Movatterモバイル変換


[0]ホーム

URL:


JPH04276668A - Charge injection type electroluminescence element - Google Patents

Charge injection type electroluminescence element

Info

Publication number
JPH04276668A
JPH04276668AJP3062598AJP6259891AJPH04276668AJP H04276668 AJPH04276668 AJP H04276668AJP 3062598 AJP3062598 AJP 3062598AJP 6259891 AJP6259891 AJP 6259891AJP H04276668 AJPH04276668 AJP H04276668A
Authority
JP
Japan
Prior art keywords
layer
type semiconductor
semiconductor layer
side electrode
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3062598A
Other languages
Japanese (ja)
Inventor
Shiro Kobayashi
史朗 小林
Katsuhisa Enjoji
勝久 円城寺
Hiroshi Fujiyasu
洋 藤安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co LtdfiledCriticalNippon Sheet Glass Co Ltd
Priority to JP3062598ApriorityCriticalpatent/JPH04276668A/en
Publication of JPH04276668ApublicationCriticalpatent/JPH04276668A/en
Pendinglegal-statusCriticalCurrent

Links

Landscapes

Abstract

PURPOSE:To prevent a destruction phenomenon due to the concentration of an electric current by a method wherein a current-limiting layer which has fixed a conductive fine powder by using a binder is inserted either between an N-type semiconductor layer or an electron transportation layer and a cathode-side electrode or between a P-type semiconductor layer or a hole transportation layer and an anode electrode. CONSTITUTION:A light-emitting layer 33 composed of a mixture by fluorescent substances is formed on a hole transportation layer 32. In addition, an electron transportation layer 34 is formed on it by a vapor deposition method. In succession, a paint in which an MnO2 powder has been dispersed to the mixed solution of a resin with a thinner is coated by using a spraying method and dried. A current-limiting layer 29 whose resistivity and film thickness are prescribed is formed. Lastly, an MgAl electrode 35 as a cathode-side electrode is formed by an electron-beam vapor deposition method; it is patterned by a photolithographic method. Thereby, a dot-matrix type organic EL element is formed.

Description

Translated fromJapanese
【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、電場を印加することに
より発光する電荷注入型エレクトロルミネッセンス(以
下ELと略す)素子のうち、過電流による破壊が生じに
くい安定性の高い電荷注入型EL素子に関する。
[Industrial Application Field] The present invention relates to a highly stable charge injection electroluminescent (EL) device that is less likely to be destroyed by overcurrent, among charge injection electroluminescent (EL) devices that emit light by applying an electric field. Regarding.

【0002】0002

【従来の技術】電荷注入型EL素子としては、発光ダイ
オード(以下LEDと略す)と有機ELの2種の発光素
子が知られている。これらは、いずれも電子と正孔とが
再結合する際に発生するエネルギーを利用して発光する
という点で共通のメカニズムを有する素子であるが、構
造や発光メカニズムに違いがある。図4は、LEDの構
造の一例を示したものである。図4によりLEDの構造
と発光メカニズムを説明する。n−GaP:Sから成る
N型基板1上には、N型半導体層2としてn−GaP:
Teを液層でエピタキシャル成長させ、その上にP型半
導体層3としてp−GaP:Zn,Oを液層でエピタキ
シャル成長させる。電極は、陰極4を前記の半導体膜を
成長させたのとは反対側の基板上に形成し、陽極5はP
型のp−GaP:Zn,O上に形成する。
2. Description of the Related Art Two types of charge injection type EL devices are known: light emitting diodes (hereinafter abbreviated as LEDs) and organic EL devices. These elements all have a common mechanism in that they emit light by utilizing the energy generated when electrons and holes recombine, but they differ in structure and light emission mechanism. FIG. 4 shows an example of the structure of an LED. The structure and light emitting mechanism of the LED will be explained with reference to FIG. On an N-type substrate 1 made of n-GaP:S, an N-type semiconductor layer 2 is formed of n-GaP:S.
Te is epitaxially grown in a liquid layer, and p-GaP:Zn,O is epitaxially grown thereon as a P-type semiconductor layer 3 in a liquid layer. The electrodes are formed on the substrate opposite to that on which the cathode 4 is grown, and the anode 5 is formed on the substrate on which the semiconductor film is grown.
Formed on type p-GaP:Zn,O.

【0003】このようにして作製されたLEDは、N型
半導体層2とP型半導体層3とで形成されたPN接合面
にP側が正になるように数ボルトの電圧を印加すると、
正孔が多数存在するP型半導体層内にN型半導体層2よ
り電子が注入される。それらの電子や正孔は、P型半導
体層3中のZn,Oの働きにより励起子を形成し、それ
が再結合する時に赤色の発光が得られる。最近では、こ
のようなLEDを基板上にいくつも平面的に形成し、平
板ディスプレイを作製する研究が進んでいる。
[0003] In the thus manufactured LED, when a voltage of several volts is applied to the PN junction surface formed by the N-type semiconductor layer 2 and the P-type semiconductor layer 3 so that the P side is positive,
Electrons are injected from the N-type semiconductor layer 2 into the P-type semiconductor layer in which a large number of holes exist. These electrons and holes form excitons by the action of Zn and O in the P-type semiconductor layer 3, and when they recombine, red light is emitted. Recently, research has been progressing to fabricate a flat panel display by forming a number of such LEDs on a substrate.

【0004】また、LEDのひとつのタイプとして最近
注目されているものに量子井戸型発光素子(以下QWD
と略す)が挙げられる。これはバンドギャップの異なっ
た複数の半導体の極めて薄い薄膜によって周期構造を形
成し、電荷を注入する時のバンドの傾きに応じて電子と
正孔のそれぞれの波動関数の局在した空間が重なるよう
に構成して有効にキャリアーが再結合することを期待し
たものである。図5はQWDの構造の一例を示したもの
である。図5を用いてQWDの構造と発光メカニズムを
説明する。
[0004] Also, one type of LED that has recently attracted attention is the quantum well light emitting device (hereinafter referred to as QWD).
(abbreviated as). A periodic structure is formed by extremely thin thin films of multiple semiconductors with different band gaps, and the localized spaces of the wave functions of electrons and holes overlap depending on the band inclination when charge is injected. It was hoped that the carriers would be effectively recombined by configuring the carrier. FIG. 5 shows an example of a QWD structure. The structure and light emission mechanism of QWD will be explained using FIG. 5.

【0005】N型のGaAs基板6上に、基板温度を2
00〜300℃に保ってN型半導体層として5〜50オ
ングストロームの厚みのZnSe層7を電子線加熱蒸着
法により成膜する。その上にP型半導体層としてZnT
e層8を形成するためにZnTeとLi3 Pを同時に
加熱して蒸発させ、p−ZnTe;Li,P薄膜を5〜
50オングストローム成膜する。これを複数回(例えば
100回)繰り返して膜厚約1000〜10000オン
グストロームの多層薄膜積層体量子井戸発光層9とする
。陰極10を半導体膜を成長させたのとは反対側の基板上
に形成し、陽極11は多層薄膜積層体量子井戸発光層9
上に形成する。この素子においては多層薄膜積層体のG
aAs基板6に接するZnSe層7が電子注入層として
、また、陽極11と接するp−ZnTe;Li,P層が
正孔注入層として機能する。
[0005] On the N-type GaAs substrate 6, the substrate temperature is set to 2
A ZnSe layer 7 having a thickness of 5 to 50 angstroms is formed as an N-type semiconductor layer by electron beam heating vapor deposition while maintaining the temperature at 00 to 300°C. On top of that, ZnT is applied as a P-type semiconductor layer.
To form the e-layer 8, ZnTe and Li3P are simultaneously heated and evaporated, and a p-ZnTe;Li,P thin film is
A film of 50 angstroms is formed. This process is repeated a plurality of times (for example, 100 times) to form a multilayer thin film stack quantum well light emitting layer 9 having a film thickness of about 1000 to 10000 angstroms. A cathode 10 is formed on the substrate opposite to that on which the semiconductor film is grown, and an anode 11 is formed on the multilayer thin film stack quantum well light emitting layer 9.
Form on top. In this device, the G of the multilayer thin film laminate is
The ZnSe layer 7 in contact with the aAs substrate 6 functions as an electron injection layer, and the p-ZnTe;Li,P layer in contact with the anode 11 functions as a hole injection layer.

【0006】このようにして作製されたQWDは、電圧
を印加すると陰極から注入された電子の波動関数はn−
ZnSe層内の導電帯の底付近に局在化し、陽極から注
入された正孔の波動関数はp−ZnTe;Li,P層内
の価電子帯の頂付近に局在化する。この量子井戸構造は
タイプ1’なので電界のかかっていない状態ではn−Z
nSe層内の導電帯の底とp−ZnTe;Li,P層内
の価電子帯の頂は空間的には重なっていないが、電界の
かかっている状態では図7に模式的に示すように、波動
関数はよりエネルギーの低い部分に局在化していくので
空間的に同一の位置を占めるようになる。そしてそれら
が再結合する時に青色の発光が得られる。
In the QWD manufactured in this way, when a voltage is applied, the wave function of electrons injected from the cathode becomes n-
The wave function of holes injected from the anode is localized near the bottom of the conduction band in the ZnSe layer, and the wave function of holes injected from the anode is localized near the top of the valence band in the p-ZnTe;Li,P layer. This quantum well structure is type 1', so when no electric field is applied, n-Z
The bottom of the conductive band in the nSe layer and the top of the valence band in the p-ZnTe;Li,P layer do not overlap spatially, but under an electric field, as schematically shown in Figure 7, , the wave functions become localized in areas with lower energy, so they occupy the same spatial position. When they recombine, blue light is emitted.

【0007】一方、図6は、有機EL素子の代表的な構
成を示している。図6を用いて有機EL素子の基本構造
、製造方法および動作メカニズムを説明する。図6にお
いてガラス基板12上に、透明電極13としてITOな
どの透明電極材料をスパッタ、真空蒸着法により成膜し
た後に、フォトリソグラフィの方法を用いて所定の形状
にパターニングする。その上に正孔輸送層14として、
TADなどの正孔に対し導電性の良い材料をキャスティ
ング法、印刷法、蒸着法、ラングミュアーブロジェット
法などを用いて成膜する。その上に発光層15として、
On the other hand, FIG. 6 shows a typical configuration of an organic EL element. The basic structure, manufacturing method, and operating mechanism of an organic EL element will be explained using FIG. 6. In FIG. 6, a transparent electrode material such as ITO is formed as a transparent electrode 13 on a glass substrate 12 by sputtering or vacuum evaporation, and then patterned into a predetermined shape using a photolithography method. Thereon, as a hole transport layer 14,
A film of a material having good conductivity for holes such as TAD is formed using a casting method, a printing method, a vapor deposition method, a Langmuir-Blodgett method, or the like. Thereon, as a light emitting layer 15,

【0008】[0008]

【化1】で表せるPEや[Chemical formula 1]PE can be expressed as

【0009】[0009]

【化2】で表せるNSDや[Case 2]NSD which can be expressed as

【0010】0010

【化3】で表せるDANなどの蛍光体を正孔輸送層と同様の方法
を用いて形成する。続いて発光層15の上に、電子輸送
層16として、
A phosphor such as DAN represented by the following formula is formed using the same method as the hole transport layer. Subsequently, on the light emitting layer 15, as an electron transport layer 16,

【0011】[0011]

【化4】で表せるPBDなどを正孔輸送層と同様な方法で成膜す
る。その上にMgAl(マグネシウムアルミニウム)な
どにより上部電極17を真空蒸着法などを用いて成膜し
、さらにフォトリソグラフィ法によってパターニングす
ることによりドットマトリックス型あるいはセグメント
型の有機EL素子が完成する。
A film of PBD or the like represented by the following formula is formed in the same manner as the hole transport layer. A dot matrix type or segment type organic EL element is completed by forming an upper electrode 17 of MgAl (magnesium aluminum) or the like thereon using a vacuum evaporation method or the like, and patterning it using a photolithography method.

【0012】駆動は、通常、透明電極を陽極、上部電極
を陰極とし、直流のパルス電圧を印加させることによっ
て行う。電子は上部電極から電子輸送層を通って、また
、正孔は透明電極から正孔輸送層を通って、いずれも発
光層に注入され、そこで励起子を生成する。励起子は、
発光層内の再結合中心を介して再結合し、発光が得られ
る。電子輸送層は正孔を、正孔輸送層は電子を通さない
性質を持つ方が、キャリアが発光層内に閉じ込められる
ため発光効率が良くなる。この有機ELでは、発光効率
0.51m/W程度の高発光効率の素子が報告されてい
る。
Driving is normally performed by using the transparent electrode as an anode and the upper electrode as a cathode, and applying a DC pulse voltage. Electrons are injected from the upper electrode through the electron transport layer, and holes are injected from the transparent electrode through the hole transport layer into the light emitting layer, where excitons are generated. The exciton is
They recombine through recombination centers within the light-emitting layer and emit light. If the electron transport layer does not allow holes to pass, and the hole transport layer does not allow electrons to pass, carriers are confined within the light emitting layer, resulting in better luminous efficiency. In this organic EL, a device with a high luminous efficiency of about 0.51 m/W has been reported.

【0013】このような有機ELは、一般にアモルファ
ス状態での素子を形成するため、大面積の平板型ディス
プレイへの応用が容易であり、しかも、衝突励起型EL
素子と比べて、低電圧で動作し、しかも高効率の蛍光体
の種類が豊富でカラー化も容易であるという特徴がある
ことから、新タイプの平板型ディスプレイとしての応用
が期待されている。
[0013] Such an organic EL generally forms an element in an amorphous state, so it is easy to apply to a large-area flat panel display.
It is expected to be used as a new type of flat panel display because it operates at a lower voltage than other devices, has a wide variety of high-efficiency phosphors, and can be easily made into color.

【0014】[0014]

【発明が解決しようとする課題】しかしながら、従来の
電荷注入型EL素子は、ピンホールなどの膜の欠陥があ
るとそこに電流が集中し、その際発生するジュール熱に
より素子が破壊を起こすという重大な欠点があった。こ
れは、特にディスプレイ等のように大きい面積の素子を
製造する場合は非常に重要な問題となる。単に歩留が悪
くコストアップの要因になるだけではなく、素子の信頼
性を低下させることにもつながる。
[Problems to be Solved by the Invention] However, in conventional charge injection type EL devices, if there is a defect in the film such as a pinhole, current will concentrate there, and the Joule heat generated at that time will cause the device to be destroyed. There were serious shortcomings. This becomes a very important problem especially when manufacturing devices with large areas such as displays. This not only causes poor yield and increased costs, but also leads to a decrease in device reliability.

【0015】[0015]

【課題を解決するための手段】本発明は上記の問題点を
解決するためになされたものであって、発光領域と陰極
側電極との間にN型半導体層または電子輸送層を有し、
前記発光領域と陽極側電極との間にP型半導体層または
正孔輸送層を有し、前記陽極と前記陰極との間に直流電
圧を印加することにより発光領域に電子と正孔を注入し
、前記電子と前記正孔とが再結合する際に放出されるエ
ネルギーを利用して発光する電荷注入型エレクトロルミ
ネッセンス素子であって、前記N型半導体層または電子
輸送層と前記陰極側電極との間、または前記P型半導体
層または正孔輸送層と前記陽極側電極との間のいずれか
一方に、導電性微粉末をバインダーで固定した電流制限
層を挿入したことを特徴とする電荷注入型エレクトロル
ミネッセンス素子である。
[Means for Solving the Problems] The present invention has been made to solve the above problems, and includes an N-type semiconductor layer or an electron transport layer between the light emitting region and the cathode side electrode.
A P-type semiconductor layer or a hole transport layer is provided between the light emitting region and the anode side electrode, and electrons and holes are injected into the light emitting region by applying a DC voltage between the anode and the cathode. , a charge injection type electroluminescent device that emits light by using energy released when the electrons and the holes recombine, wherein the N-type semiconductor layer or the electron transport layer and the cathode side electrode are connected to each other. A charge injection type characterized in that a current limiting layer in which conductive fine powder is fixed with a binder is inserted either between the P-type semiconductor layer or the hole transport layer and the anode side electrode. It is an electroluminescent device.

【0016】前記電流制限層としては、3×103 Ω
・cmから1×106 Ω・cmの抵抗率を有する導電
性微粉末をバインダー樹脂等を用いて固められる。ゴミ
やほこりなどの混入によりピンホール等の欠陥を生じに
くくし、また、抵抗体が無数の点接触の集まりから成る
ようにするために1μm以上の膜厚に固めるのが好まし
い。また、厚みの上限は200μm以下とするのが好ま
しい。
The current limiting layer has a resistance of 3×10 3 Ω.
- Conductive fine powder having a resistivity of 1 x 106 Ωcm can be hardened using a binder resin or the like. It is preferable to harden the film to a thickness of 1 μm or more in order to prevent defects such as pinholes from being caused by contamination with dirt and dust, and to make the resistor consist of a collection of countless point contacts. Further, the upper limit of the thickness is preferably 200 μm or less.

【0017】導電性微粉末としては、Cuをコートした
ZnS、MnO2、PbS,CuO,PbO,Tb4 
O7 ,Eu2 O3 ,PrO2 、カーボン、チタ
ン酸バリウムなどが、単体、あるいは、混合物の形で用
いられる。コントラストを上げるために、黒色または暗色の物質が
好んで使われる。導電性微粉末の粒径は、1μm以下が
好ましく、さらに望ましくは0.2μm以下であると良
い。
[0017] As the conductive fine powder, Cu-coated ZnS, MnO2, PbS, CuO, PbO, Tb4
O7, Eu2 O3, PrO2, carbon, barium titanate, etc. are used alone or in the form of a mixture. Black or dark-colored substances are preferred to increase contrast. The particle size of the conductive fine powder is preferably 1 μm or less, more preferably 0.2 μm or less.

【0018】バインダーには、例えば、ビニル系樹脂、
ポリエステル系樹脂、ポリアミド系樹脂、セルロース系
樹脂、ポリウレタン系樹脂、エポキシ系樹脂、メラミン
系樹脂、シリコーン系樹脂、尿素系樹脂などが挙げられ
るが、特に水酸基、カルボキシル基、スルホニル基、ニ
トロ基などの極性基や、エポキシ基、イソシアヌル基、
シラノール基などの反応性基を有した樹脂が好適に用い
られる。また、粉体とバインダーとして用いられる樹脂
の体積混合比率は、粉体:バインダー樹脂で、2:8〜
6:4の範囲にあることが好ましい。対象となる電荷注
入型EL素子としては、LED、QWD、有機EL等と
くに限定されるものではない。
[0018] The binder includes, for example, vinyl resin,
Examples include polyester resins, polyamide resins, cellulose resins, polyurethane resins, epoxy resins, melamine resins, silicone resins, urea resins, etc., but especially those with hydroxyl groups, carboxyl groups, sulfonyl groups, nitro groups, etc. Polar groups, epoxy groups, isocyanuric groups,
A resin having a reactive group such as a silanol group is preferably used. In addition, the volume mixing ratio of the powder and the resin used as the binder is powder:binder resin, 2:8~
Preferably, the ratio is in the range of 6:4. The target charge injection type EL device is not particularly limited to LED, QWD, organic EL, etc.

【0019】[0019]

【作用】微粉末をバインダーで固定した電流制限層は、
膜が厚いのでゴミやほこりなどの混入によりピンホール
等の欠陥が生じにくく、また、その層の中の抵抗体は無
数の点接触の集まりから成っている。そのためピンホー
ル等の欠陥が本発明にかかる電流制限層では生じにくい
。また、電流制限層の下の素子部分に欠陥があり、その
領域に相当する電流制限層部分に局所的に電流が集中し
ても、まず、一番抵抗の高い点接触部分が発熱し、その
周辺のバインダーが膨脹あるいは分解とガス化を起こし
、点接触部分での微粉末同士の接触が離れることにより
その部分の抵抗が大きくなり、電流を減少させ、ジュー
ル熱による破壊を未然に防ぐ作用がある。
[Function] The current limiting layer is made by fixing fine powder with a binder.
Since the film is thick, defects such as pinholes are less likely to occur due to contamination with dirt and dust, and the resistor in the layer is made up of a collection of countless point contacts. Therefore, defects such as pinholes are less likely to occur in the current limiting layer according to the present invention. In addition, even if there is a defect in the element part under the current limiting layer and current is locally concentrated in the current limiting layer corresponding to the defect, the point contact area with the highest resistance will first generate heat. The surrounding binder expands or decomposes and gasifies, and the contact between the fine powders at the point contact area increases, which increases the resistance at that area, reduces the current, and prevents destruction due to Joule heat. be.

【0020】[0020]

【実施例】以下、本発明を実施例により説明する。図1
、図2、図3は、それぞれ本発明の電荷注入型エレクト
ロルミネッセンス素子の実施例1、2、3の一部断面図
で、図4、図5、図6は従来の技術の電荷注入型エレク
トロルミネッセンス素子の一部断面図である。実施例1p−GaNから成るN型基板24上に、ジメチルZnと
セレン化水素を種原料に用いて、有機金属化合物の熱分
解反応を利用したmetal  organicche
mical  vapor  deposition法
(以下MOCVD法と略す)によりP型半導体層として
p−ZnSe:Li層25を50nm、続いてその上に
N型半導体層としてn−ZnSe:I層26を50nm
の膜厚でエピタキシャル成長させた。続いて、MnO2
粉末を樹脂とシンナーからなる混合液に分散させた塗料
をスプレイー法を用いて塗布、乾燥させ、抵抗率が1.
5×105 Ω・cmで膜厚が20μmの電流制限層2
9を形成し、その上に陽極側電極として、AuZn(金
亜鉛)層28を電子ビーム蒸着法で100nmの膜厚で
成膜した。最後に陰極側電極として、AuSi(金シリ
コン)層27を半導体膜を成長させたのとは反対側の基
板上に形成した。このようにして作製されたLEDは、N型半導体層とP
型半導体層とで形成されたPN接合面に数十Vの電圧を
印加すると、P型半導体層内に多数存在する正孔にN型
半導体層より電子が注入され、それらが再結合する時に
、青色の発光が得られる。作製したn−ZnSe:I層
26の抵抗率は102 Ω・cm程度であり、抵抗が大
きいためこのN型半導体層には大きな電界がかかる。従
来の電流制限層がない場合には、N型半導体層の部分に
存在する微少な欠陥が引金となって破壊を起こすことが
多かったが、本実施例では、電流制限層の効果により、
全く破壊が起こらなかった。
[Examples] The present invention will be explained below with reference to Examples. Figure 1
, 2 and 3 are partial cross-sectional views of Examples 1, 2, and 3 of the charge injection type electroluminescent device of the present invention, respectively, and FIGS. 4, 5, and 6 are partial sectional views of the charge injection type electroluminescent device of the prior art FIG. 2 is a partial cross-sectional view of a luminescent element. Example 1 On an N-type substrate 24 made of p-GaN, dimethyl Zn and hydrogen selenide were used as seed materials to produce a metal organic compound utilizing thermal decomposition reaction of an organometallic compound.
A 50 nm thick p-ZnSe:Li layer 25 was formed as a P-type semiconductor layer by a mical vapor deposition method (hereinafter abbreviated as MOCVD method), and then a 50 nm-thick n-ZnSe:I layer 26 was formed thereon as an N-type semiconductor layer.
It was epitaxially grown to a film thickness of . Subsequently, MnO2
A paint in which powder is dispersed in a mixture of resin and thinner is applied using a spray method and dried until the resistivity is 1.
Current limiting layer 2 with a thickness of 5×105 Ω・cm and a film thickness of 20 μm
9 was formed, and an AuZn (gold zinc) layer 28 with a thickness of 100 nm was formed thereon as an anode side electrode by electron beam evaporation. Finally, as a cathode side electrode, an AuSi (gold silicon) layer 27 was formed on the substrate on the opposite side from where the semiconductor film was grown. The LED manufactured in this way has an N-type semiconductor layer and a P-type semiconductor layer.
When a voltage of several tens of V is applied to the PN junction surface formed with the P-type semiconductor layer, electrons are injected from the N-type semiconductor layer into the holes existing in the P-type semiconductor layer, and when they recombine, Blue light emission is obtained. The resistivity of the produced n-ZnSe:I layer 26 is about 10<2 >[Omega].cm, and since the resistance is large, a large electric field is applied to this N-type semiconductor layer. In the absence of a conventional current limiting layer, minute defects existing in the N-type semiconductor layer often triggered destruction, but in this example, due to the effect of the current limiting layer,
No destruction occurred.

【0021】実施例2透明なガラス基板30(商品名corning  70
59ガラス)上に、透明電極31としてITO(錫ドー
プ酸化インジウム)を反応性スパッタ法を用いて約50
0nmの厚さに成膜した後、フォトリソグラフィ法によ
り1mm当り5本のピッチでストライプ状にパターニン
グした。次に基板温度を280℃に保ってP型半導体層
32としてZnTeとLi3 Pを同時に加熱して蒸発
させ、p−ZnTe:Li,P薄膜を10オングストロ
ーム成膜した。さらにN型半導体層33としてZnSe
を電子線加熱によって蒸発させ、n−ZnSe薄膜を1
0オングストローム成膜した。これを250回繰り返し
て膜厚約5000オングストロームの多層薄膜積層体量
子井戸発光層34を形成した。続いて、MnO2粉末を
樹脂とシンナーとの混合液に分散させた塗料をスプレイ
ー法を用いて塗布、乾燥させ、抵抗率が1.5×105
 Ω・cmで膜厚が20μmの電流制限層29を形成し
、その上に陰極側電極35として、Al(アルミニウム
)を電子ビーム蒸着法で1μmの膜厚で成膜した。この
ようにして作製されたQWDは、ITOを陽極側電極、
Alを陰極側電極にして電圧を印加すると、緑色の発光
が得られた。従来の電流制限層がないQWDの場合には
、接合構造が多数存在するので高電界で発光させねばな
らず、その様な高電界下では破壊を起こすことが多かっ
たが、本実施例では、電流制限層の効果により、全く破
壊が起こらなかった。
Example 2 Transparent glass substrate 30 (product name Corning 70)
59 glass), ITO (tin-doped indium oxide) was deposited as a transparent electrode 31 on the glass using a reactive sputtering method.
After forming a film to a thickness of 0 nm, it was patterned into stripes at a pitch of 5 lines per 1 mm by photolithography. Next, while maintaining the substrate temperature at 280 DEG C., ZnTe and Li3P were simultaneously heated and evaporated to form a p-ZnTe:Li,P thin film of 10 angstroms as a P-type semiconductor layer 32. Furthermore, ZnSe is used as the N-type semiconductor layer 33.
was evaporated by electron beam heating to form an n-ZnSe thin film of 1
A film with a thickness of 0 angstroms was formed. This process was repeated 250 times to form a multilayer thin film stacked quantum well light emitting layer 34 having a thickness of about 5000 angstroms. Next, a paint containing MnO2 powder dispersed in a mixture of resin and thinner was applied using a spray method and dried to obtain a resistivity of 1.5 x 105.
A current limiting layer 29 of Ω·cm and a thickness of 20 μm was formed, and a film of Al (aluminum) was formed thereon to a thickness of 1 μm as a cathode side electrode 35 by electron beam evaporation. The QWD produced in this way uses ITO as an anode electrode,
When a voltage was applied using Al as the cathode side electrode, green light emission was obtained. In the case of a conventional QWD without a current limiting layer, since there are many junction structures, it is necessary to emit light under a high electric field, and breakdown often occurs under such a high electric field.However, in this example, No breakdown occurred due to the effect of the current limiting layer.

【0022】実施例3透明なガラス基板(商品名corning  7059
ガラス)30上に、透明電極31としてITOを反応性
スパッタ法を用いて約500nmの厚さに成膜した後、
フォトリソグラフィ法により1mm当り5本のピッチで
ストライプ状にパターニングした。その上に前記TAD
からなる正孔輸送層32を蒸着法により成膜した。その
後正孔輸送層32の上に、PEとNSDとANの蛍光体
の混合物からなる発光層33を蒸着法により形成した。さらにその上にPBDからなる電子輸送層34を蒸着法
により成膜した。続いて、MnO2粉末を樹脂とシンナ
ーとの混合液に分散させた塗料をスプレイー法を用いて
塗布し、乾燥させ、抵抗率が1.5×105 Ω・cm
で膜厚が10μmの電流制限層29を形成し、最後に陰
極側電極として、MgAl(マグネシウムアルミニウム
合金)電極35を電子ビーム蒸着法で1μmの膜厚で成
膜し、さらにフォトリソグラフィ法によってパターニン
グすることによってドットマトリックス型の有機EL素
子を作成した。駆動は、通常、透明電極31を陽極、M
gAl電極35を陰極とし、直流のパルス電圧を印加さ
せることによって行う。電子はMgAl電極から電子輸
送層を通って、また、正孔は、透明電極から正孔輸送層
を通って、いずれも発光層に注入され、発光層内で励起
子を生成する。発生した励起子は、さらに発光層内の再
結合中心を介して再結合し発光が生ずる。この有機EL
では従来の技術では生じていた破壊が全く生じなかった
Example 3 Transparent glass substrate (product name Corning 7059)
After forming a film of ITO as a transparent electrode 31 on the glass) 30 to a thickness of about 500 nm using a reactive sputtering method,
It was patterned into stripes at a pitch of 5 lines per 1 mm by photolithography. On top of that, the TAD
A hole transport layer 32 consisting of the following was formed by a vapor deposition method. Thereafter, a light-emitting layer 33 made of a mixture of PE, NSD, and AN phosphors was formed on the hole transport layer 32 by vapor deposition. Furthermore, an electron transport layer 34 made of PBD was formed thereon by vapor deposition. Next, a paint containing MnO2 powder dispersed in a mixture of resin and thinner was applied using a spray method, dried, and the resistivity reached 1.5 x 105 Ωcm.
A current limiting layer 29 with a thickness of 10 μm is formed in step 1, and finally, as a cathode side electrode, a MgAl (magnesium aluminum alloy) electrode 35 is formed with a thickness of 1 μm by electron beam evaporation, and further patterned by photolithography. By doing so, a dot matrix type organic EL device was created. For driving, the transparent electrode 31 is normally used as an anode, and M
This is performed by using the gAl electrode 35 as a cathode and applying a DC pulse voltage. Electrons are injected from the MgAl electrode through the electron transport layer, and holes are injected from the transparent electrode through the hole transport layer, both of which are injected into the light emitting layer to generate excitons within the light emitting layer. The generated excitons are further recombined via recombination centers within the light emitting layer to generate light emission. This organic EL
In this case, the destruction that occurred with the conventional technology did not occur at all.

【0023】[0023]

【発明の効果】本発明によれば、電流集中による破壊現
象を防ぐことが出来る。そのため発光素子としての信頼
性が高くなる。また発光素子の製作歩留が向上する。
[Effects of the Invention] According to the present invention, destruction phenomena due to current concentration can be prevented. Therefore, reliability as a light emitting element becomes high. Furthermore, the manufacturing yield of light emitting elements is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例1で示されるLEDの一部断面
FIG. 1 is a partial cross-sectional view of an LED shown in Example 1 of the present invention.

【図2】本発明の実施例2で示されるQWDの一部断面
FIG. 2 is a partial cross-sectional view of a QWD shown in Example 2 of the present invention.

【図3】本発明の実施例3で示される有機ELの一部断
面図
FIG. 3 is a partial cross-sectional view of an organic EL shown in Example 3 of the present invention.

【図4】従来技術のLEDの一部断面図[Fig. 4] Partial cross-sectional view of a conventional LED

【図5】従来技
術のQWDの一部断面図
[Fig. 5] Partial cross-sectional view of a conventional QWD

【図6】従来技術の有機ELの
一部断面図
[Figure 6] Partial cross-sectional view of conventional organic EL

【図7】QWDの多層薄膜周期構造に電界が
かかっている場合のエネルギー準位と波動関数が局在化
した様子を説明する図
[Figure 7] A diagram explaining the localization of energy levels and wave functions when an electric field is applied to the multilayer thin film periodic structure of QWD.

【符号の説明】[Explanation of symbols]

1    n−GaP:SからなるN型基板2    
N型半導体層n−GaP:Te3    P型半導体層
p−GaP:Zn,O4    陰極5    陽極6    GaAs基板7    ZnSe層8    ZnTe層9    多層薄膜積層体量子井戸発光層10    
陰極11    陽極12    ガラス基板13    透明電極14    正孔輸送層15    発光層16    電子輸送層17    上部電極18    価電子帯の頂19    仮想の価電子帯頂20    正孔の波動関数21    導電帯の底22    仮想の導電帯底23    電子の波動関数24    p−GaNからなるN型基板25    
p−ZnSe:Li層26    n−ZnSe:I層27    AuSi層28    AuZn層29    電流制限層30    ガラス基板31    透明電極32    TADからなる正孔輸送層33    P
EとNSDとANとからなる発光層34    PBD
からなる電子輸送層35    MgAl電極
1 N-type substrate 2 made of n-GaP:S
N-type semiconductor layer n-GaP:Te3 P-type semiconductor layer p-GaP:Zn,O4 Cathode 5 Anode 6 GaAs substrate 7 ZnSe layer 8 ZnTe layer 9 Multilayer thin film stack quantum well light emitting layer 10
Cathode 11 Anode 12 Glass substrate 13 Transparent electrode 14 Hole transport layer 15 Luminescent layer 16 Electron transport layer 17 Upper electrode 18 Valence band top 19 Virtual valence band top 20 Hole wave function 21 Conductive band bottom 22 Virtual Conductive band bottom 23 Electron wave function 24 N-type substrate 25 made of p-GaN
p-ZnSe:Li layer 26 n-ZnSe:I layer 27 AuSi layer 28 AuZn layer 29 Current limiting layer 30 Glass substrate 31 Transparent electrode 32 Hole transport layer 33 made of TAD P
Light emitting layer 34 consisting of E, NSD and AN PBD
Electron transport layer 35 consisting of MgAl electrode

【化5】[C5]

Claims (1)

Translated fromJapanese
【特許請求の範囲】[Claims]【請求項1】  発光領域と陰極側電極との間にN型半
導体層または電子輸送層を有し、前記発光領域と陽極側
電極との間にP型半導体層または正孔輸送層を有し、前
記陽極と前記陰極との間に直流電圧を印加することによ
り発光領域に電子と正孔を注入し、前記電子と前記正孔
とが再結合する際に放出されるエネルギーを利用して発
光する電荷注入型エレクトロルミネッセンス素子におい
て、前記N型半導体層または電子輸送層と前記陰極側電
極との間、または前記P型半導体層または正孔輸送層と
前記陽極側電極との間のいずれか一方に、導電性微粉末
をバインダーで固定した電流制限層を挿入したことを特
徴とする電荷注入型エレクトロルミネッセンス素子。
1. An N-type semiconductor layer or an electron transport layer is provided between the light emitting region and the cathode side electrode, and a P type semiconductor layer or hole transport layer is provided between the light emitting region and the anode side electrode. , by applying a DC voltage between the anode and the cathode, electrons and holes are injected into the light emitting region, and the energy released when the electrons and holes are recombined is used to emit light. In the charge injection electroluminescent device, either between the N-type semiconductor layer or electron transport layer and the cathode side electrode, or between the P-type semiconductor layer or hole transport layer and the anode side electrode. A charge injection type electroluminescent device characterized in that a current limiting layer in which conductive fine powder is fixed with a binder is inserted into the charge injection type electroluminescent device.
JP3062598A1991-03-041991-03-04Charge injection type electroluminescence elementPendingJPH04276668A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP3062598AJPH04276668A (en)1991-03-041991-03-04Charge injection type electroluminescence element

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP3062598AJPH04276668A (en)1991-03-041991-03-04Charge injection type electroluminescence element

Publications (1)

Publication NumberPublication Date
JPH04276668Atrue JPH04276668A (en)1992-10-01

Family

ID=13204928

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP3062598APendingJPH04276668A (en)1991-03-041991-03-04Charge injection type electroluminescence element

Country Status (1)

CountryLink
JP (1)JPH04276668A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2000056124A1 (en)*1999-03-172000-09-21Tdk CorporationOrganic el device
WO2000056122A1 (en)*1999-03-162000-09-21Tdk CorporationOrganic el device
WO2000056123A1 (en)*1999-03-172000-09-21Tdk CorporationOrganic el device
WO2000074444A1 (en)*1999-05-272000-12-07Tdk CorporationLight-emitting diode
WO2000076277A1 (en)*1999-06-072000-12-14Tdk CorporationOrganic el display
EP1145337A1 (en)*1998-12-162001-10-17Cambridge Display Technology LimitedOrganic light-emitting devices
US6445126B1 (en)1998-08-132002-09-03Tdk CorporationOrganic electroluminescent device
JP2003521094A (en)*2000-01-252003-07-08コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electroluminescent element
WO2009008535A1 (en)*2007-07-112009-01-15Sumitomo Chemical Company, LimitedSelf-luminous element, illuminating device and display device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6445126B1 (en)1998-08-132002-09-03Tdk CorporationOrganic electroluminescent device
US7005196B1 (en)1998-12-162006-02-28Cambridge Display Technology LimitedOrganic light-emitting devices
US7255939B2 (en)1998-12-162007-08-14Cambridge Display Technology Ltd.Organic light-emitting devices
EP1145337A1 (en)*1998-12-162001-10-17Cambridge Display Technology LimitedOrganic light-emitting devices
JP2005209647A (en)*1998-12-162005-08-04Cambridge Display Technol Ltd Organic light emitting devices
US6262433B1 (en)1999-03-162001-07-17Tdk CorporationOrganic electroluminescent device
WO2000056122A1 (en)*1999-03-162000-09-21Tdk CorporationOrganic el device
US6249085B1 (en)1999-03-172001-06-19Tdk CorporationOrganic electroluminescent device with a high-resistance inorganic hole injecting and transporting layer
US6288487B1 (en)1999-03-172001-09-11Tdk CorporationOrganic electroluminescent device with a high-resistance inorganic electron injecting and transporting layer
WO2000056124A1 (en)*1999-03-172000-09-21Tdk CorporationOrganic el device
WO2000056123A1 (en)*1999-03-172000-09-21Tdk CorporationOrganic el device
US6180963B1 (en)1999-05-272001-01-30Tdk CorporationLight emitting diode
WO2000074444A1 (en)*1999-05-272000-12-07Tdk CorporationLight-emitting diode
WO2000076277A1 (en)*1999-06-072000-12-14Tdk CorporationOrganic el display
US6369507B1 (en)1999-06-072002-04-09Tdk CorporationOrganic EL display apparatus with a switching device
JP2003521094A (en)*2000-01-252003-07-08コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electroluminescent element
JP4834270B2 (en)*2000-01-252011-12-14コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electroluminescent device
WO2009008535A1 (en)*2007-07-112009-01-15Sumitomo Chemical Company, LimitedSelf-luminous element, illuminating device and display device

Similar Documents

PublicationPublication DateTitle
Burrows et al.Achieving full-color organic light-emitting devices for lightweight, flat-panel displays
JP3884564B2 (en) Organic EL light emitting device and light emitting device using the same
JP3852552B2 (en) Organic electroluminescence device
EP2110003A1 (en)Method of manufacturing a flexible device and method of manufacturing a flexible display
US20070087469A1 (en)Particulate for organic and inorganic light active devices and methods for fabricating the same
US7638938B2 (en)Phosphor element and display device
Yu et al.Planar light-emitting devices fabricated with luminescent electrochemical polyblends
JP3852518B2 (en) Organic electroluminescence device
JPH04276668A (en)Charge injection type electroluminescence element
KR100494557B1 (en)Efficient LED having highly refractive cover layer
JPH04334894A (en) Organic thin film electroluminescent device
JP4213169B2 (en) Organic EL light emitting device and light emitting device using the same
JP3820752B2 (en) Organic electroluminescence device
JP2000150166A (en)Organic el element
JP3555736B2 (en) Organic electroluminescent device
JP4943440B2 (en) Light emitting element and display device
US8304979B2 (en)Light emitting device having inorganic luminescent particles in inorganic hole transport material
KR100547055B1 (en) Organic electroluminescent devices
WO2010035369A1 (en)Light emitting element and display device
JP2837171B2 (en) Transparent conductive film
JPH02253593A (en) light emitting element
JPH02196475A (en)Thin film light-emitting element
JPH02207488A (en) Thin film light emitting device
JP2006344606A (en) Organic EL light emitting device and light emitting device using the same
JPH02139893A (en) light emitting element

[8]ページ先頭

©2009-2025 Movatter.jp