【0001】0001
【産業上の利用分野】本発明は、太陽電池原料として使
用できる高純度シリコンの製造方法及びその装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for producing high-purity silicon that can be used as a raw material for solar cells.
【0002】0002
【従来の技術】太陽電池に使用される高純度シリコンは
、例えば比抵抗が0.1Ωcm以上のP型のシリコンが
使われるが、このようなシリコンでは含有される不純物
含有量をppmオーダーまで除去する必要がある。従来
これに対し種々の技術が検討されているが、ドーピング
元素であるボロンと中性元素である炭素は最も除去しに
くい元素である。[Prior Art] High-purity silicon used in solar cells is, for example, P-type silicon with a resistivity of 0.1 Ωcm or more, but impurities contained in such silicon must be removed to the order of ppm. There is a need to. Conventionally, various techniques have been studied for this purpose, but boron, which is a doping element, and carbon, which is a neutral element, are the elements that are most difficult to remove.
【0003】シリコン中のボロン及び炭素を除去する方
法として、特開昭63−218506号公報に、高周波
励起によって得られる熱プラズマ下でシリコンを溶融す
る方法によってボロンを除去することができることが示
されている。この方法では、シリコンを高周波励起によ
るプラズマで溶解するにあたり、第1工程では1〜10
0%H2 と99〜0%Arの混合ガスで処理し、第2
工程では0.005〜0.05%の酸素と1〜99.9
95%のH2 を含むArとの混合ガスをプラズマ発生
用ガスとしたプラズマで処理すると記載されている。[0003] As a method for removing boron and carbon from silicon, Japanese Patent Laid-Open No. 63-218506 discloses that boron can be removed by melting silicon under a thermal plasma obtained by high-frequency excitation. ing. In this method, in the first step, silicon is melted using plasma generated by high-frequency excitation.
Treated with a mixed gas of 0% H2 and 99-0% Ar,
In the process, 0.005-0.05% oxygen and 1-99.9%
It is described that the process is performed using plasma using a mixed gas with Ar containing 95% H2 as the plasma generating gas.
【0004】このような方法では、(イ)熱の利用効率の悪いプラズマでシリコンの溶解、
精製すべてを行うため、経済的に多大の負担が生じるこ
と(ロ)プラズマで溶解した場合、溶融したシリコンの領
域は比較的小さな領域に限定されるため、生産性が悪く
太陽電池用に利用するための大量生産には不向きな技術
であること(ハ)局部的にシリコンの温度が過上昇するため精錬中
のシリコンのロス(飛散、蒸発)が多く、プラズマガス
中の酸素濃度を大きくできないことなどの欠点があった。[0004] In this method, (a) silicon is melted by plasma with poor heat utilization efficiency;
(b) When melted with plasma, the area of molten silicon is limited to a relatively small area, resulting in poor productivity and making it difficult to use for solar cells. (c) Because the temperature of the silicon locally rises excessively, there is a lot of silicon loss (scattering, evaporation) during refining, and the oxygen concentration in the plasma gas cannot be increased. There were drawbacks such as.
【0005】本発明者らは、これに対して、特願平2−
138266号、特願平2−138268号に示される
ように、容器の外側から熱を与える加熱装置を具備する
容器に溶融シリコンを保持し、溶融シリコンの湯面にプ
ラズマジェットガスを噴射してボロンと炭素が除去され
る方法を発明した。しかし、この技術よりも処理時間が
短く、シリコン収率、消費電力などの面から製造コスト
の低い、ボロン及び炭素の除去方法及び装置の開発が望
まれていた。[0005] In response to this, the present inventors have
138266 and Japanese Patent Application No. 138268, molten silicon is held in a container equipped with a heating device that applies heat from the outside of the container, and plasma jet gas is injected onto the surface of the molten silicon to generate boron. and invented a method by which carbon was removed. However, it has been desired to develop a method and apparatus for removing boron and carbon that has a shorter processing time than this technique and has lower manufacturing costs in terms of silicon yield and power consumption.
【0006】[0006]
【発明が解決しようとする課題】本発明は、上記従来技
術に対する要望を解決するために、効率よくボロン及び
炭素を除去する方法及び装置を提供しようとするもので
ある。SUMMARY OF THE INVENTION In order to solve the above-mentioned needs of the prior art, the present invention aims to provide a method and apparatus for efficiently removing boron and carbon.
【0007】[0007]
【課題を解決するための手段】本発明は上記課題を解決
するために、容器の外側から熱を与える加熱装置を具備
する容器に溶融シリコンを収納し、溶融シリコンの湯面
にプラズマトーチより発するプラズマジェットガスを噴
射してシリコンを精製する方法において、プラズマトー
チを水平方向に湯面上方を移動させる方法、湯面から同
じ高さの複数のプラズマトーチから、プラズマジェット
ガスの噴射量を周期的に変化し、かつ噴射量のピークを
順次に移動する方法、並びにこれ等の方法においてプラ
ズマトーチと溶融シリコンとを電気的に接続するシリコ
ンの精製方法を提供するもので、更に容器の外側から熱
を与える加熱装置を具備し溶融シリコンを収納する容器
と、溶融シリコンの湯面に向けてプラズマジェットガス
を噴射するプラズマトーチとを備えたシリコンの精製装
置において、プラズマトーチが水平方向に湯面上方を移
動可能である装置、プラズマジェットガスの噴射量を周
期的に変化し、かつ噴射量のピークが順次移動可能な複
数のプラズマトーチを湯面から同じ高さに設けた装置、
並びにこれ等の装置においてプラズマトーチと溶融シリ
コンとを電気的に接続する回路を設けたシリコンの精製
装置を提供するものである。[Means for Solving the Problems] In order to solve the above problems, the present invention stores molten silicon in a container equipped with a heating device that applies heat from outside the container, and emits heat from a plasma torch onto the surface of the molten silicon. In the method of refining silicon by injecting plasma jet gas, there is a method in which the plasma torch is moved horizontally above the hot water surface, and the amount of plasma jet gas jetted is periodically controlled from multiple plasma torches at the same height above the hot water surface. The present invention provides a silicon refining method that electrically connects a plasma torch and molten silicon in these methods, and furthermore provides a silicon refining method that electrically connects a plasma torch and molten silicon. In a silicon refining device that includes a container that stores molten silicon and is equipped with a heating device that gives A device in which a plurality of plasma torches are installed at the same height from the hot water surface, in which the injection amount of plasma jet gas can be changed periodically and the peak of the injection amount can be sequentially moved.
The present invention also provides a silicon refining device that is provided with a circuit for electrically connecting a plasma torch and molten silicon in these devices.
【0008】[0008]
【作用】本発明の実施例の要部縦断面模式図を図2に示
す。図2において、3はトーチ回転装置、31はモータ
、32は回転軸、33は回転方向、34は回転半径で、
トーチ2は円運動を行い水平方向に湯面上方を移動する
。プラズマガス26は、Ar、He及び/又はH2 ガ
スが用いられる。トーチ2の上記移動により火点52も
溶融シリコンの湯面51上を水平方向に移動し、溶融シ
リコン5の撹拌が強化され、濃度の一次反応で整理でき
るボロンと炭素の除去が促進される。[Operation] FIG. 2 is a schematic vertical cross-sectional view of the main part of an embodiment of the present invention. In FIG. 2, 3 is a torch rotation device, 31 is a motor, 32 is a rotation shaft, 33 is a rotation direction, 34 is a rotation radius,
The torch 2 performs a circular motion and moves horizontally above the hot water surface. As the plasma gas 26, Ar, He and/or H2 gas is used. Due to the above movement of the torch 2, the flame point 52 also moves horizontally on the molten silicon surface 51, which intensifies the stirring of the molten silicon 5 and promotes the removal of boron and carbon, which can be sorted out by a primary reaction of concentration.
【0009】ここで用いるプラズマガスは、プラズマト
ーチ出口においてプラズマジェット中にH2 O、O2
などの酸化性ガス、及び/又はシリカ粉末等の酸化物
粉末を混合することが望ましく、この酸化性ガス,酸化
物粉末により溶融シリコン中のボロン及び炭素は酸化物
のガスとして気相中に除去される。またこの場合、プラ
ズマジェット中の酸素含有量が高いと、プラズマジェッ
トの当っていない溶融シリコン表面にSiO2 等の多
量のスラグが生成するが、このスラグは溶融シリコン中
のボロン及び炭素を取り込んでおり、トーチの移動によ
りプラズマジェットガスがスラグに向けて噴射され、ス
ラグが気相中に昇華して効率よくボロン及び炭素を除去
することができ、このため処理時間は減少し、シリコン
の歩留りが向上する。The plasma gas used here contains H2O and O2 in the plasma jet at the exit of the plasma torch.
It is desirable to mix oxidizing gas such as be done. In this case, if the oxygen content in the plasma jet is high, a large amount of slag such as SiO2 will be generated on the surface of the molten silicon that is not hit by the plasma jet, but this slag will incorporate boron and carbon from the molten silicon. By moving the torch, plasma jet gas is injected toward the slag, and the slag is sublimated into the gas phase to efficiently remove boron and carbon, reducing processing time and increasing silicon yield. do.
【0010】なお、トーチの数、その回転速度等は特に
限定されるものではない。本発明の他の実施例の要部縦
断面模式図を図3に、図3におけるA−A断面図を図4
に示す。図3及び図4において、2a,2b,2c及び
2dは、湯面から同じ高さに設けられ、プラズマジェッ
トガスの噴射量を周期的に変化し、かつ噴出量のピーク
を順次に移動する4本のプラズマトーチで、21a及び
21cはそれぞれプラズマトーチ2a及び2cより噴射
されたプラズマジェットガスで、52a及び52cはそ
れぞれプラズマジェットガス21a及び21cにより湯
面51に生じた火点である。[0010] Note that the number of torches, their rotational speed, etc. are not particularly limited. FIG. 3 is a schematic longitudinal cross-sectional view of a main part of another embodiment of the present invention, and FIG. 4 is a cross-sectional view taken along line A-A in FIG.
Shown below. In FIGS. 3 and 4, 2a, 2b, 2c, and 2d are provided at the same height from the hot water surface, and the jetting amount of the plasma jet gas is changed periodically, and the peak of the jetting amount is sequentially moved. In this plasma torch, 21a and 21c are plasma jet gases injected from the plasma torches 2a and 2c, respectively, and 52a and 52c are fire points generated on the hot water surface 51 by the plasma jet gases 21a and 21c, respectively.
【0011】なお、各トーチの陰極及び陽極は、図示さ
れない電気回路によって図1に示すようにプラズマ電源
に各個に接続されており、35はトーチ中心の配置半径
である。図3に示した装置におけるプラズマガス噴出量
の比と時間との関係の一例を図5に示した。各トーチの
プラズマガス噴出量の比は図示されない制御装置により
周期的に変化し、かつ噴出量のピークを順次に移動する
ことができるので、ピーク噴出量のプラズマジェットガ
スが同じ高さから噴射される湯面の位置が時間の経過と
共に移動するので、前述の如く炭素及びボロンを効率よ
く除去することができる。The cathode and anode of each torch are individually connected to a plasma power source as shown in FIG. 1 by an electric circuit (not shown), and 35 is the radius of arrangement of the center of the torch. FIG. 5 shows an example of the relationship between the plasma gas ejection amount ratio and time in the apparatus shown in FIG. 3. The ratio of the plasma gas ejection amount of each torch is periodically changed by a control device (not shown), and the peak of the ejection amount can be sequentially moved, so that the peak amount of plasma jet gas is ejected from the same height. Since the position of the hot water level moves with the passage of time, carbon and boron can be efficiently removed as described above.
【0012】なお、プラズマトーチの数、プラズマジェ
ットガスの噴射量を変化させる周期等は適宜選択される
。上記の本発明方法において、プラズマトーチ内でアー
クが飛ぶため通常エネルギーロス(トーチ冷却による)
は50%程度であるが、プラズマトーチと溶融シリコン
とを電気的に接続すると、プラズマトーチ陰極から電子
線(アーク)がプラズマ中を通りシリコン浴面に当り、
溶融シリコン中を電流として流れるため、エネルギーロ
スが減少すると共に、該シリコン中の電流により浴の撹
拌が強化されるため、シリコン中のボロン及び炭素の火
点52に移動する速度が増し、その結果、精製時間の短
縮が図れる。[0012] The number of plasma torches, the cycle for changing the injection amount of plasma jet gas, etc. are selected as appropriate. In the method of the present invention described above, energy loss (due to torch cooling) is usually caused by the arc flying within the plasma torch.
is about 50%, but when the plasma torch and molten silicon are electrically connected, an electron beam (arc) passes through the plasma from the plasma torch cathode and hits the silicon bath surface.
Since the current flows through the molten silicon, energy loss is reduced, and the current in the silicon enhances the agitation of the bath, increasing the speed at which the boron and carbon in the silicon move to the hot spot 52. , the purification time can be shortened.
【0013】図6は本発明の更に他の実施例の要部縦断
面模式図で、図2に示した装置のシリカるつぼ11の底
部に導電孔41を貫設し、シリコン側電極4を導電孔4
1に当接したもので、42は電極端子、43は水冷ジャ
ケット、44は冷却水、45は冷却排水である。水冷ジ
ャケット43により導電孔41内のシリコンは水冷され
て固化し、溶融シリコン5をるつぼ11から漏出させる
ことなく、プラズマトーチ2と溶融シリコンとを電気的
に接続することができる。FIG. 6 is a schematic vertical cross-sectional view of a main part of still another embodiment of the present invention, in which a conductive hole 41 is formed through the bottom of the silica crucible 11 of the apparatus shown in FIG. Hole 4
1, 42 is an electrode terminal, 43 is a water cooling jacket, 44 is cooling water, and 45 is a cooling water drain. The silicon in the conductive hole 41 is water-cooled and solidified by the water-cooling jacket 43, and the plasma torch 2 and the molten silicon can be electrically connected without leaking the molten silicon 5 from the crucible 11.
【0014】図7は本発明の更に異なる実施例の要部縦
断面模式図で図3に示した装置に、図6と同様にシリコ
ン側電極4を配設したのもので、これによる作用・効果
は図6に示した装置におけるものと同様である。FIG. 7 is a schematic vertical cross-sectional view of a main part of still another embodiment of the present invention, in which a silicon side electrode 4 is provided in the device shown in FIG. 3 in the same manner as in FIG. The effect is similar to that in the device shown in FIG.
【0015】[0015]
【実施例】2kgのシリコンを内径150mmの抵抗加
熱炉によりAr雰囲気下でシリカるつぼを用いて溶解し
、湯面に上方からプラズマジェットガスを噴射した。プラズマガスはAr20リットル/min、プラズマ添
加ガスはH2O(ガス)1リットル/min、プラズマ
投入電力は20kWとした。[Example] 2 kg of silicon was melted in a silica crucible in an Ar atmosphere in a resistance heating furnace with an inner diameter of 150 mm, and plasma jet gas was injected onto the melt surface from above. The plasma gas was Ar at 20 liters/min, the plasma additive gas was H2O (gas) at 1 liter/min, and the plasma input power was 20 kW.
【0016】溶融シリコン中のボロン及び炭素の濃度変
化は、一定時間毎に石英管で溶融シリコンを採取し、ボ
ロンはICP(Inductively Coupl
edPlasma:誘導結合プラズマ)発光分光法によ
り、炭素は燃焼法により分析した。比較例図1に示した装置を用いた。実施例1図2による装置を用い、トーチの回転半径を40mm、
回転数を4回/分とした。実施例2トーチの回転数を8回/分とした他は実施例1と同様と
した。実施例3トーチの回転数を16回/分とした他は実施例1と同様
とした。実施例4図3及び図4に示した装置を用い、トーチ中心の配置半
径を40mm、プラズマジェットガス噴出量のピークの
周期を8回/分とした。各トーチのプラズマジェットガ
スの噴出量の比を図5に示した。実施例5プラズマジェットガス噴出量のピークの周期を16回/
分とした他は実施例4と同様とした。実施例6図6に示した装置を用いた他は実施例1と同様とした。実施例7トーチの回転数を8回/分とした他は実施例6と同様と
した。実施例8トーチの回転数を16回/分とした他は実施例6と同様
とした。実施例9図7に示した装置を用いた他は実施例4と同様とした。実施例10プラズマジェットガスの噴出量のピークの周期を16回
/分とした他は実施例9と同様とした。比較例及び実施
例の試験結果を表1及び表2に示す。[0016] Changes in concentration of boron and carbon in molten silicon can be determined by sampling molten silicon with a quartz tube at regular intervals, and collecting boron using ICP (Inductive Coupling).
Carbon was analyzed by combustion method using edPlasma (inductively coupled plasma) emission spectroscopy. Comparative Example The apparatus shown in FIG. 1 was used. Example 1 Using the apparatus shown in FIG. 2, the rotation radius of the torch was 40 mm,
The rotation speed was 4 times/min. Example 2 The procedure was the same as in Example 1 except that the number of rotations of the torch was 8 times/min. Example 3 The procedure was the same as in Example 1 except that the number of rotations of the torch was 16 times/min. Example 4 Using the apparatus shown in FIGS. 3 and 4, the radius of the center of the torch was 40 mm, and the period of the peak of the plasma jet gas ejection amount was 8 times/min. FIG. 5 shows the ratio of the amount of plasma jet gas ejected from each torch. Example 5 The period of the peak of the plasma jet gas ejection amount was changed to 16 times/
The procedure was the same as in Example 4 except that the sample was divided into minutes. Example 6 The procedure was the same as in Example 1 except that the apparatus shown in FIG. 6 was used. Example 7 The same procedure as Example 6 was carried out except that the number of rotations of the torch was changed to 8 times/min. Example 8 The same procedure as Example 6 was carried out except that the number of rotations of the torch was 16 times/min. Example 9 The procedure was the same as in Example 4 except that the apparatus shown in FIG. 7 was used. Example 10 The same procedure as Example 9 was carried out except that the period of the peak of the ejection amount of plasma jet gas was changed to 16 times/min. The test results of Comparative Examples and Examples are shown in Tables 1 and 2.
【0017】反応速度係数k’及びk’’は、B,Cが
濃度の一次反応で除去されるのでd〔B〕/dt=−k
’〔B〕、及びd〔C〕/dt=−k’’〔C〕より求
めた係数である。The reaction rate coefficients k' and k'' are d[B]/dt=-k since B and C are removed by the first-order reaction of concentration.
'[B] and d[C]/dt=-k''[C].
【0018】[0018]
【表1】[Table 1]
【0019】[0019]
【表2】[Table 2]
【0020】表からわかるように、比較例に比べボロン
,炭素ともに実施例の方が速く除去されていることがわ
かる。また、トーチの回転数またはプラズマジェットガ
ス噴出量のピーク移動速度を増し、更にトーチと溶融シ
リコンを電気的に接続するに従って、ボロン,炭素とも
に除去速度が増すことがわかる。シリコンの歩留りにつ
いては実施例1〜5がそれぞれ94%,92%,93%
,96%,95%、実施例6〜10がそれぞれ95%,
94%,92%,95%,93%で、比較例は93%で
あった。したがって同じレベルまでボロン,炭素を除去
するためには、本発明による方が短時間の処理で済むの
で、より高い歩留りでボロン及び炭素の除去ができる。As can be seen from the table, both boron and carbon were removed faster in the example than in the comparative example. It can also be seen that as the rotational speed of the torch or the peak movement speed of the plasma jet gas ejection amount is increased, and as the torch and molten silicon are electrically connected, the removal rate of both boron and carbon increases. Regarding the silicon yield, Examples 1 to 5 were 94%, 92%, and 93%, respectively.
, 96%, 95%, Examples 6 to 10 were 95%, respectively.
94%, 92%, 95%, 93%, and the comparative example was 93%. Therefore, in order to remove boron and carbon to the same level, the present invention requires a shorter treatment time, so boron and carbon can be removed with a higher yield.
【0021】[0021]
【発明の効果】本発明により、ボロン及び炭素を除去す
るための処理時間が短縮され、シリコンの歩留りを向上
できるようになった。According to the present invention, the processing time for removing boron and carbon can be shortened, and the yield of silicon can be improved.
【図1】従来装置の要部縦断面模式図である。FIG. 1 is a schematic vertical cross-sectional view of main parts of a conventional device.
【図2】本発明の実施例の要部縦断面模式図である。FIG. 2 is a schematic vertical cross-sectional view of a main part of an embodiment of the present invention.
【図3】本発明の他の実施例の要部縦断面模式図である
。FIG. 3 is a schematic vertical cross-sectional view of a main part of another embodiment of the present invention.
【図4】図3におけるA−A矢視断面図である。FIG. 4 is a sectional view taken along the line A-A in FIG. 3;
【図5】プラズマジェットガス噴出量比と時間との関係
を示すグラフである。FIG. 5 is a graph showing the relationship between plasma jet gas ejection amount ratio and time.
【図6】本発明の更に他の実施例の要部縦断面模式図で
ある。FIG. 6 is a schematic vertical cross-sectional view of a main part of still another embodiment of the present invention.
【図7】本発明の更に異なる実施例の要部縦断面模式図
である。FIG. 7 is a schematic vertical cross-sectional view of a main part of still another embodiment of the present invention.
2,2a,2b,2c,2d プラズマトーチ3
トーチ回転装置4 シリコン側電極5 溶融シリコン6 抵抗加熱炉11 シリカるつぼ21,21a,21c プラズマジェットガス22
プラズマ陰極23 プラズマ陽極24 プラズマ電源25 電気抵抗26 プラズマガス27 酸化性物質31 モータ32 回転軸33 回転方向34 トーチ中心の回転半径35 トーチ中心の配置半径41 導電孔42 電極端子43 水冷ジャケット44 冷却水45 冷却排水51 溶融シリコン湯面2, 2a, 2b, 2c, 2d plasma torch 3
Torch rotation device 4 Silicon side electrode 5 Molten silicon 6 Resistance heating furnace 11 Silica crucible 21, 21a, 21c Plasma jet gas 22
Plasma cathode 23 Plasma anode 24 Plasma power source 25 Electrical resistance 26 Plasma gas 27 Oxidizing substance 31 Motor 32 Rotation shaft 33 Rotation direction 34 Rotation radius around the torch center 35 Arrangement radius around the torch center 41 Conductive hole 42 Electrode terminal 43 Water cooling jacket 44 Cooling water 45 Cooling drainage 51 Molten silicon surface
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP03105752AJP3138003B2 (en) | 1991-05-10 | 1991-05-10 | Method and apparatus for purifying silicon |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP03105752AJP3138003B2 (en) | 1991-05-10 | 1991-05-10 | Method and apparatus for purifying silicon |
| Publication Number | Publication Date |
|---|---|
| JPH04338108Atrue JPH04338108A (en) | 1992-11-25 |
| JP3138003B2 JP3138003B2 (en) | 2001-02-26 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP03105752AExpired - Fee RelatedJP3138003B2 (en) | 1991-05-10 | 1991-05-10 | Method and apparatus for purifying silicon |
| Country | Link |
|---|---|
| JP (1) | JP3138003B2 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0855367A1 (en)* | 1997-01-22 | 1998-07-29 | Kawasaki Steel Corporation | Method for removing boron from metallurgical grade silicon and apparatus |
| FR2772741A1 (en)* | 1997-12-19 | 1999-06-25 | Centre Nat Rech Scient | Silicon refining process for industrial mass production of photovoltaic cell grade silicon |
| WO2002053496A1 (en)* | 2000-12-28 | 2002-07-11 | Sumitomo Mitsubishi Silicon Corporation | Silicon continuous casting method |
| WO2009112428A1 (en)* | 2008-03-14 | 2009-09-17 | Centre National De La Recherche Scientifique (Cnrs) | Method for purifying silicon for photovoltaic applications |
| US7732012B2 (en) | 2004-06-22 | 2010-06-08 | Shin-Etsu Film Co., Ltd | Method for manufacturing polycrystalline silicon, and polycrystalline silicon for solar cells manufactured by the method |
| JP2010269992A (en)* | 2009-05-25 | 2010-12-02 | Wonik Materials Co Ltd | Method and apparatus for refining metallic silicon |
| CN112723358A (en)* | 2021-01-29 | 2021-04-30 | 昆明理工大学 | Method for reducing iron and removing phosphorus of industrial silicon |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0855367A1 (en)* | 1997-01-22 | 1998-07-29 | Kawasaki Steel Corporation | Method for removing boron from metallurgical grade silicon and apparatus |
| CN1105081C (en)* | 1997-01-22 | 2003-04-09 | 川崎制铁株式会社 | Method and appts. of removing B from metal Si |
| FR2772741A1 (en)* | 1997-12-19 | 1999-06-25 | Centre Nat Rech Scient | Silicon refining process for industrial mass production of photovoltaic cell grade silicon |
| WO1999032402A1 (en)* | 1997-12-19 | 1999-07-01 | Centre National De La Recherche Scientifique | Method and installation for refining silicon |
| WO2002053496A1 (en)* | 2000-12-28 | 2002-07-11 | Sumitomo Mitsubishi Silicon Corporation | Silicon continuous casting method |
| US6994835B2 (en)* | 2000-12-28 | 2006-02-07 | Sumitomo Mitsubishi Silicon Corporation | Silicon continuous casting method |
| US7732012B2 (en) | 2004-06-22 | 2010-06-08 | Shin-Etsu Film Co., Ltd | Method for manufacturing polycrystalline silicon, and polycrystalline silicon for solar cells manufactured by the method |
| WO2009112428A1 (en)* | 2008-03-14 | 2009-09-17 | Centre National De La Recherche Scientifique (Cnrs) | Method for purifying silicon for photovoltaic applications |
| FR2928641A1 (en)* | 2008-03-14 | 2009-09-18 | Centre Nat Rech Scient | SILICON PURIFICATION PROCESS FOR PHOTOVOLTAIC APPLICATIONS |
| US8367008B2 (en) | 2008-03-14 | 2013-02-05 | Christian Claude Cyprien Trassy | Method for purifying silicon for photovoltaic applications |
| JP2010269992A (en)* | 2009-05-25 | 2010-12-02 | Wonik Materials Co Ltd | Method and apparatus for refining metallic silicon |
| CN112723358A (en)* | 2021-01-29 | 2021-04-30 | 昆明理工大学 | Method for reducing iron and removing phosphorus of industrial silicon |
| Publication number | Publication date |
|---|---|
| JP3138003B2 (en) | 2001-02-26 |
| Publication | Publication Date | Title |
|---|---|---|
| EP0459421B1 (en) | Method and apparatus for purifying silicon | |
| US4275287A (en) | Plasma torch and a method of producing a plasma | |
| US4519835A (en) | Transferred-arc plasma reactor for chemical and metallurgical applications | |
| CN105132705B (en) | The method and device of vacuum magnetic control electric arc remelting refining metal | |
| KR100275973B1 (en) | Method for removing boron from metallurgical grade silicon and apparatus | |
| US3989091A (en) | Method for electroslag remelting of titanium or its alloys and a device for effecting same | |
| JPH04338108A (en) | Method and device for refining silicon | |
| US3469968A (en) | Electroslag melting | |
| JP3848816B2 (en) | High-purity metal purification method and apparatus | |
| US3723630A (en) | Method for the plasma-ac remelting of a consumable metal bar in a controlled atmosphere | |
| JP2846408B2 (en) | Silicon purification method | |
| RU2403299C1 (en) | Vacuum silicone cleaning method and device for its implementation (versions) | |
| EP0845789B1 (en) | Method of melting treatment of radioactive solid wastes | |
| US3669178A (en) | Direct reduction process and simultaneous continuous casting of metallic materials in a crucible to form rods | |
| JPH05139713A (en) | Silicon refining method and apparatus | |
| US4766598A (en) | Electric arc furnace and method with coaxial current flow | |
| CN222048546U (en) | Electric arc steelmaking furnace | |
| JP2000007318A (en) | Method and apparatus for removing boron from metallic silicon | |
| JPH0748114A (en) | Silicon refining method | |
| JPH09142823A (en) | Method and apparatus for refining metallic silicon | |
| JPH0361318B2 (en) | ||
| JPS6372840A (en) | Electroslag remelting method | |
| JPH10273374A (en) | Silicon purification method | |
| JPH10212113A (en) | How to remove boron from metallic silicon | |
| JPH05246706A (en) | Silicon refining method and apparatus |
| Date | Code | Title | Description |
|---|---|---|---|
| A01 | Written decision to grant a patent or to grant a registration (utility model) | Free format text:JAPANESE INTERMEDIATE CODE: A01 Effective date:20001128 | |
| S531 | Written request for registration of change of domicile | Free format text:JAPANESE INTERMEDIATE CODE: R313531 | |
| S533 | Written request for registration of change of name | Free format text:JAPANESE INTERMEDIATE CODE: R313533 | |
| R371 | Transfer withdrawn | Free format text:JAPANESE INTERMEDIATE CODE: R371 | |
| R370 | Written measure of declining of transfer procedure | Free format text:JAPANESE INTERMEDIATE CODE: R370 | |
| S111 | Request for change of ownership or part of ownership | Free format text:JAPANESE INTERMEDIATE CODE: R313113 | |
| R350 | Written notification of registration of transfer | Free format text:JAPANESE INTERMEDIATE CODE: R350 | |
| R350 | Written notification of registration of transfer | Free format text:JAPANESE INTERMEDIATE CODE: R350 | |
| S111 | Request for change of ownership or part of ownership | Free format text:JAPANESE INTERMEDIATE CODE: R313111 | |
| R350 | Written notification of registration of transfer | Free format text:JAPANESE INTERMEDIATE CODE: R350 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20081208 Year of fee payment:8 | |
| LAPS | Cancellation because of no payment of annual fees |