【0001】0001
【産業上の利用分野】本発明は化合物半導体の原子層エ
ピタキシ−(ALE:Atomic Layer Ep
itaxy )結晶成長法において、成長を領域選択的
に制御する技術に関するものである。[Industrial Application Field] The present invention relates to atomic layer epitaxy (ALE) of compound semiconductors.
Itaxy) relates to a technique for region-selectively controlling growth in a crystal growth method.
【0002】0002
【従来の技術】従来、GaAs等の化合物半導体結晶の
ALE成長においては、最上層原子面上に次期成長のた
めの媒体分子を、その電子的性質を積極的に変化させる
ことなく自由に吸着・堆積させていた。このため、図4
のように半導体結晶42に微細な溝構造41を結晶内に
作成しようとする場合、一様に成長した面に対してマス
キングとエッチングを組み合わせて、成長・除去のステ
ップを多段に亘って繰り返す必要があった。Conventionally, in the ALE growth of compound semiconductor crystals such as GaAs, medium molecules for the next growth are freely adsorbed onto the atomic plane of the top layer without actively changing its electronic properties. It was accumulating. For this reason, Figure 4
When attempting to create a fine groove structure 41 in a semiconductor crystal 42 as shown in FIG. was there.
【0003】0003
【発明が解決しようとする課題】しかし、上記従来技術
では、工程が繁雑となり製造に時間がかかるだけではな
く、全作成過程を通じて高いエッチング精度を得るため
の条件制御が困難であった。本発明では、媒体分子の結
晶成長表面への吸着条件を電子状態レベルで制御するこ
とにより、より直接的に目的とする量子的微細構造を形
成させることを意図し、これによって、工程が短縮され
、コスト的により有利な製造が可能な領域選択的結晶成
長方法を提供することを目的とする。However, in the above-mentioned conventional technology, not only the steps are complicated and the manufacturing time is long, but also it is difficult to control the conditions to obtain high etching accuracy throughout the entire manufacturing process. The present invention aims to form the desired quantum fine structure more directly by controlling the adsorption conditions of medium molecules on the crystal growth surface at the electronic state level, thereby shortening the process. The present invention aims to provide a region-selective crystal growth method that enables cost-effective manufacturing.
【0004】0004
【課題を解決するための手段】本発明は、化合物半導体
結晶を原子層エピタキシ−法によって製造する際に、結
晶成長面の直上位置に高指向性のエネルギ−ビ―ムを成
長面に平行に照射し、該照射領域直下の成長面上への媒
体分子の吸着を電子状態レベルで制御することにより、
化合物半導体結晶の成長を所定領域に限定することを特
徴とする領域選択的結晶成長方法である。[Means for Solving the Problems] The present invention provides a method for producing a compound semiconductor crystal by atomic layer epitaxy, in which a highly directional energy beam is directed directly above the crystal growth surface in parallel to the growth surface. By controlling the adsorption of medium molecules onto the growth surface directly under the irradiated region at the electronic state level,
This is a region-selective crystal growth method characterized by limiting the growth of a compound semiconductor crystal to a predetermined region.
【0005】[0005]
【作用】本発明では、図1に示すように、結晶成長層1
5の最表面層から極くわずかだけ上方の領域に、レ―ザ
光ないしはシンクロトロン放射光のような指向性の高い
光エネルギ−ビ―ムを面に平行に照射する。この光ビ−
ム通過領域14は、光子場にある結晶成長媒体分子12
を電子的励起状態に遷移させ、その光子場直下の吸着条
件を変化させる。吸着にあたっては表面原子との化学結
合を生成するうえで、分子側の最高占有軌道(HOMO
: Highest Occupied Molecu
lar Orbital)および最低非占有軌道(LU
MO: Lowest Unoccupied Mol
ecular Orbital)の空間的分布、また分
子の双極子能率の向き・大きさ等の静電的な性質が吸着
条件を支配する要因として重要であると考えられる。こ
うした電子的な性質は、分子の基底状態と励起状態では
大きく変化する場合があり、本発明ではこれを積極的に
利用する。[Operation] In the present invention, as shown in FIG.
A highly directional light energy beam, such as laser light or synchrotron radiation, is irradiated onto a region slightly above the outermost surface layer of 5 in parallel to the surface. This beam of light
The crystal growth medium molecules 12 in the photon field
transition to an electronically excited state and change the adsorption conditions directly under the photon field. During adsorption, the highest occupied orbital (HOMO) on the molecule side is used to form chemical bonds with surface atoms.
: Highest Occupied Molecule
lar Orbital) and lowest unoccupied orbital (LU
MO: Lowest Unoccupied Mol
It is thought that electrostatic properties such as the spatial distribution of the molecule (orbital) and the direction and size of the dipole efficiency of the molecule are important factors governing the adsorption conditions. These electronic properties may vary greatly between the ground state and the excited state of the molecule, and the present invention actively utilizes this.
【0006】例として、結晶に溝構造を作成する場合に
ついて述べる。この場合、エネルギ−ビ―ムの線幅が溝
の幅に対応することになる。光による電子励起の場合、
双極子許容の遷移は1電子遷移で、電子状態(2S+1
L)の指定量子数の変化が始状態と終状態の間で△S=
0、△L=(0、±1)に従う。本発明では、この選択
則を満足し、かつ基底状態と電子的性質が異なる励起状
態を吸着分子側に生成することで吸着状態の制御を行う
。ここで、光子のエネルギ−が電子遷移エネルギ−に対
応する(△E=hν)。図2に、2原子分子ABの基底
状態、および双極子遷移許容の励起状態のポテンシャル
エネルギ−曲線を示す。ここで、Aが結晶構成原子であ
り、ABはAを面側に向けて吸着するとする。ABの電
子分布は、基底状態において、A(δ+)−B(δ−)
の向きに分極し、一方、励起状態においては反転して、
A(δ−)−B(δ+)となっている。表面原子層への
ABの初期の吸着過程が主として静電的効果によって支
配されるならば、電子励起状態では分子内の電子分布の
反転によって吸着が制御される。従って、電子的励起に
よって光子場直下の領域への吸着が制御できる。こうし
た操作を層ごとに繰り返すことにより、図4に示すよう
な溝構造が精度良く実現される。As an example, a case will be described in which a groove structure is created in a crystal. In this case, the line width of the energy beam will correspond to the width of the groove. In the case of electronic excitation by light,
The dipole-allowed transition is a one-electron transition, and the electronic state (2S+1
The change in the specified quantum number of L) between the initial state and the final state is △S=
0, ΔL=(0, ±1). In the present invention, the adsorption state is controlled by generating on the adsorbed molecule side an excited state that satisfies this selection rule and has different electronic properties from the ground state. Here, the energy of the photon corresponds to the electron transition energy (ΔE=hν). FIG. 2 shows potential energy curves of the ground state of the diatomic molecule AB and the excited state that allows dipolar transition. Here, it is assumed that A is a crystal constituent atom and AB adsorbs A toward the surface side. The electron distribution of AB is A(δ+)−B(δ−) in the ground state.
It is polarized in the direction of , while in the excited state it is reversed,
A(δ−)−B(δ+). If the initial adsorption process of AB onto the surface atomic layer is mainly dominated by electrostatic effects, in the electronically excited state the adsorption is controlled by the inversion of the intramolecular electron distribution. Therefore, adsorption to the region directly under the photon field can be controlled by electronic excitation. By repeating these operations layer by layer, a groove structure as shown in FIG. 4 can be realized with high precision.
【0007】電子的励起を受けるべき媒体分子の成長面
への供給については、比較的高温下での成長の場合は、
図1に示すような自由拡散による供給法がある。また低
温での成長の場合は、超音速断熱膨張によって生成され
る分子線による供給法がある。後者の方が分子並進性の
高い供給源となるので、光子エネルギ−やビ―ムのエネ
ルギ−密度等の光子場の設計と組み合わせて、より高度
な結晶成長の領域制御が可能になる。Regarding the supply of medium molecules to the growth surface to undergo electronic excitation, in the case of growth at relatively high temperatures,
There is a supply method using free diffusion as shown in FIG. For growth at low temperatures, there is a supply method using molecular beams generated by supersonic adiabatic expansion. Since the latter serves as a source with higher molecular translational properties, it becomes possible to control the region of crystal growth more highly by combining it with photon field design such as photon energy and beam energy density.
【0008】[0008]
【実施例】次に本発明の実施例について説明する。Ga
とAsが交互に層をなす結晶について、本発明による成
長制御を適用した例について述べる。本例では、チャン
バ−内の温度を450℃とし、GaをAs面上に供給す
るソ−スガスとしてはGaClとH2の混合ガスを、A
sをGa面上に供給するソ−スガスとしてはAsH3を
用いている。ただし、AsH3は、この温度では分解し
ており、実際にはAsクラスタ―(As2,As4)が
Ga面へのAsの供給源となっている。ビ―ムの光源と
しては、ArFエキシマレ―ザ―を用いた。また、結晶
の支持母体の基板として、GaAs(100)面を使用
した。[Example] Next, an example of the present invention will be described. Ga
An example in which the growth control according to the present invention is applied to a crystal having alternating layers of As and As will be described. In this example, the temperature inside the chamber is 450°C, and a mixed gas of GaCl and H2 is used as the source gas for supplying Ga onto the As surface.
AsH3 is used as a source gas for supplying s onto the Ga surface. However, AsH3 decomposes at this temperature, and the As clusters (As2, As4) actually serve as a source of As supply to the Ga plane. An ArF excimer laser was used as the beam light source. Further, a GaAs (100) plane was used as a substrate for supporting the crystal.
【0009】手順は、GaCl分子をAs面上に供給す
る際に、レ−ザ―ビ―ムをAs面の直上に照射してGa
Clの吸着を領域選択的に抑制する。吸着されたGaC
lについては、H2との反応によりClが除去され、G
a原子がAs面上に固定される。次に新しいAs面の成
長を行うが、Asは蒸気圧が大きいのでAs層上にはA
sクラスタ―は吸着されない。一方、Ga原子とは化学
結合を作るので、露出しているGa上にのみAsが固定
されることになる。これが一プロセスで、図3に拡大し
て示すように、精度を保つために、再び光ビ−ム33の
存在下でGa層の成長を行い、以下、プロセスを繰り返
して領域選択的に結晶を成長させる。この選択成長方法
を、光ビ−ムを4本に分割して行い、図4に示すような
4つの溝構造41を持つ層状GaAs結晶42を得た。The procedure is to supply GaCl molecules onto the As surface by irradiating a laser beam directly above the As surface.
Region-selectively suppresses Cl adsorption. Adsorbed GaC
For l, Cl is removed by reaction with H2, and G
The a atom is fixed on the As surface. Next, a new As surface is grown, but since As has a high vapor pressure, there is no A on the As layer.
s clusters are not adsorbed. On the other hand, since As forms a chemical bond with Ga atoms, As is fixed only on exposed Ga. This is a single process, and as shown in an enlarged view in Figure 3, in order to maintain precision, the Ga layer is grown again in the presence of a light beam 33, and the process is repeated to selectively grow crystals in regions. Make it grow. This selective growth method was carried out by dividing the light beam into four beams to obtain a layered GaAs crystal 42 having four groove structures 41 as shown in FIG.
【0010】0010
【発明の効果】以上のように、本発明によれば、従来技
術に比べて容易かつ効率的に微細構造を結晶中に作成す
ることができ、工程の簡素化・短縮によるコストの低減
と共に、構造自体の精度の向上を図ることができる。As described above, according to the present invention, a fine structure can be created in a crystal more easily and efficiently than in the prior art, and costs can be reduced by simplifying and shortening the process. The accuracy of the structure itself can be improved.
【図1】本発明の方法による領域選択的結晶成長の説明
図である。FIG. 1 is an explanatory diagram of region-selective crystal growth according to the method of the present invention.
【図2】分子ABの基底状態と1電子励起状態のポテン
シャルエネルギ−曲線を示す図である。FIG. 2 is a diagram showing potential energy curves of the ground state and one-electron excited state of molecule AB.
【図3】成長中の層状GaAs結晶の拡大断面図である
。FIG. 3 is an enlarged cross-sectional view of a layered GaAs crystal during growth.
【図4】半導体結晶上に作られた溝構造の一例の断面図
である。FIG. 4 is a cross-sectional view of an example of a groove structure formed on a semiconductor crystal.
11 結晶成長の媒体分子の供給源12 媒体分子ガス
13 吸着された媒体分子14,33 光ビ−ム通過領域 15
結晶成長層16 結晶支持母体
31 As層32 Ga層
34 自由なG
aCl分子35 吸着GaCl分子 4
1 溝42 半導体結晶11 Source of medium molecules for crystal growth 12 Medium molecule gas
13 Adsorbed medium molecules 14, 33 Light beam passage area 15
Crystal growth layer 16 Crystal support matrix
31 As layer 32 Ga layer
34 Free G
aCl molecule 35 Adsorbed GaCl molecule 4
1 Groove 42 Semiconductor crystal
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5350391AJP2998244B2 (en) | 1991-02-27 | 1991-02-27 | Region-selective crystal growth method |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5350391AJP2998244B2 (en) | 1991-02-27 | 1991-02-27 | Region-selective crystal growth method |
| Publication Number | Publication Date |
|---|---|
| JPH04273120Atrue JPH04273120A (en) | 1992-09-29 |
| JP2998244B2 JP2998244B2 (en) | 2000-01-11 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP5350391AExpired - LifetimeJP2998244B2 (en) | 1991-02-27 | 1991-02-27 | Region-selective crystal growth method |
| Country | Link |
|---|---|
| JP (1) | JP2998244B2 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6855368B1 (en) | 2000-06-28 | 2005-02-15 | Applied Materials, Inc. | Method and system for controlling the presence of fluorine in refractory metal layers |
| US6878206B2 (en) | 2001-07-16 | 2005-04-12 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
| US6911391B2 (en) | 2002-01-26 | 2005-06-28 | Applied Materials, Inc. | Integration of titanium and titanium nitride layers |
| US6916398B2 (en) | 2001-10-26 | 2005-07-12 | Applied Materials, Inc. | Gas delivery apparatus and method for atomic layer deposition |
| US6936906B2 (en) | 2001-09-26 | 2005-08-30 | Applied Materials, Inc. | Integration of barrier layer and seed layer |
| US6951804B2 (en) | 2001-02-02 | 2005-10-04 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
| US6998579B2 (en) | 2000-12-29 | 2006-02-14 | Applied Materials, Inc. | Chamber for uniform substrate heating |
| US7022948B2 (en) | 2000-12-29 | 2006-04-04 | Applied Materials, Inc. | Chamber for uniform substrate heating |
| US7049226B2 (en) | 2001-09-26 | 2006-05-23 | Applied Materials, Inc. | Integration of ALD tantalum nitride for copper metallization |
| US7085616B2 (en) | 2001-07-27 | 2006-08-01 | Applied Materials, Inc. | Atomic layer deposition apparatus |
| US7101795B1 (en) | 2000-06-28 | 2006-09-05 | Applied Materials, Inc. | Method and apparatus for depositing refractory metal layers employing sequential deposition techniques to form a nucleation layer |
| US7115499B2 (en) | 2002-02-26 | 2006-10-03 | Applied Materials, Inc. | Cyclical deposition of tungsten nitride for metal oxide gate electrode |
| US7201803B2 (en) | 2001-03-07 | 2007-04-10 | Applied Materials, Inc. | Valve control system for atomic layer deposition chamber |
| US7208413B2 (en) | 2000-06-27 | 2007-04-24 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
| US7211144B2 (en) | 2001-07-13 | 2007-05-01 | Applied Materials, Inc. | Pulsed nucleation deposition of tungsten layers |
| US7262133B2 (en) | 2003-01-07 | 2007-08-28 | Applied Materials, Inc. | Enhancement of copper line reliability using thin ALD tan film to cap the copper line |
| US7405158B2 (en) | 2000-06-28 | 2008-07-29 | Applied Materials, Inc. | Methods for depositing tungsten layers employing atomic layer deposition techniques |
| US7439191B2 (en) | 2002-04-05 | 2008-10-21 | Applied Materials, Inc. | Deposition of silicon layers for active matrix liquid crystal display (AMLCD) applications |
| US7595263B2 (en) | 2003-06-18 | 2009-09-29 | Applied Materials, Inc. | Atomic layer deposition of barrier materials |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7501343B2 (en) | 2000-06-27 | 2009-03-10 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
| US7208413B2 (en) | 2000-06-27 | 2007-04-24 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
| US7501344B2 (en) | 2000-06-27 | 2009-03-10 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
| US7405158B2 (en) | 2000-06-28 | 2008-07-29 | Applied Materials, Inc. | Methods for depositing tungsten layers employing atomic layer deposition techniques |
| US7465666B2 (en) | 2000-06-28 | 2008-12-16 | Applied Materials, Inc. | Method for forming tungsten materials during vapor deposition processes |
| US7033922B2 (en) | 2000-06-28 | 2006-04-25 | Applied Materials. Inc. | Method and system for controlling the presence of fluorine in refractory metal layers |
| US6855368B1 (en) | 2000-06-28 | 2005-02-15 | Applied Materials, Inc. | Method and system for controlling the presence of fluorine in refractory metal layers |
| US7235486B2 (en) | 2000-06-28 | 2007-06-26 | Applied Materials, Inc. | Method for forming tungsten materials during vapor deposition processes |
| US7101795B1 (en) | 2000-06-28 | 2006-09-05 | Applied Materials, Inc. | Method and apparatus for depositing refractory metal layers employing sequential deposition techniques to form a nucleation layer |
| US7115494B2 (en) | 2000-06-28 | 2006-10-03 | Applied Materials, Inc. | Method and system for controlling the presence of fluorine in refractory metal layers |
| US6998579B2 (en) | 2000-12-29 | 2006-02-14 | Applied Materials, Inc. | Chamber for uniform substrate heating |
| US7022948B2 (en) | 2000-12-29 | 2006-04-04 | Applied Materials, Inc. | Chamber for uniform substrate heating |
| US6951804B2 (en) | 2001-02-02 | 2005-10-04 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
| US7781326B2 (en) | 2001-02-02 | 2010-08-24 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
| US7094680B2 (en) | 2001-02-02 | 2006-08-22 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
| US7201803B2 (en) | 2001-03-07 | 2007-04-10 | Applied Materials, Inc. | Valve control system for atomic layer deposition chamber |
| US7211144B2 (en) | 2001-07-13 | 2007-05-01 | Applied Materials, Inc. | Pulsed nucleation deposition of tungsten layers |
| US10280509B2 (en) | 2001-07-16 | 2019-05-07 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
| US6878206B2 (en) | 2001-07-16 | 2005-04-12 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
| US7085616B2 (en) | 2001-07-27 | 2006-08-01 | Applied Materials, Inc. | Atomic layer deposition apparatus |
| US7049226B2 (en) | 2001-09-26 | 2006-05-23 | Applied Materials, Inc. | Integration of ALD tantalum nitride for copper metallization |
| US7352048B2 (en) | 2001-09-26 | 2008-04-01 | Applied Materials, Inc. | Integration of barrier layer and seed layer |
| US6936906B2 (en) | 2001-09-26 | 2005-08-30 | Applied Materials, Inc. | Integration of barrier layer and seed layer |
| US7494908B2 (en) | 2001-09-26 | 2009-02-24 | Applied Materials, Inc. | Apparatus for integration of barrier layer and seed layer |
| US6916398B2 (en) | 2001-10-26 | 2005-07-12 | Applied Materials, Inc. | Gas delivery apparatus and method for atomic layer deposition |
| US7732325B2 (en) | 2002-01-26 | 2010-06-08 | Applied Materials, Inc. | Plasma-enhanced cyclic layer deposition process for barrier layers |
| US7473638B2 (en) | 2002-01-26 | 2009-01-06 | Applied Materials, Inc. | Plasma-enhanced cyclic layer deposition process for barrier layers |
| US6911391B2 (en) | 2002-01-26 | 2005-06-28 | Applied Materials, Inc. | Integration of titanium and titanium nitride layers |
| US7094685B2 (en) | 2002-01-26 | 2006-08-22 | Applied Materials, Inc. | Integration of titanium and titanium nitride layers |
| US7429516B2 (en) | 2002-02-26 | 2008-09-30 | Applied Materials, Inc. | Tungsten nitride atomic layer deposition processes |
| US7115499B2 (en) | 2002-02-26 | 2006-10-03 | Applied Materials, Inc. | Cyclical deposition of tungsten nitride for metal oxide gate electrode |
| US7439191B2 (en) | 2002-04-05 | 2008-10-21 | Applied Materials, Inc. | Deposition of silicon layers for active matrix liquid crystal display (AMLCD) applications |
| US7262133B2 (en) | 2003-01-07 | 2007-08-28 | Applied Materials, Inc. | Enhancement of copper line reliability using thin ALD tan film to cap the copper line |
| US7595263B2 (en) | 2003-06-18 | 2009-09-29 | Applied Materials, Inc. | Atomic layer deposition of barrier materials |
| Publication number | Publication date |
|---|---|
| JP2998244B2 (en) | 2000-01-11 |
| Publication | Publication Date | Title |
|---|---|---|
| JPH04273120A (en) | Region-selective crystal growth method | |
| CN107924815A (en) | It is used for the method and apparatus by the incorporation of control dopant and activation in chemical gas-phase deposition system | |
| JPH05186295A (en) | Crystal growth method | |
| Isshiki et al. | Crystallographic selective growth of GaAs by atomic layer epitaxy | |
| KR20020065892A (en) | Method of fabricating group-ⅲ nitride semiconductor crystal, method of fabricating gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor light-emitting device, and light source using the semiconductor light-emitting device | |
| Karam et al. | Low temperature selective epitaxy of III–V compounds by laser assisted chemical vapor deposition | |
| JP4876242B2 (en) | Crystal growth method and crystal growth apparatus | |
| JPH04226018A (en) | Manufacture of semiconductor device | |
| US5495822A (en) | Method of selectively growing Si epitaxial film | |
| US5990006A (en) | Method for forming materials | |
| JPS59148325A (en) | Method and device for growing single crystal thin film of compound semiconductor | |
| JP2000100728A (en) | Crystal growth equipment | |
| JP3182584B2 (en) | Compound thin film forming method | |
| JP2605604B2 (en) | Method for epitaxial growth of semiconductor crystal and molecular beam supply device used for the method | |
| JPS61236691A (en) | Vapor phase synthesis of diamond | |
| JPS62138390A (en) | Molecular beam epitaxy | |
| JPH0431391A (en) | Epitaxial growth | |
| RU2023325C1 (en) | Process of growing diamond films | |
| JPH11204440A (en) | Manufacture of crystalline thin film | |
| Yoshimoto et al. | In-situ reflection high-energy electron diffraction observation of laser-triggered GaP growth in chemical beam epitaxy | |
| JPH0474867A (en) | Method for manufacturing aluminum nitride thin film | |
| JPH06196423A (en) | Selective growth method for Si epitaxial film | |
| JPH03119721A (en) | Crystal growth | |
| JPH0292891A (en) | Molecular beam epitaxial growth method and its growth apparatus | |
| JPH11106288A (en) | Crystal thin film manufacturing method |