【0001】0001
【産業上の利用分野】本発明は青色発光の窒化ガリウム
系化合物半導体発光素子に関し、特に駆動電圧を低下さ
せ発光波長をより短波長にしたものに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blue-emitting gallium nitride compound semiconductor light-emitting device, and particularly to one in which the driving voltage is lowered and the emission wavelength is made shorter.
【0002】0002
【従来技術】従来、青色の発光ダイオードとしてGaN
系の化合物半導体を用いたものが知られている。その
GaN 系の化合物半導体は直接遷移であることから発
光効率が高いこと、光の3原色の1つである青色を発光
色とすること等から注目されている。[Prior Art] Conventionally, GaN was used as a blue light emitting diode.
A type of semiconductor using a compound semiconductor is known. The GaN-based compound semiconductor is attracting attention because it has high luminous efficiency due to its direct transition, and because it emits blue light, which is one of the three primary colors of light.
【0003】このようなGaN 系の化合物半導体を用
いた発光ダイオードは、サファイア基板上に直接又は窒
化アルミニウムから成るバッファ層を介在させて、n導
電型のGaN 系の化合物半導体から成るn層を成長さ
せ、そのn層の上にp型不純物を添加してi型(半絶縁
性)のGaN 系の化合物半導体から成るi層を成長さ
せた構造をとっている。又、この発光ダイオードではi
層の厚さは約1μmと厚い。この厚さはi層の結晶品質
を良くするために必要である。[0003] Such a light emitting diode using a GaN-based compound semiconductor is produced by growing an n-layer made of an n-conductivity type GaN-based compound semiconductor on a sapphire substrate directly or with a buffer layer made of aluminum nitride interposed therebetween. The structure is such that an i-layer made of an i-type (semi-insulating) GaN-based compound semiconductor is grown on the n-layer by doping p-type impurities. Also, in this light emitting diode, i
The layer thickness is approximately 1 μm. This thickness is necessary to improve the crystal quality of the i-layer.
【0004】0004
【発明が解決しようとする課題】しかし、上記構造の発
光ダイオードは、発光強度が十分でなく、駆動電圧も約
12Vと高く、発光波長も500nm とやや赤色側に
変位している。このため、発光強度が高く、駆動電圧が
低く、より青色の発光が得られるダイオードの開発が期
待されている。そこで、本発明の目的は、GaN 系の
化合物半導体の発光ダイオードの青色の発光強度の向上
、駆動電圧の低下、発光波長をより青色の波長に近づけ
ることである。However, the light emitting diode having the above structure does not have sufficient light emission intensity, has a high driving voltage of about 12V, and has a light emission wavelength of 500 nm, which is slightly shifted toward the red side. For this reason, there are expectations for the development of diodes that have high emission intensity, low driving voltage, and can emit bluer light. Therefore, an object of the present invention is to improve the blue light emission intensity of a GaN-based compound semiconductor light emitting diode, reduce the driving voltage, and bring the light emission wavelength closer to the blue wavelength.
【0005】[0005]
【課題を解決するための手段】本発明は、n型の窒化ガ
リウム系化合物半導体(AlXGa1−XN;X=0を
含む) からなるn層と、p形不純物を添加したi型の
窒化ガリウム系化合物半導体(AlXGa1−XN;X
=0 を含む) からなるi層とを有する窒化ガリウム
系化合物半導体発光素子において、i層の厚さを250
〜1000Åとしたことを特徴とする。i層の厚さが
250 Åよりも薄いと十分な発光強度が得られない。又、i層の厚さが1000Åよりも厚いと発光強度、発
光波長は変化しないが駆動電圧が高くなり望ましくない
。[Means for Solving the Problems] The present invention provides an n layer made of an n-type gallium nitride compound semiconductor (AlXGa1-XN; including X=0) and an i-type gallium nitride compound semiconductor doped with p-type impurities. Compound semiconductor (AlXGa1-XN;
In a gallium nitride-based compound semiconductor light emitting device having an i-layer consisting of
It is characterized by having a thickness of ~1000 Å. If the thickness of the i-layer is less than 250 Å, sufficient emission intensity cannot be obtained. Moreover, if the thickness of the i-layer is greater than 1000 Å, the emission intensity and emission wavelength will not change, but the driving voltage will increase, which is not desirable.
【0006】[0006]
【発明の作用及び効果】本発明は、i層の厚さを250
〜1000Åとしたことで、発光強度50 mcd、
駆動電圧8 V、発光波長480nm の発光ダイオー
ドが得られた。又、i層の厚さを250 〜1000Å
の範囲で変化させることで、発光波長が480 Å〜4
90Åの範囲で正確に制御することができた。Effects and Effects of the Invention The present invention provides an i-layer with a thickness of 250 mm.
~1000 Å, the emission intensity was 50 mcd,
A light emitting diode with a driving voltage of 8 V and an emission wavelength of 480 nm was obtained. Also, the thickness of the i layer is 250 to 1000 Å.
By changing the emission wavelength within the range of 480 Å to 4
Accurate control was possible within a range of 90 Å.
【0007】[0007]
【実施例】以下、本発明を具体的な実施例に基づいて説
明する。図1において、発光ダイオード10は、サファ
イア基板1を有しており、そのサファイア基板1に50
0 ÅのAlN のバッファ層2が形成されている。そ
のバッファ層2の上には、順に、膜厚約2.2 μmの
GaN から成る高キャリア濃度n+ 層3と膜厚約1
.5 μmのGaN から成る低キャリア濃度n層4が
形成されており、更に、低キャリア濃度n層4の上に膜
厚約800 ÅのGaN から成るi層5が形成されて
いる。そして、i層5に接続するアルミニウム、チタン
、ニッケルの3層構造で形成された電極7と高キャリア
濃度n+ 層3に接続するアルミニウム、チタン、ニッ
ケルの3層構造で形成された電極8とが形成されている
。尚、アルミニウム層7a,8aの厚さは1500Åで
あり、チタン層7b,8bの厚さは1000Åであり、
ニッケル層7c ,8c の厚さは2500Åである。EXAMPLES The present invention will be explained below based on specific examples. In FIG. 1, a light emitting diode 10 has a sapphire substrate 1, and a sapphire substrate 1 has a
A buffer layer 2 of AlN with a thickness of 0 Å is formed. On top of the buffer layer 2, a high carrier concentration n+ layer 3 made of GaN with a film thickness of about 2.2 μm and a film thickness of about 1 μm are formed.
.. A low carrier concentration n-layer 4 made of GaN with a thickness of 5 μm is formed, and an i-layer 5 made of GaN with a thickness of about 800 Å is further formed on the low carrier concentration n-layer 4. An electrode 7 formed of a three-layer structure of aluminum, titanium, and nickel is connected to the i-layer 5, and an electrode 8 is formed of a three-layer structure of aluminum, titanium, and nickel and connected to the high carrier concentration n+ layer 3. It is formed. Note that the thickness of the aluminum layers 7a and 8a is 1500 Å, the thickness of the titanium layers 7b and 8b is 1000 Å,
The thickness of the nickel layers 7c and 8c is 2500 Å.
【0008】次に、この構造の発光ダイオード10の製
造方法について説明する。上記発光ダイオード10は、
有機金属化合物気相成長法( 以下「M0VPE 」と
記す) による気相成長により製造された。用いられた
ガスは、NH3 とキャリアガスH2とトリメチルガリ
ウム(Ga(CH3)3)(以下「TMG 」と記す)
とトリメチルアルミニウム(Al(CH3)3)(以
下「TMA 」と記す) とシラン(SiH4)とジエ
チル亜鉛(以下「DEZ 」と記す) である。Next, a method for manufacturing the light emitting diode 10 having this structure will be explained. The light emitting diode 10 is
It was manufactured by vapor phase growth using organometallic compound vapor phase epitaxy (hereinafter referred to as "M0VPE"). The gases used were NH3, carrier gas H2, and trimethyl gallium (Ga(CH3)3) (hereinafter referred to as "TMG").
and trimethylaluminum (Al(CH3)3) (hereinafter referred to as "TMA"), silane (SiH4), and diethylzinc (hereinafter referred to as "DEZ").
【0009】まず、有機洗浄及び熱処理により洗浄した
a面(11−20) を主面とする単結晶のサファイア
基板1をM0VPE 装置の反応室に載置されたサセプ
タに装着する。次に、常圧でH2を流速2 liters/minで反
応室に流しながら温度1100℃でサファイア基板1を
気相エッチングした。First, a single-crystal sapphire substrate 1 having an a-plane (11-20) main surface that has been cleaned by organic cleaning and heat treatment is mounted on a susceptor placed in a reaction chamber of an M0VPE apparatus. Next, the sapphire substrate 1 was subjected to vapor phase etching at a temperature of 1100° C. while flowing H2 into the reaction chamber at a flow rate of 2 liters/min at normal pressure.
【0010】次に、温度を400 ℃まで低下させて、
H2を26 liters/min 、NH3 を10
liters/min 、TMA を 1.8×10
−5モル/分で供給してAlN のバッファ層2が約
500Åの厚さに形成された。[0010] Next, the temperature was lowered to 400°C,
H2 at 26 liters/min, NH3 at 10
liters/min, TMA 1.8×10
The buffer layer 2 of AlN is supplied at a rate of -5 mol/min.
It was formed to a thickness of 500 Å.
【0011】次に、サファイア基板1の温度を1150
℃に保持し、H2を20 liters/min 、N
H3 を10 liters/min 、TMG を
1.7×10−4モル/分、H2で0.86ppm ま
で希釈したシラン(SiH4 ) を 200ml/分
の割合で30分間供給し、膜厚約 2.2μm、キャリ
ア濃度1.5×1018/ cm3 のGaN から成
る高キャリア濃度n+ 層3を形成した。Next, the temperature of the sapphire substrate 1 is set to 1150°C.
℃, H2 at 20 liters/min, N
H3 at 10 liters/min, TMG at
Silane (SiH4) diluted to 0.86 ppm with H2 was supplied at a rate of 200 ml/min for 30 minutes at 1.7 x 10-4 mol/min, resulting in a film thickness of about 2.2 μm and a carrier concentration of 1.5 x 1018/min. A high carrier concentration n+ layer 3 made of GaN of cm3 was formed.
【0012】続いて、サファイア基板1の温度を115
0℃に保持し、H2を20 liters/min 、
NH3 を10 liters/min 、TMG を
1.7 ×10−4モル/分の割合で20分間供給し、
膜厚約1.5 μm、キャリア濃度 1×1015/
cm3 のGaN から成る低キャリア濃度n層4を形
成した。[0012] Subsequently, the temperature of the sapphire substrate 1 was increased to 115
Maintained at 0°C, supplied H2 at 20 liters/min,
Supplying NH3 at a rate of 10 liters/min and TMG at a rate of 1.7 x 10-4 mol/min for 20 minutes,
Film thickness approximately 1.5 μm, carrier concentration 1×1015/
A low carrier concentration n-layer 4 made of GaN of cm3 was formed.
【0013】次に、サファイア基板1を 900℃にし
て、 H2 を20 liters/min 、NH3
を10liters/min、TMG を 1.4×
10−4モル/分、DEZ を 3.8×10−4モル
/分の割合で1.5 分間供給して、膜厚 400Åの
GaN から成るi層5を形成した。このようにして、
図2に示すような多層構造が得られた。Next, the sapphire substrate 1 was heated to 900°C, H2 was heated at 20 liters/min, NH3
10liters/min, TMG 1.4×
DEZ was supplied at a rate of 3.8×10 −4 mol/min for 1.5 minutes to form an i-layer 5 of GaN having a thickness of 400 Å. In this way,
A multilayer structure as shown in FIG. 2 was obtained.
【0014】次に、図3に示すように、i層5の上に、
スパッタリングによりSiO2層11を2000Åの厚
さに形成した。次に、そのSiO2層11上にフォトレ
ジスト12を塗布して、フォトリソグラフにより、その
フォトレジスト12を高キャリア濃度n+ 層3に対す
る電極形成部位のフォトレジストを除去したパターンに
形成した。Next, as shown in FIG. 3, on the i-layer 5,
A SiO2 layer 11 was formed to a thickness of 2000 Å by sputtering. Next, a photoresist 12 was coated on the SiO2 layer 11, and the photoresist 12 was formed by photolithography into a pattern in which the photoresist at the electrode formation site for the high carrier concentration n+ layer 3 was removed.
【0015】次に、図4に示すように、フォトレジスト
12によって覆われていないSiO2層11をフッ酸系
エッチング液で除去した。次に、図5に示すように、フ
ォトレジスト12及びSiO2層11によって覆われて
いない部位のi層5とその下の低キャリア濃度n層4と
高キャリア濃度n+ 層3の上面一部を、真空度0.0
4Torr、高周波電力0.44W/cm3 、CCl
2F2ガスを10 ml/分の割合で供給しドライエッ
チングした後、Arでドライエッチングした。Next, as shown in FIG. 4, the SiO2 layer 11 not covered with the photoresist 12 was removed using a hydrofluoric acid etching solution. Next, as shown in FIG. 5, a portion of the upper surface of the i layer 5, the lower carrier concentration n layer 4, and the high carrier concentration n+ layer 3, which are not covered by the photoresist 12 and the SiO2 layer 11, are Vacuum degree 0.0
4Torr, high frequency power 0.44W/cm3, CCl
After dry etching was performed by supplying 2F2 gas at a rate of 10 ml/min, dry etching was performed with Ar.
【0016】次に、図6に示すように、i層5上に残っ
ているSiO2層11をフッ酸で除去した。次に、図
7に示すように、試料の上全面に、Al層13a、Ti
層13b、Ni層13cをそれぞれその順に蒸着により
1500Å、1000Å、2500Åの厚さに形成した
。そして、そのNi層13cの上にフォトレジスト14
を塗布して、フォトリソグラフにより、そのフォトレジ
スト14が高キャリア濃度n+ 層3及びi層5に対す
る電極部が残るように、所定形状にパターン形成した。Next, as shown in FIG. 6, the SiO2 layer 11 remaining on the i-layer 5 was removed using hydrofluoric acid. Then, figure
As shown in Fig. 7, an Al layer 13a, a Ti layer 13a, and a Ti
Layer 13b and Ni layer 13c were formed in that order by vapor deposition to thicknesses of 1500 Å, 1000 Å, and 2500 Å, respectively. Then, a photoresist 14 is placed on the Ni layer 13c.
was coated, and the photoresist 14 was patterned into a predetermined shape by photolithography so that electrode portions for the high carrier concentration n+ layer 3 and i layer 5 remained.
【0017】次に、図7に示すようにそのフォトレジス
ト14をマスクとして下層のNi層13c、Ti層13
b、Al層13aの露出部を硝酸系エッチング液でエッ
チングし、フォトレジスト14をアセトンで除去し、高
キャリア濃度n+ 層3の電極8、i層5の電極7を形
成した。このようにして、図1に示すMIS(Metal−In
su− lator Semiconductor)構
造の窒化ガリウム系発光素を製造することができる。Next, as shown in FIG. 7, the lower Ni layer 13c and Ti layer 13 are formed using the photoresist 14 as a mask.
b. The exposed portion of the Al layer 13a was etched with a nitric acid-based etching solution, and the photoresist 14 was removed with acetone to form the electrode 8 of the high carrier concentration n+ layer 3 and the electrode 7 of the i-layer 5. In this way, the MIS (Metal-In
It is possible to manufacture a gallium nitride-based light emitting device having a s-lator semiconductor structure.
【0018】このようにして製造された発光ダイオード
10の発光強度を測定したところ、50 mcdであっ
た。駆動電圧は8V(IF =10 mA)であり、発
光波長は480nm であった。When the light emitting intensity of the light emitting diode 10 manufactured in this way was measured, it was 50 mcd. The driving voltage was 8 V (IF = 10 mA), and the emission wavelength was 480 nm.
【0019】次に、i層5の厚さを各種変化させてLE
Dを製作した。そして、i層5の厚さと発光波長との関
係を測定した。その結果を図8に示す。図8からi層5
の厚さが250 Å〜1000Åと変化するに伴い、発
光波長は480nm から490nm に変化させるこ
とができた。この結果、i層5をより薄くすることでよ
り青色に近い発光を得ることができた。Next, by varying the thickness of the i-layer 5, the LE
I made D. Then, the relationship between the thickness of the i-layer 5 and the emission wavelength was measured. The results are shown in FIG. From Figure 8, i layer 5
As the thickness changed from 250 Å to 1000 Å, the emission wavelength could be changed from 480 nm to 490 nm. As a result, by making the i-layer 5 thinner, it was possible to obtain light emission closer to blue.
【0020】又、i層5の厚さと立上がり電圧VF (
IF =1mA)との関係を測定した。その結果を図9
に示す。図9からi層5の厚さが250 Å〜1000
Åと変化するに伴い、立上がり電圧VF (IF =1
0mA)は6.5 V〜8.5 Vに変化する。このよ
うに、i層5の厚さを250 Å〜1000Åの範囲で
薄くすることにより、駆動電圧が約9Vとなり従来の窒
化ガリウムLEDの駆動電圧12Vに比べて低くするこ
とができた。Furthermore, the thickness of the i-layer 5 and the rising voltage VF (
IF = 1 mA) was measured. The results are shown in Figure 9.
Shown below. From FIG. 9, the thickness of the i-layer 5 is 250 Å to 1000 Å.
As the rising voltage VF (IF = 1
0 mA) changes from 6.5 V to 8.5 V. In this way, by reducing the thickness of the i-layer 5 in the range of 250 Å to 1000 Å, the driving voltage was approximately 9V, which was lower than the driving voltage of 12V of the conventional gallium nitride LED.
【0021】又、i層5の厚さとPLピーク波長との関
係を測定した。その結果を図10に示す。i層5の厚さ
が250 Å〜1000Åと変化しても、PLピーク波
長には変化が見られなかった。Furthermore, the relationship between the thickness of the i-layer 5 and the PL peak wavelength was measured. The results are shown in FIG. Even when the thickness of the i-layer 5 changed from 250 Å to 1000 Å, no change was observed in the PL peak wavelength.
【0022】このようなi層5の厚さと、駆動電圧及び
発光波長との関係が生じる原因は、発明者の考察によれ
ば、i層5の薄膜化により高電界がかかりバンドの曲が
りが急峻になり、n層4から注入された電子がより高エ
ネルギー状態から遷移するために生じるものと思われる
。According to the inventor's study, the reason for such a relationship between the thickness of the i-layer 5, the driving voltage, and the emission wavelength is that the thinning of the i-layer 5 causes a high electric field to be applied, resulting in a sharp bending of the band. This is thought to occur because electrons injected from the n-layer 4 transition from a higher energy state.
【図1】本発明の具体的な一実施例に係る発光ダイオー
ドの構成を示した構成図。FIG. 1 is a configuration diagram showing the configuration of a light emitting diode according to a specific example of the present invention.
【図2】発光ダイオードの製造工程を示した断面図。FIG. 2 is a cross-sectional view showing the manufacturing process of a light emitting diode.
【図3】発光ダイオードの製造工程を示した断面図。FIG. 3 is a cross-sectional view showing the manufacturing process of a light emitting diode.
【図4】発光ダイオードの製造工程を示した断面図。FIG. 4 is a cross-sectional view showing the manufacturing process of a light emitting diode.
【図5】発光ダイオードの製造工程を示した断面図。FIG. 5 is a cross-sectional view showing the manufacturing process of a light emitting diode.
【図6】発光ダイオードの製造工程を示した断面図。FIG. 6 is a cross-sectional view showing the manufacturing process of a light emitting diode.
【図7】発光ダイオードの製造工程を示した断面図。FIG. 7 is a cross-sectional view showing the manufacturing process of a light emitting diode.
【図8】発光ダイオードのi層の厚さと発光波長との関
係を示した測定図。FIG. 8 is a measurement diagram showing the relationship between the thickness of the i-layer of a light emitting diode and the emission wavelength.
【図9】発光ダイオードのi層の厚さと駆動電圧との関
係を示した測定図。FIG. 9 is a measurement diagram showing the relationship between the thickness of the i-layer of a light emitting diode and the driving voltage.
【図10】発光ダイオードのi層の厚さとPLピーク波
長との関係を示した測定図。FIG. 10 is a measurement diagram showing the relationship between the thickness of the i-layer of a light emitting diode and the PL peak wavelength.
10…発光ダイオード 1…サファイア基板 2…
バッファ層3…高キャリア濃度n+ 層 4…低キャリア濃度n
層 5…i層7,8…電極10...Light emitting diode 1...Sapphire substrate 2...
Buffer layer 3...High carrier concentration n+ layer 4...Low carrier concentration n
Layer 5...i layer 7, 8...electrode
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3089832AJPH04321279A (en) | 1991-03-27 | 1991-03-27 | Gallium nitride compound semiconductor light emitting device |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3089832AJPH04321279A (en) | 1991-03-27 | 1991-03-27 | Gallium nitride compound semiconductor light emitting device |
| Publication Number | Publication Date |
|---|---|
| JPH04321279Atrue JPH04321279A (en) | 1992-11-11 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP3089832APendingJPH04321279A (en) | 1991-03-27 | 1991-03-27 | Gallium nitride compound semiconductor light emitting device |
| Country | Link |
|---|---|
| JP (1) | JPH04321279A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0745867A (en)* | 1993-07-28 | 1995-02-14 | Nichia Chem Ind Ltd | Electrode of n-type gallium nitride compound semiconductor layer |
| US5652438A (en)* | 1994-07-20 | 1997-07-29 | Toyoda Gosei Co., Ltd. | Light-emitting semiconductor device using group III nitride compound |
| US6996150B1 (en) | 1994-09-14 | 2006-02-07 | Rohm Co., Ltd. | Semiconductor light emitting device and manufacturing method therefor |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0745867A (en)* | 1993-07-28 | 1995-02-14 | Nichia Chem Ind Ltd | Electrode of n-type gallium nitride compound semiconductor layer |
| US5652438A (en)* | 1994-07-20 | 1997-07-29 | Toyoda Gosei Co., Ltd. | Light-emitting semiconductor device using group III nitride compound |
| US6996150B1 (en) | 1994-09-14 | 2006-02-07 | Rohm Co., Ltd. | Semiconductor light emitting device and manufacturing method therefor |
| US7616672B2 (en) | 1994-09-14 | 2009-11-10 | Rohm Co., Ltd. | Semiconductor light emitting device and manufacturing method therefor |
| US8934513B2 (en) | 1994-09-14 | 2015-01-13 | Rohm Co., Ltd. | Semiconductor light emitting device and manufacturing method therefor |
| Publication | Publication Date | Title |
|---|---|---|
| JP4055304B2 (en) | Method for producing gallium nitride compound semiconductor | |
| JPH07202265A (en) | Method for manufacturing group III nitride semiconductor | |
| JPH03252175A (en) | Gallium nitride compound semiconductor light emitting device | |
| JP3795624B2 (en) | Nitrogen-3 group element compound semiconductor light emitting device | |
| JP2658009B2 (en) | Gallium nitride based compound semiconductor light emitting device | |
| JP3312715B2 (en) | Gallium nitride based compound semiconductor light emitting device | |
| JPH03252177A (en) | Light emitting element of gallium nitride compound semiconductor | |
| JPH07131068A (en) | Nitrogen-group-iii element compound semiconductor light emitting element | |
| JP4055303B2 (en) | Gallium nitride compound semiconductor and semiconductor device | |
| JPH04321279A (en) | Gallium nitride compound semiconductor light emitting device | |
| JP2019197857A (en) | Light-emitting diode element and manufacturing method for light-emitting diode element | |
| JPH06151962A (en) | Nitrogen-iii compound semiconductor luminous element and manufacture thereof | |
| JPH04163970A (en) | Gallium nitride compound semiconductor light emitting element and manufacture thereof | |
| JP2681094B2 (en) | Gallium nitride based compound semiconductor light emitting device | |
| JP3661871B2 (en) | Method for producing gallium nitride compound semiconductor | |
| JP3727091B2 (en) | Group 3 nitride semiconductor device | |
| JP3613190B2 (en) | Gallium nitride compound semiconductor light emitting device and method for manufacturing the same | |
| JPH04163969A (en) | Gallium nitride compound semiconductor light emitting device | |
| JP3232654B2 (en) | Gallium nitride based compound semiconductor light emitting device and method of manufacturing the same | |
| JP3193980B2 (en) | Gallium nitride based compound semiconductor light emitting device | |
| JPH04299583A (en) | Gallium nitride based compound semiconductor light emitting element | |
| JPH09153643A (en) | Group III nitride semiconductor device | |
| JPH05308154A (en) | Gallium nitride compound semiconductor light emitting element | |
| JP3498185B2 (en) | Nitrogen-3 group compound semiconductor light emitting device and method of manufacturing the same | |
| JP2001168389A (en) | Method of manufacturing gallium nitride based compound semiconductor light emitting device |