nisshin Kasei Co., Ltd.Hydrogen production apparatus, hydrogen production method, silicon fine particles for hydrogen production, and production method for silicon fine particles for hydrogen production
WO2021199792A1 (en)*2020-04-022021-10-07国立大学法人大阪大学Formulation for preventing or treating pneumonia
JPWO2021199792A1 (en)*2020-04-022021-10-07
KR20230110730A (en)2020-11-202023-07-25니혼 스핀들 세이조 가부시키가이샤 Manufacturing method of slurry for negative electrode and slurry for negative electrode
JP2022124857A (en)*2021-02-162022-08-26信越化学工業株式会社 Hydrogen production method

Similar Documents

PublicationPublication DateTitle
JPH0459601A (en)Production of hydrogen
Gogoi et al.Enhanced photocatalytic hydrogen evolution using green carbon quantum dots modified 1-D CdS nanowires under visible light irradiation
Jin et al.Rational design of hydroxyl‐rich Ti3C2Tx MXene quantum dots for high‐performance electrochemical N2 reduction
Adebisi et al.Green production of silica nanoparticles from maize stalk
Arul Dhas et al.Preparation of luminescent silicon nanoparticles: a novel sonochemical approach
Zhao et al.Amino group-rich porous g-C3N4 nanosheet photocatalyst: Facile oxalic acid-induced synthesis and improved H2-evolution activity
Ni et al.Preparation, conversion, and comparison of the photocatalytic and electrochemical properties of ZnS (en) 0.5, ZnS, and ZnO
US5151260A (en)Process for preparing fine powders of aluminum nitride
Ni et al.Synthesis of 1D Cu (OH) 2 nanowires and transition to 3D CuO microstructures under ultrasonic irradiation, and their electrochemical property
JP2004115349A (en) Hydrogen generation method
Majdinasab et al.Microwave synthesis of zeolites from waste glass cullet using landfill leachate as a novel alternative solvent
Sun et al.A low‐cost and efficient pathway for preparation of 2D MoN nanosheets via Na2CO3‐assisted nitridation of MoS2 with NH3
Yoko et al.Supercritical Hydrothermal Synthesis of Organic‐Modified Ce1‐xZrxO2‐δ (0≤ x≤ 1) Nanoparticles as a Low‐Temperature Oxygen Carrier
Malviya et al.Ultrasound assisted synthesis of CaF2: Eu3+ phosphor nanoparticles
JPS616118A (en) Amorphous silica particles, their production method and their use
Zhou et al.Harvesting vibration energy for efficiently piezocatalytic degradation of organic dyes by Bi11VO19 nanosheets
Yamada et al.Exclusive growth of low-aspect ratio, polyhedral h-BN crystals in molten Li2CO3 as the reactive flux
CN109796974B (en) A kind of preparation method of graphene quantum dots with adjustable fluorescence properties
Jiang et al.An efficient way of recycling silicon kerf waste for synthesis of high‐quality SiC
Li et al.Yolk‐Shell‐Structured CuO− ZnO− In2O3 Trimetallic Oxide Mesocrystal Microspheres as an Efficient Catalyst for Trichlorosilane Production
JPH0788209B2 (en) Ultra fine particle fluorinated graphite with excellent water and oil repellency
JP2018118876A (en) Formic acid decomposition method and formic acid decomposition apparatus
CN101249958B (en) Method for the continuous synthesis of a large number of high specific surface area and high graphitized carbon nanocages by bubbling method
CN107827148B (en) A kind of cross type indium oxide nano material preparation method
CN109806891A (en) A kind of preparation method and application of Ag2Se/GO micro flower structure nanomaterial

[8]ページ先頭

©2009-2025 Movatter.jp