Movatterモバイル変換


[0]ホーム

URL:


JPH04277406A - copper conductor paste - Google Patents

copper conductor paste

Info

Publication number
JPH04277406A
JPH04277406AJP3749491AJP3749491AJPH04277406AJP H04277406 AJPH04277406 AJP H04277406AJP 3749491 AJP3749491 AJP 3749491AJP 3749491 AJP3749491 AJP 3749491AJP H04277406 AJPH04277406 AJP H04277406A
Authority
JP
Japan
Prior art keywords
copper
copper powder
weight
film
thick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3749491A
Other languages
Japanese (ja)
Inventor
Yoshikazu Nakada
中田 好和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries LtdfiledCriticalSumitomo Metal Industries Ltd
Priority to JP3749491ApriorityCriticalpatent/JPH04277406A/en
Publication of JPH04277406ApublicationCriticalpatent/JPH04277406A/en
Withdrawnlegal-statusCriticalCurrent

Links

Landscapes

Abstract

Translated fromJapanese

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

Translated fromJapanese
【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、セラミックス等の絶縁
性基板上に銅厚膜の電極および配線パターンを形成させ
るための銅導体ペーストに関し、さらに詳しくはそのよ
うな絶縁性基板に対する接着強度が極めて高い銅厚膜の
電極および配線を形成させるための銅導体ペーストに関
する。
[Field of Industrial Application] The present invention relates to a copper conductor paste for forming thick copper film electrodes and wiring patterns on insulating substrates such as ceramics, and more specifically, the present invention relates to a copper conductor paste for forming thick copper film electrodes and wiring patterns on insulating substrates such as ceramics, and more specifically, This invention relates to a copper conductor paste for forming extremely thick copper film electrodes and wiring.

【0002】0002

【従来の技術】ガラス、セラミックス等の絶縁性基板上
にスクリーン印刷法もしくは直接描画法などで導体ペー
ストを塗布し焼成することで電極および配線を形成する
厚膜技術において、従来のAg/Pd 系導体ペースト
に代わり、抵抗・誘電率がともに低いため微細回路の配
線が形成可能な銅導体ペーストが用いられる傾向にある
ことは周知の事実である。銅導体ペーストは銅粉末とガ
ラスフリットとをビヒクル中に分散させてなるものであ
る。
[Prior Art] In thick film technology, in which electrodes and wiring are formed by applying a conductive paste on an insulating substrate such as glass or ceramics using a screen printing method or a direct drawing method, and firing it, conventional Ag/Pd-based It is a well-known fact that there is a tendency to use copper conductor paste instead of conductor paste, which has low resistance and dielectric constant and can form fine circuit wiring. Copper conductor paste is made by dispersing copper powder and glass frit in a vehicle.

【0003】ここに、銅粉末は焼成時に焼結することで
導体厚膜を形成するものであり、これまで導体ペースト
用の銅粉末としては粒度0.3 μmから10μm の
銅粉末が用いられている。ガラスフリットはこの導体厚
膜を基板に接着させる作用があり、焼成時に溶融して銅
粉末間から基板界面へ流動することで銅厚膜を基板に接
合させている。すなわち、ガラスフリットが基板上に突
起状に固着することで銅厚膜と機械的な噛み合わせによ
るアンカー結合をしているのである。ビヒクルは銅粉末
とガラスフリットをペースト化して印刷可能にするため
の有機液体媒体であり、樹脂を溶剤に溶解したものであ
るため焼成時に揮発・燃焼して焼失する。
[0003] Copper powder forms a thick conductor film by sintering during firing, and up to now copper powder with a particle size of 0.3 μm to 10 μm has been used as copper powder for conductor paste. There is. The glass frit has the effect of adhering this thick conductor film to the substrate, and it melts during firing and flows from between the copper powder to the substrate interface, thereby bonding the thick copper film to the substrate. That is, the glass frit adheres to the substrate in the form of a protrusion, thereby anchoring it to the thick copper film through mechanical engagement. The vehicle is an organic liquid medium used to paste copper powder and glass frit to make it printable, and since it is a resin dissolved in a solvent, it evaporates and burns during firing.

【0004】0004

【発明が解決しようとする課題】前述したように銅導体
ペーストの特徴は銅の優れた電気的特性から例えば線間
距離75μm という微細回路の形成が可能であること
であるが、得られる銅厚膜導体と基板との接着強度が充
分でないためにマウント工程でのチップの取り付け歩留
りが低く実用化には至っていない。すなわち、微細回路
を形成するにはチップをはんだ付けする銅導体のパッド
部も小さくする必要があるのであるが、パッド部の面積
が減少すると基板との接着力もそれだけ低下するのでマ
ウント工程においてチップが基板からはがれてしまうと
いう事態が起こり易くなってしまいチップの取り付け歩
留りが低下するのである。
[Problems to be Solved by the Invention] As mentioned above, a feature of copper conductor paste is that due to the excellent electrical properties of copper, it is possible to form fine circuits with a distance between lines of 75 μm, but the resulting copper thickness is Since the adhesive strength between the film conductor and the substrate is not sufficient, the yield of mounting the chip in the mounting process is low, and it has not been put into practical use. In other words, in order to form a fine circuit, it is necessary to make the pad area of the copper conductor to which the chip is soldered small, but as the area of the pad area decreases, the adhesion force with the substrate also decreases, so the chip is soldered during the mounting process. This makes it easier for the chip to peel off from the substrate, reducing the yield of chip attachment.

【0005】したがって、銅厚膜導体による微細回路形
成時におけるマウント工程でのチップの取り付け歩留り
の向上には単位面積当りの銅導体の基板に対する接着強
度を高くしなければならない。以上の点に鑑み、本発明
は基板に対する接着強度の高い銅厚膜導体が形成可能な
銅導体ペーストを提供することを目的とする。
[0005] Therefore, in order to improve the chip mounting yield in the mounting process when forming fine circuits using copper thick film conductors, it is necessary to increase the adhesion strength of the copper conductor to the substrate per unit area. In view of the above points, an object of the present invention is to provide a copper conductor paste capable of forming a thick copper film conductor with high adhesion strength to a substrate.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
、本発明者は鋭意研究の結果、チップのマウント工程に
おける歩留り低下原因を調べ、その際の銅厚膜の剥がれ
メカニズムについて次のような知見を得た。(1) 銅導体ペーストを用いて基板上に形成された銅
厚膜は、基板上に固着したガラスフリットにより結合さ
れている。つまり、基板からガラスの突起物が銅厚膜内
に食い込んだ構造になっており、銅厚膜はガラスにより
基板と機械的な噛み合わせによるアンカー接合をしてい
る。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the inventor of the present invention conducted intensive research to investigate the cause of yield decline in the chip mounting process, and found the following regarding the peeling mechanism of the thick copper film at that time. I gained knowledge. (1) A thick copper film formed on a substrate using a copper conductor paste is bonded by a glass frit fixed on the substrate. In other words, the structure is such that glass protrusions from the substrate dig into the thick copper film, and the thick copper film is anchored to the substrate by mechanical engagement with the glass.

【0007】(2) 銅とガラスとでは熱膨張率が異な
るので、ガラスの突起は銅厚膜によりタイトに締め付け
られて、ガラス内には応力がかかっている。この結果、
ガラス内にはクラックが発生・伝播しやすい状態になっ
ているためにかなり脆くなっている。このときに銅厚膜
に垂直上方の引張力が加わるとガラスは容易に破壊する
ので銅厚膜が剥がれてしまう。(3) したがって、銅厚膜の基板に対する接着強度を
改善するには、ガラスに加わっている応力を緩和させる
ことが有効である。
(2) Since copper and glass have different coefficients of thermal expansion, the protrusions of the glass are tightly clamped by the thick copper film, and stress is applied within the glass. As a result,
Cracks can easily form and propagate within the glass, making it quite brittle. At this time, if a vertically upward tensile force is applied to the thick copper film, the glass will easily break and the thick copper film will peel off. (3) Therefore, in order to improve the adhesive strength of a copper thick film to a substrate, it is effective to relieve the stress applied to the glass.

【0008】かくして、銅粉末の粒度分布を調整して、
厚膜の結晶構造を制御することにより基板との接着強度
が向上することを見い出し、本発明を完成するに至った
[0008] Thus, by adjusting the particle size distribution of the copper powder,
The inventors discovered that controlling the crystal structure of the thick film improves the adhesive strength with the substrate, and completed the present invention.

【0009】なお、従来にあっても、基板に対する接着
強度を高めるため、2種類の粒度分布を持つ銅粉末を配
合した導体ペーストが提案されている (特開平1−1
96192号公報) 。しかしながら、上記公報開示の
方法では、平均粒径1.2 μm 以上である銅粉が3
0〜60重量%と平均粒径0.9 μm 以下である銅
粉70〜40重量%とを混合して成るものであるが、実
体的には平均粒径は高々3.4 μm 程度であって、
しかも剥離強度(DuPont 法によるビール強度)
 も高々2.7 Kg/4mm2 であって、本発明の
目的を到底満足することはなく、その他の特性において
も微細回路に使用するためには、充分な特性を有してい
るとはいえなかった。
[0009] Conventionally, a conductor paste containing copper powder having two types of particle size distribution has been proposed in order to increase the adhesive strength to the substrate (Japanese Patent Laid-Open No. 1-1-1
96192). However, in the method disclosed in the above publication, copper powder with an average particle size of 1.2 μm or more is
It is made by mixing 0 to 60% by weight of copper powder and 70 to 40% by weight of copper powder having an average particle size of 0.9 μm or less, but in reality, the average particle size is at most about 3.4 μm. hand,
Moreover, peel strength (beer strength by DuPont method)
The weight was at most 2.7 Kg/4mm2, which does not completely satisfy the purpose of the present invention, and other characteristics cannot be said to be sufficient for use in microcircuits. Ta.

【0010】また、特開昭60−70746 号公報に
は銅粒子として10μm 以下の最大粒径および2 〜
4 μm の平均粒径を有するものを使用することが開
示されているが、これは好適な焼結、有機媒質の完全な
燃焼および好ましいスクリーン印刷性を得るためであり
、特定粒度分布の銅粉を二種組み合わせて使用すること
と基板に対する接着強度改善との相関については何らの
認識もない。
[0010] Furthermore, JP-A-60-70746 discloses copper particles with a maximum particle size of 10 μm or less and a particle size of 2 to 2 μm.
The use of copper powder with an average particle size of 4 μm is disclosed, in order to obtain suitable sintering, complete combustion of the organic medium and favorable screen printability, and copper powder with a specific particle size distribution is disclosed. There is no knowledge of any correlation between the use of two types of these in combination and the improvement in adhesive strength to the substrate.

【0011】ここに、本発明は、導電粒子としての銅粉
末を、ガラスフリットと共にビヒクル中に分散して成る
導体ペーストであって、該銅粉末が粒径0.3 μm 
以上5μm未満の銅粉末が70重量%から90重量%と
粒径5μm 以上10μm 以下の銅粉末が30重量%
から10重量%とからなることを特徴とする銅導体ペー
ストである。本発明の好適態様によれば、上記銅粉末1
00 重量部に対し2重量部以下の金属酸化物が添加さ
れてもよい。
The present invention provides a conductive paste comprising copper powder as conductive particles dispersed in a vehicle together with a glass frit, the copper powder having a particle size of 0.3 μm.
70% to 90% by weight of copper powder with a particle size of 5 μm or more and less than 5 μm and 30% by weight of copper powder with a particle size of 5 μm or more and 10 μm or less
10% by weight of copper conductor paste. According to a preferred embodiment of the present invention, the copper powder 1
00 parts by weight or less of metal oxide may be added.

【0012】0012

【作用】本発明の構成と作用をさらに具体的に説明する
。本発明にかかる銅導体ペーストを用いて基板上に形成
された銅厚膜は、基板上に固着したガラスフリットによ
り結合されている。つまり、基板からガラスの突起物が
銅厚膜内に食い込んだ構造になっており、銅厚膜はガラ
スにより基板と機械的な噛み合わせによるアンカー接合
をしているのである。しかしながら、すでに述べたよう
に、かかる形態の接合であるため、ガラス内には応力が
かかった状態となっている。そこで、本発明にあっては
そのような応力を分散させるべく大径粒子と小径粒子と
の特定の組み合わせを採用するのである。
[Operation] The structure and operation of the present invention will be explained in more detail. A thick copper film formed on a substrate using the copper conductor paste according to the present invention is bonded by a glass frit fixed on the substrate. In other words, the structure is such that glass protrusions from the substrate dig into the thick copper film, and the thick copper film is anchored to the substrate by mechanical engagement with the glass. However, as mentioned above, due to this type of bonding, stress is applied within the glass. Therefore, in the present invention, a specific combination of large-diameter particles and small-diameter particles is employed in order to disperse such stress.

【0013】すなわち、本発明においては、銅粉末とし
て粒径0.3 μm 以上5μm 未満の銅粉末が70
重量%から90重量%および粒径5μm 以上10μm
 以下の銅粉末が30重量%から10重量%となるから
銅粉末を用いることにより、銅厚膜内にポアを均一に分
散させることによりガラスに加わる応力が緩和されるの
で接着強度が改善されるのである。粒径が0.3 μm
 未満の銅粉末は著しく焼結収縮するので厚膜内に大き
なクラックが入ってしまい、他方、粒径が10μmを超
える銅粉末は微細線の印刷ができない欠点があるので、
使用が制限される。
That is, in the present invention, copper powder having a particle size of 0.3 μm or more and less than 5 μm is used as the copper powder.
Weight% to 90% by weight and particle size 5μm or more 10μm
Since the following copper powder is 30% by weight to 10% by weight, by using copper powder, the stress applied to the glass is alleviated by uniformly dispersing pores within the thick copper film, thereby improving the adhesive strength. It is. Particle size is 0.3 μm
Copper powder with a grain size of less than 10 μm will undergo significant sintering shrinkage, resulting in large cracks in the thick film, while copper powder with a grain size of more than 10 μm has the disadvantage of not being able to print fine lines.
Usage is restricted.

【0014】一方、粒径0.3 μm 以上5μm 未
満の銅粉末が90重量%を超え、あるいは粒径5μm 
以上10μm 以下の銅粉末が10重量%未満の銅粉末
配合では緻密に焼結した厚膜になってしまうのでガラス
に加わる応力が大きくなり上述の理由より接着強度は低
下する。逆に、粒径0.3 μm 以上5μm 未満の
銅粉末が70重量%未満、もしくは粒径5μm 以上1
0μm 以下の銅粉末が30重量%を超える銅粉末配合
では充分に焼結せずポアの存在率が多すぎて導電抵抗が
高い上にハンダ濡れ性も悪く、さらに、銅厚膜上にハン
ダを濡らしてエージングした際にハンダのSnが銅厚膜
内のポアを通して拡散してCu−Sn化合物を形成する
ので接着強度が低下するので好ましくない。
On the other hand, copper powder with a particle size of 0.3 μm or more and less than 5 μm accounts for more than 90% by weight, or copper powder with a particle size of 5 μm or more
If the copper powder composition is less than 10% by weight of copper powder with a diameter of 10 μm or less, the result is a densely sintered thick film, which increases the stress applied to the glass and lowers the adhesive strength for the above-mentioned reasons. Conversely, less than 70% by weight of copper powder with a particle size of 0.3 μm or more and less than 5 μm, or less than 70% by weight of copper powder with a particle size of 5 μm or more1
Copper powder compositions containing more than 30% by weight of copper powder of 0 μm or less do not sinter sufficiently, resulting in too many pores, resulting in high conductive resistance and poor solder wettability. When wetted and aged, the Sn of the solder diffuses through the pores in the copper thick film to form a Cu-Sn compound, which is undesirable because the adhesive strength decreases.

【0015】本発明に用いられる銅粉末の粒子形状は特
に制限はないがスクリーン印刷性の点から球状に近いも
のが好ましい。また、銅粉末の表面状態についても制限
はなく銅粉末の焼結を阻害しない程度に酸化していても
、あるいは保存中に酸化進行を防ぐために防錆処理を施
してあってもなんら差し支えない。
[0015] The particle shape of the copper powder used in the present invention is not particularly limited, but from the viewpoint of screen printability, it is preferably close to spherical. Furthermore, there are no restrictions on the surface condition of the copper powder, and there is no problem even if it is oxidized to the extent that it does not inhibit the sintering of the copper powder, or if it is subjected to anti-rust treatment to prevent the progress of oxidation during storage.

【0016】本発明では公知のガラスフリットが使用可
能である。たとえばPbO−B2O3−SiO2系ガラ
スに、亜鉛、アルミニウム、カドミニウム等の金属を加
えたガラス系が使用可能である。なお、ガラスフリット
の添加量が多ければ接着強度は増大する傾向にあるが、
過剰のガラスフリットの添加は銅厚膜のハンダに対する
濡れ性を著しく低下させるので適量添加する。好ましく
は銅粉末100 重量部に対して2重量%から5重量%
である。本発明に用いられるビヒクルとしては公知のビ
ヒクルが使用可能である。たとえば、アクリル樹脂もし
くはセルロース樹脂をテルピネオール等の溶剤に溶解さ
せたものを使用すればよい。
In the present invention, known glass frits can be used. For example, a glass system in which metals such as zinc, aluminum, and cadmium are added to PbO-B2O3-SiO2 glass can be used. Note that the adhesive strength tends to increase as the amount of glass frit added increases.
Addition of an excessive amount of glass frit significantly reduces the solder wettability of the copper thick film, so add it in an appropriate amount. Preferably 2% to 5% by weight based on 100 parts by weight of copper powder
It is. As the vehicle used in the present invention, any known vehicle can be used. For example, an acrylic resin or a cellulose resin dissolved in a solvent such as terpineol may be used.

【0017】本発明にかかる銅導体ペーストにはエージ
ングによる接着強度の低下を防ぐために金属酸化物を添
加してもよい。そのような目的で添加される代表的な金
属酸化物としては、酸化銅が挙げられる。その他酸化亜
鉛、酸化カドミニウムのようなものであってもよい。な
お、金属酸化物の過剰量の添加は銅粉末の焼結を阻害し
、銅厚膜のハンダに対する濡れ性を著しく低下させるの
で適量添加しなければならない。好ましくは銅粉末10
0 重量部に対して2重量%以下である。
A metal oxide may be added to the copper conductor paste according to the present invention in order to prevent a decrease in adhesive strength due to aging. A typical metal oxide added for such a purpose includes copper oxide. Other materials such as zinc oxide and cadmium oxide may also be used. Note that addition of an excessive amount of metal oxide inhibits sintering of the copper powder and significantly reduces the wettability of the copper thick film to solder, so it must be added in an appropriate amount. Preferably copper powder 10
2% by weight or less based on 0 parts by weight.

【0018】本発明の導体ペーストはアルミナ等の全て
のセラミックス基板に適用可能である。本発明にかかる
銅導体ペーストの焼成温度は600 ℃から950 ℃
であることが好ましい。600 ℃未満では銅粉末が焼
結せず、950 ℃を超えると銅粉末の焼結が進行し過
ぎてポアが消滅した緻密な厚膜になるからである。本発
明の導体ペーストの焼成雰囲気は一般に行われている窒
素雰囲気下で行うことができる。
The conductive paste of the present invention can be applied to all ceramic substrates such as alumina. The firing temperature of the copper conductor paste according to the present invention is 600°C to 950°C.
It is preferable that This is because if the temperature is lower than 600°C, the copper powder will not be sintered, and if the temperature is higher than 950°C, the sintering of the copper powder will progress too much, resulting in a dense thick film in which pores have disappeared. The firing atmosphere for the conductor paste of the present invention can be a commonly used nitrogen atmosphere.

【0019】[0019]

【実施例】本発明を具体的に実施例により説明する。表
1の組成割合で調整した各導体ペーストを純度96%の
アルミナ基板上にスクリーン印刷機で適当なパターンに
印刷を行い、120 ℃で10分間乾燥した後、窒素雰
囲気中で、ベルト炉においてピーク 750℃×10分
を含む1サイクル70分の条件で焼成を行い膜厚20μ
m の銅厚膜導体を得た。このようにして得られた各銅
厚膜導体の導体特性評価を行った。
[Example] The present invention will be specifically explained with reference to Examples. Each conductor paste adjusted to the composition ratio shown in Table 1 was printed in an appropriate pattern on a 96% pure alumina substrate using a screen printer, dried at 120°C for 10 minutes, and then heated in a belt furnace in a nitrogen atmosphere. Baking was performed under conditions of 70 minutes per cycle including 10 minutes at 750℃, resulting in a film thickness of 20μ.
A copper thick film conductor of m was obtained. The conductor characteristics of each thick copper film conductor thus obtained were evaluated.

【0020】まず、導電性については、導体特性値の測
定により評価した。具体的には4端子抵抗測定値および
銅厚膜の線幅・膜厚値よりシート抵抗値を求めた。接着
強度については、2mm角の銅厚膜を230 ±3℃の
温度に維持した63%Sn−37%Pbハンダ槽に3±
0.5 秒間浸漬した後、その上に0.6 mmφスズ
メッキ導線をハンダゴテにてハンダ付けした。スズメッ
キ導線を被膜端部より1mmの位置で90度曲げて基板
と垂直とし、基板を固定した状態で引張試験機により1
0cm/minの速度でスズメッキ導線を引張り、スズ
メッキ導線が基板から剥がれたときの接着強度を測定し
た。接着強度は、ハンダ付け直後の値 (初期強度) 
、および150 ℃で1000時間エージングした後の
値 (エージング強度) をそれぞれ測定した。
First, conductivity was evaluated by measuring conductor characteristic values. Specifically, the sheet resistance value was determined from the 4-terminal resistance measurement value and the line width and film thickness values of the thick copper film. Regarding adhesive strength, a 2 mm square thick copper film was placed in a 63%Sn-37%Pb solder bath maintained at a temperature of 230±3°C.
After dipping for 0.5 seconds, a 0.6 mmφ tin-plated conductive wire was soldered thereon using a soldering iron. Bend the tin-plated conductive wire 90 degrees at a position 1 mm from the end of the coating so that it is perpendicular to the board, and test it with a tensile tester with the board fixed.
The tin-plated conductive wire was pulled at a speed of 0 cm/min, and the adhesive strength was measured when the tin-plated conductive wire was peeled off from the substrate. Adhesive strength is the value immediately after soldering (initial strength)
, and the value after aging at 150° C. for 1000 hours (aging strength), respectively.

【0021】次に、ハンダ濡れ性については、焼成部品
を230 ±3℃の温度に維持した63%Sn−37%
Pbハンダ槽に3±0.5 秒浸漬し、4mm角の銅厚
膜上に被着したハンダの被覆率を目視で測定した。測定
結果を同じく表1にまとめて示す。
Next, regarding the solder wettability, the fired parts were maintained at a temperature of 230 ± 3° C. 63%Sn-37%
It was immersed in a Pb solder bath for 3±0.5 seconds, and the coverage of the solder deposited on the 4 mm square copper thick film was visually measured. The measurement results are also summarized in Table 1.

【0022】[0022]

【表1】[Table 1]

【0023】表1の結果からも分かるように、比較例1
、2のように銅粉末の組み合わせが本発明の範囲を外れ
る場合には所期の特性は得られないことが分かる。特に
、比較例2は粒径5 μm 以下の銅粒子を使用してお
り、これは前述の特開平1−196192号公報に開示
された導体ペーストに相当するものであって、接着強度
が十分でない。
As can be seen from the results in Table 1, Comparative Example 1
, 2, where the combination of copper powders is outside the scope of the present invention, it is understood that the desired characteristics cannot be obtained. In particular, Comparative Example 2 uses copper particles with a particle size of 5 μm or less, which corresponds to the conductive paste disclosed in JP-A-1-196192, and does not have sufficient adhesive strength. .

【0024】[0024]

【発明の効果】本発明にかかる銅導体ペーストを用いて
形成した銅厚膜導体は基板との接着強度ならびに導電性
が高く、ハンダ濡れ性にもすぐれているので例えば75
μm という線間距離を持った微細回路の配線が可能と
なり、産業上極めて有用である。
Effects of the Invention The copper thick film conductor formed using the copper conductor paste of the present invention has high adhesive strength and conductivity with the substrate, and has excellent solder wettability.
This makes it possible to wire fine circuits with a line-to-line distance of μm, which is extremely useful industrially.

Claims (2)

Translated fromJapanese
【特許請求の範囲】[Claims]【請求項1】  導電粒子としての銅粉末を、ガラスフ
リットと共にビヒクル中に分散して成る導体ペーストで
あって、該銅粉末が粒径0.3 μm 以上5μm 未
満の銅粉末が70重量%から90重量%と粒径5μm 
以上10μm 以下の銅粉末が30重量%から10重量
%とからなることを特徴とする銅導体ペースト。
1. A conductive paste comprising copper powder as conductive particles dispersed in a vehicle together with glass frit, wherein the copper powder has a particle size of 0.3 μm or more and less than 5 μm in an amount of 70% by weight. 90% by weight and particle size 5μm
A copper conductor paste comprising 30% by weight to 10% by weight of copper powder having a size of 10 μm or more.
【請求項2】  銅粉末100 重量部に対し2重量部
以下の金属酸化物が添加された請求項1記載の銅導体ペ
ースト。
2. The copper conductor paste according to claim 1, wherein 2 parts by weight or less of a metal oxide is added to 100 parts by weight of copper powder.
JP3749491A1991-03-041991-03-04 copper conductor pasteWithdrawnJPH04277406A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP3749491AJPH04277406A (en)1991-03-041991-03-04 copper conductor paste

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP3749491AJPH04277406A (en)1991-03-041991-03-04 copper conductor paste

Publications (1)

Publication NumberPublication Date
JPH04277406Atrue JPH04277406A (en)1992-10-02

Family

ID=12499080

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP3749491AWithdrawnJPH04277406A (en)1991-03-041991-03-04 copper conductor paste

Country Status (1)

CountryLink
JP (1)JPH04277406A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5418193A (en)*1993-05-071995-05-23Murata Manufacturing Co., Ltd.Copper paste for forming conductive thick film
JPH0817241A (en)*1994-06-301996-01-19Mitsuboshi Belting LtdCopper conductive paste and manufacture of copper conductive film
JPH09282941A (en)*1996-04-161997-10-31Ube Ind Ltd Conductive paste, multilayer ceramic electronic component using the same, and method of manufacturing the same
US6468447B2 (en)*2000-04-252002-10-22Murata Manufacturing Co., Ltd.Electroconductive composition and printed circuit board using the same
WO2003056534A1 (en)*2001-12-272003-07-10Kabushiki Kaisha ToshibaImage display device and its manufacturing mathod
WO2005015573A1 (en)*2003-08-082005-02-17Sumitomo Electric Industries, LtdConductive paste
EP1884960A4 (en)*2005-05-252009-06-17Sumitomo Electric Industries CONDUCTIVE PASTE AND WIRING BOARD USING THE SAME
JP2013030616A (en)*2011-07-282013-02-07Kyocera CorpCircuit board and electronic apparatus including the same
WO2015107996A1 (en)*2014-01-142015-07-23東洋アルミニウム株式会社Composite conductive particles, conductive resin composition containing same and conductive coated article

Cited By (17)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5418193A (en)*1993-05-071995-05-23Murata Manufacturing Co., Ltd.Copper paste for forming conductive thick film
JPH0817241A (en)*1994-06-301996-01-19Mitsuboshi Belting LtdCopper conductive paste and manufacture of copper conductive film
EP0779773A1 (en)*1994-06-301997-06-18Mitsuboshi Belting Ltd.Copper conductor paste and production method of copper conductor film
JPH09282941A (en)*1996-04-161997-10-31Ube Ind Ltd Conductive paste, multilayer ceramic electronic component using the same, and method of manufacturing the same
US6468447B2 (en)*2000-04-252002-10-22Murata Manufacturing Co., Ltd.Electroconductive composition and printed circuit board using the same
WO2003056534A1 (en)*2001-12-272003-07-10Kabushiki Kaisha ToshibaImage display device and its manufacturing mathod
US6858982B2 (en)2001-12-272005-02-22Kabushiki Kaisha ToshibaImage display apparatus and method of manufacturing the same
US7556747B2 (en)2003-08-082009-07-07Sumitomo Electric Industries, Ltd.Electrically conductive pastes
WO2005015573A1 (en)*2003-08-082005-02-17Sumitomo Electric Industries, LtdConductive paste
EP1884960A4 (en)*2005-05-252009-06-17Sumitomo Electric Industries CONDUCTIVE PASTE AND WIRING BOARD USING THE SAME
US8007690B2 (en)2005-05-252011-08-30Sumitomo Electric Industries, Ltd.Conductive paste and wiring board using it
JP2013030616A (en)*2011-07-282013-02-07Kyocera CorpCircuit board and electronic apparatus including the same
WO2015107996A1 (en)*2014-01-142015-07-23東洋アルミニウム株式会社Composite conductive particles, conductive resin composition containing same and conductive coated article
CN105917420A (en)*2014-01-142016-08-31东洋铝株式会社Composite conductive particles, conductive resin composition containing same and conductive coated article
JPWO2015107996A1 (en)*2014-01-142017-03-23東洋アルミニウム株式会社 Composite conductive particles, conductive resin composition containing the same, and conductive coating material
US10227496B2 (en)2014-01-142019-03-12Toyo Aluminium Kabushiki KaishaComposite conductive particle, conductive resin composition containing same and conductive coated article
CN105917420B (en)*2014-01-142019-09-03东洋铝株式会社Composite conductive particle, the conductive resin composition comprising it and electric conductivity coating material

Similar Documents

PublicationPublication DateTitle
US4172919A (en)Copper conductor compositions containing copper oxide and Bi2 O3
US4090009A (en)Novel silver compositions
KR20140143714A (en)Thick print copper pastes for aluminum nitride substrates
JPH0732310B2 (en) Method for manufacturing multilayer electronic circuit
KR100215186B1 (en)Thick Film Conductor Paste Compositions for Aluminum Nitride Substrates
US4318830A (en)Thick film conductors having improved aged adhesion
JPH01192781A (en) Copper thick film conductor composition
JPH04277406A (en) copper conductor paste
JPS6255805A (en) conductor composition
JPH1021744A (en)Copper conductor paste and substrate printed therewith
JPH0465011A (en)Copper conductive paste
JP3798979B2 (en) Conductive paste and use thereof
JPH10233119A (en)Copper conductor paste and substrate printed therewith
JPH04308605A (en) copper conductor paste
JP2550630B2 (en) Copper paste for conductive film formation
JPS63283184A (en)Circuit substrate covered with conductor composition
JPH0693307A (en)Thick-film copper conductor paste composition capable of being plated
JP2941002B2 (en) Conductor composition
JPH01107592A (en)Electric circuit board
JP2813447B2 (en) Conductor paste for aluminum nitride sintered substrate
JPH0465010A (en) copper conductor paste
JP2632325B2 (en) Electric circuit board
JPH09198920A (en)Copper conductor paste and circuit board printed with copper conductor paste
JP2000106033A (en)Copper conductor paste
JPS62237605A (en)Thick film paste

Legal Events

DateCodeTitleDescription
A300Application deemed to be withdrawn because no request for examination was validly filed

Free format text:JAPANESE INTERMEDIATE CODE: A300

Effective date:19980514


[8]ページ先頭

©2009-2025 Movatter.jp