【0001】0001
【産業上の利用分野】本発明は、試料中の特定成分と酵
素との反応により還元された電子受容体の還元量を電気
化学的に測定することにより、特定成分を定量するバイ
オセンサに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biosensor for quantifying a specific component in a sample by electrochemically measuring the amount of electron acceptor reduced by a reaction between the specific component and an enzyme.
【0002】0002
【従来の技術】従来、試料中の特定成分について、試料
液の希釈や撹拌などを行なわずに簡易に定量できる方法
として、特願平1−274194号に下記のようなバイ
オセンサが提案されている。[Prior Art] Conventionally, the following biosensor has been proposed in Japanese Patent Application No. 1-274194 as a method for easily quantifying specific components in a sample without diluting or stirring the sample solution. There is.
【0003】このバイオセンサは、絶縁性の基板上にス
クリーン印刷などの方法で電極系を形成し、上記電極系
上に親水性高分子と酸化還元酵素を含む層、親水性高分
子層および電子受容体を含む層を順に形成したものであ
る。試料液を酵素反応層上へ滴下すると反応層が溶解し
、試料液中の基質との間で酵素反応が進行し、電子受容
体が還元される。酵素反応終了後、この還元された電子
受容体を電気化学的に酸化し、このとき流れる酸化電流
値から試料液中の基質濃度を求めるものである。In this biosensor, an electrode system is formed on an insulating substrate by a method such as screen printing, and a layer containing a hydrophilic polymer and an oxidoreductase, a hydrophilic polymer layer, and an electron layer are formed on the electrode system. This is a structure in which layers containing receptors are formed in sequence. When the sample solution is dropped onto the enzyme reaction layer, the reaction layer is dissolved, an enzyme reaction proceeds with the substrate in the sample solution, and the electron acceptor is reduced. After the enzymatic reaction is completed, the reduced electron acceptor is electrochemically oxidized, and the substrate concentration in the sample solution is determined from the value of the oxidation current flowing at this time.
【0004】0004
【発明が解決しようとする課題】酵素活性および酵素の
安定性は、種々の要因によって影響を受けることが知ら
れているが、水素イオン濃度(pH)もその一因として
挙げられる。酵素を用いてバイオセンサを構成した場合
に、高い酵素活性が得られるpHと安定性が保たれる最
適pH値は必ずしも一致しない。また、酵素を含む緩衝
液を乾燥させたものは、酵素水溶液を乾燥したものに比
べて保存安定性が低下するといった問題もある。さらに
、試料液中の多成分について同時測定しようとしても、
各酵素の最適pH値が一致しないために不可能となる場
合がある。It is known that enzyme activity and enzyme stability are affected by various factors, and hydrogen ion concentration (pH) is one of them. When a biosensor is constructed using an enzyme, the pH at which high enzyme activity is obtained and the optimum pH value at which stability is maintained do not necessarily match. Furthermore, there is a problem that a dried buffer solution containing an enzyme has lower storage stability than a dried enzyme aqueous solution. Furthermore, even if you attempt to simultaneously measure multiple components in a sample solution,
This may not be possible because the optimum pH values of each enzyme do not match.
【0005】本発明はこのような課題を解決するもので
、酵素活性が高くて安定な、多成分の試料を同時に測定
できるバイオセンサを提供することを目的とするもので
ある。[0005] The present invention is intended to solve these problems, and an object of the present invention is to provide a biosensor that has high enzymatic activity, is stable, and can simultaneously measure multiple component samples.
【0006】[0006]
【課題を解決するための手段】この課題を解決するため
に本発明は、絶縁性の基板上に少くとも測定極と対極か
らなる電極系を複数組設け、前記電極系上にそれぞれ反
応層を設け、さらに、水素イオン濃度制御部を設けたも
のである。[Means for Solving the Problem] In order to solve this problem, the present invention provides a plurality of sets of electrode systems each consisting of at least a measurement electrode and a counter electrode on an insulating substrate, and a reaction layer is provided on each of the electrode systems. In addition, a hydrogen ion concentration control section is provided.
【0007】[0007]
【作用】この構成により、バイオセンサの保存時におい
ては酵素を安定な条件下に保つことができる。また、セ
ンサに供給された試料液が水素イオン濃度制御部に達す
ることによって、試料液のpHを最も高い酵素活性が得
られる値にすることができる。試料液を予め緩衝液など
でpH調製する必要がなく、簡易操作が可能となる。[Operation] With this configuration, the enzyme can be kept under stable conditions during storage of the biosensor. In addition, when the sample liquid supplied to the sensor reaches the hydrogen ion concentration control section, the pH of the sample liquid can be set to a value that provides the highest enzyme activity. There is no need to adjust the pH of the sample solution with a buffer or the like in advance, and simple operation is possible.
【0008】さらに、複数組の電極系を用いているため
、試料液中の多成分を同時に測定をする場合には、各酵
素ごとにそれぞれ独立した水素イオン濃度制御部を設け
ることによって、各酵素に応じた最適なpH条件下で酵
素反応を進行させることができ、極めて信頼性の高い多
成分対応のバイオセンサが実現できることとなる。Furthermore, since multiple sets of electrode systems are used, when measuring multiple components in a sample solution at the same time, each enzyme can be controlled by providing an independent hydrogen ion concentration control section for each enzyme. Enzyme reactions can proceed under optimal pH conditions depending on the conditions, and an extremely reliable biosensor compatible with multiple components can be realized.
【0009】[0009]
【実施例】以下に本発明の一実施例のバイオセンサを説
明する。[Embodiment] A biosensor according to an embodiment of the present invention will be described below.
【0010】(実施例1)バイオセンサの一実施例とし
て、糖センサについて説明する。糖の種類としては主に
スクロース、グルコース、フルクトースがあり、この3
成分によって果実などの甘味が表現できるため、この3
成分を同時に測定できるバイオセンサを作製した。(Example 1) A sugar sensor will be described as an example of a biosensor. The main types of sugar are sucrose, glucose, and fructose;
These three ingredients can express the sweetness of fruits, etc.
We created a biosensor that can measure components simultaneously.
【0011】図1に本発明のバイオセンサの一実施例と
して作製した糖センサのうち反応層および水素イオン濃
度制御部を除いた構成を示す。図2に測定極と対極を除
く糖センサの構成を示す。FIG. 1 shows the configuration of a sugar sensor produced as an embodiment of the biosensor of the present invention, excluding the reaction layer and hydrogen ion concentration control section. Figure 2 shows the configuration of the sugar sensor excluding the measurement electrode and counter electrode.
【0012】ポリエチレンテレフタレートからなる絶縁
性の基板1に、スクリーン印刷により銀ペ−ストを印刷
しリ−ド2、3、4、5を形成した。つぎに、樹脂バイ
ンダーを含む導電性カーボンペーストを印刷し、加熱乾
燥することにより、測定極6、7、8と対極9からなる
電極系を形成した。さらに、電極系を部分的に覆い、電
極の露出部分の面積を一定とし、かつリ−ドの不要部を
覆うように絶縁性ペーストを印刷し、加熱処理をして絶
縁層10を形成した。Silver paste was printed on an insulating substrate 1 made of polyethylene terephthalate by screen printing to form leads 2, 3, 4, and 5. Next, a conductive carbon paste containing a resin binder was printed and dried by heating to form an electrode system consisting of measurement electrodes 6, 7, and 8 and a counter electrode 9. Furthermore, an insulating paste was printed so as to partially cover the electrode system, keep the area of the exposed part of the electrode constant, and cover unnecessary parts of the leads, and then heat-treated to form an insulating layer 10.
【0013】つぎに、6、7、8、9の露出部分を研磨
後、空気中で100℃にて4時間熱処理を施した。この
ようにして電極部分を構成した後、親水性高分子として
カルボキシメチルセルロ−ス(以下CMCと略す)、酵
素としてグルコースオキシダーゼ(シグマ:EC1.1
.3.4、以後GODと略す)、電子受容体としてフェ
リシアン化カリウムの混合水溶液を、対極9の一部分と
測定極6を覆うようにして展開、40℃の温風乾燥器中
で10分間乾燥させて反応層17を形成した。Next, exposed portions 6, 7, 8, and 9 were polished and then heat treated in air at 100° C. for 4 hours. After constructing the electrode part in this way, carboxymethyl cellulose (hereinafter abbreviated as CMC) was used as the hydrophilic polymer, and glucose oxidase (Sigma: EC1.1) was used as the enzyme.
.. 3.4, hereinafter abbreviated as GOD), a mixed aqueous solution of potassium ferricyanide as an electron acceptor was spread to cover a part of the counter electrode 9 and the measurement electrode 6, and dried for 10 minutes in a hot air dryer at 40°C. A reaction layer 17 was formed.
【0014】このように親水性高分子、酵素および電子
受容体の混合溶液を一度に滴下、乾燥させることによっ
て製造工程を簡略化させることができる。また、乾燥時
の温度範囲としては、酵素の失活がみられず、かつ短時
間で乾燥可能な温度ということで20℃から80℃まで
が適している。[0014] In this way, the manufacturing process can be simplified by dropping the mixed solution of the hydrophilic polymer, enzyme, and electron acceptor all at once and drying it. Furthermore, the suitable temperature range for drying is from 20° C. to 80° C., as this temperature does not cause deactivation of the enzyme and allows drying in a short time.
【0015】また、反応層17に用いたGODのように
ある程度広いpH値域で酵素活性が維持できる酵素を用
い、かつ試料液のpHがそれから大きく違わない場合に
は、上記のように水素イオン濃度制御部20を省くこと
ができる。[0015] In addition, when an enzyme that can maintain enzyme activity over a rather wide pH value range is used, such as GOD used in the reaction layer 17, and the pH of the sample solution does not differ greatly from that, the hydrogen ion concentration can be adjusted as described above. The control unit 20 can be omitted.
【0016】つぎに、CMC、酵素としてフルクトース
デヒドロゲナーゼ(東洋紡:EC1.1.99.11)
、フェリシアン化カリウムの混合水溶液を、対極9の一
部分と測定極7を覆うようにして展開、乾燥させて反応
層18を形成した。つぎに、図2に示すように、スペー
サー11の枝分かれした空間部に相当し、かつ反応層1
8より試料供給孔に近い部分にリン酸緩衝液(pH=4
.5)を滴下、乾燥して水素イオン濃度制御部21を形
成した。反応層18に用いたフルクトースデヒドロゲナ
ーゼはpH=4.5で酵素活性がほぼ最大値を示す(3
7℃)。この水素イオン濃度制御部21によって、反応
層18に達した試料液のpHは4.5付近となり、酵素
活性を最大限に引き出すことが可能となる。また、使用
直前まで緩衝液成分と酵素を分離することでセンサの保
存特性を向上させることができる。Next, CMC, fructose dehydrogenase (Toyobo: EC1.1.99.11) as an enzyme
A mixed aqueous solution of potassium ferricyanide was spread so as to cover a portion of the counter electrode 9 and the measurement electrode 7, and dried to form a reaction layer 18. Next, as shown in FIG.
Phosphate buffer (pH = 4) is placed in the part closer to the sample supply hole than
.. 5) was dropped and dried to form a hydrogen ion concentration control section 21. The fructose dehydrogenase used in the reaction layer 18 shows almost the maximum enzyme activity at pH=4.5 (3
7℃). By this hydrogen ion concentration control unit 21, the pH of the sample liquid that has reached the reaction layer 18 becomes around 4.5, making it possible to maximize the enzyme activity. Furthermore, the storage characteristics of the sensor can be improved by separating the buffer component and the enzyme until just before use.
【0017】つぎに、GOD(シグマ:EC1.1.3
.4)、ムタロターゼ(ベーリンガーマンハイム:EC
5.1.3.3)、インベルターゼ(シグマ:EC3.
2.1.26)をCMC、フェリシアン化カリウムと共
に溶解させた水溶液を対極9の一部分と測定極8を覆う
ようにして展開、乾燥させて反応層19を形成した。次
に、図2に示すように、スペーサー11の枝分かれした
空間部に相当し、かつ反応層19より試料供給孔に近い
部分にリン酸緩衝液(pH=4.5)を滴下、乾燥して
水素イオン濃度制御部22を形成した。pH=4.5の
条件下では反応層19に用いた3種の酵素は共に効率よ
く働くことができる。[0017] Next, GOD (Sigma: EC1.1.3
.. 4), Mutarotase (Boehringer Mannheim: EC
5.1.3.3), invertase (Sigma: EC3.
A reaction layer 19 was formed by spreading an aqueous solution in which 2.1.26) was dissolved together with CMC and potassium ferricyanide so as to cover a portion of the counter electrode 9 and the measurement electrode 8 and drying. Next, as shown in FIG. 2, a phosphate buffer solution (pH=4.5) is dropped into a part corresponding to the branched space of the spacer 11 and closer to the sample supply hole than the reaction layer 19, and dried. A hydrogen ion concentration control section 22 was formed. Under the condition of pH=4.5, all three types of enzymes used in the reaction layer 19 can work efficiently.
【0018】この場合、水素イオン濃度制御部21およ
び22の設定pH値が同じため、上記の方法の他に、水
素イオン濃度制御部21、22を除去し、その代わりに
スペーサー11の枝分かれしている分岐点のうち反応層
18および19への分岐点に相当する部分の基板上にリ
ン酸緩衝液(pH=4.5)を滴下、乾燥して水素イオ
ン濃度制御部を形成することもできる。In this case, since the set pH values of the hydrogen ion concentration control sections 21 and 22 are the same, in addition to the above method, the hydrogen ion concentration control sections 21 and 22 are removed and the spacer 11 is branched instead. It is also possible to form a hydrogen ion concentration control section by dropping a phosphate buffer solution (pH = 4.5) onto the substrate at a portion corresponding to the branching point to the reaction layers 18 and 19 among the branching points, and drying the solution. .
【0019】上記のようにして複数の反応層および水素
イオン濃度制御部を形成した後、カバー12およびスペ
ーサー11を図1あるいは図2中、破線で示すような位
置関係をもって接着した。試料液の供給量はカバーとス
ペーサーによって生じる空間容積に依存するため、予め
定量する必要がない。さらに、測定中の試料液の蒸発を
最小限に抑えることができ、精度の高い測定が可能とな
る。After forming a plurality of reaction layers and a hydrogen ion concentration control section as described above, the cover 12 and the spacer 11 were adhered in a positional relationship as shown by broken lines in FIG. 1 or 2. Since the amount of sample liquid supplied depends on the volume of space created by the cover and spacer, there is no need to quantify it in advance. Furthermore, evaporation of the sample liquid during measurement can be minimized, allowing highly accurate measurement.
【0020】このようにして作製した糖センサに試料液
としてグルコース、フルクトース、スクロースを含む水
溶液10μlを試料供給孔13より供給し、2分後に対
極を基準にしてそれぞれの測定極にアノード方向へ+0
.5Vのパルス電圧を印加し、5秒後の電流値をそれぞ
れ測定した。測定極17においてはグルコース濃度に対
応した電流値が得られ、測定極18においてはフルクト
ース濃度に対応した電流値が、測定極19においてはグ
ルコースとスクロースの合計濃度に対応した電流値が得
られた。測定極19と測定極17から得られた電流値の
差よりスクロース濃度を得ることができた。10 μl of an aqueous solution containing glucose, fructose, and sucrose as a sample solution is supplied to the sugar sensor thus prepared through the sample supply hole 13, and after 2 minutes, a voltage of +0 is applied to each measuring electrode in the anode direction with reference to the counter electrode.
.. A pulse voltage of 5V was applied, and the current value was measured after 5 seconds. A current value corresponding to the glucose concentration was obtained at the measurement electrode 17, a current value corresponding to the fructose concentration was obtained at the measurement electrode 18, and a current value corresponding to the total concentration of glucose and sucrose was obtained at the measurement electrode 19. . The sucrose concentration could be obtained from the difference between the current values obtained from the measurement electrode 19 and the measurement electrode 17.
【0021】水素イオン濃度制御部を通過して予め設定
されたpHになった試料液がそれぞれの反応層へ到達し
、溶解すると、試料液中の基質は最終的に酵素によって
酸化される。そこで移動した電子によってフェリシアン
化カリウムがフェロシアン化カリウムに還元される。つぎに、上記のパルス電圧の印加により、生成したフェ
ロシアン化カリウムの濃度に基づく酸化電流が得られ、
この電流値は試料液中の基質濃度に対応した。[0021] When the sample liquid that has passed through the hydrogen ion concentration control section and reached a preset pH reaches each reaction layer and is dissolved, the substrate in the sample liquid is finally oxidized by the enzyme. Potassium ferricyanide is reduced to potassium ferrocyanide by the transferred electrons. Next, by applying the above pulse voltage, an oxidation current based on the concentration of the generated potassium ferrocyanide is obtained,
This current value corresponded to the substrate concentration in the sample solution.
【0022】センサ応答電流値は上記糖センサのうち水
素イオン濃度制御部を除いて作製した糖センサに比べて
約20%の向上が認められた。これより、水素イオン濃
度制御部を設けることで高感度なバイオセンサが得られ
ることがわかる。[0022] It was observed that the sensor response current value was improved by about 20% compared to the above-mentioned sugar sensor manufactured without the hydrogen ion concentration control section. This shows that a highly sensitive biosensor can be obtained by providing a hydrogen ion concentration control section.
【0023】(実施例2)ポリエチレンテレフタレート
からなる絶縁性の基板上に、実施例1と同様にしてスク
リーン印刷により第1図に示した電極部分と同じものを
形成し、研磨、熱処理を行った。つぎに、図2に示すよ
うに、スペーサー11の枝分かれした空間部に相当し、
かつ反応層17に相当する部分より試料供給孔に近い部
分に、フェリシアン化カリウムをリン酸緩衝液(pH=
5.6)を滴下、加熱乾燥してフェリシアン化カリウム
を含む水素イオン濃度制御部20を形成した。さらに、
フェリシアン化カリウムを含むリン酸緩衝液(pH=4
.5)を滴下、加熱乾燥してフェリシアン化カリウムを
含む水素イオン濃度制御部21、22を形成した。この
場合においても、実施例1と同様に水素イオン濃度制御
部21、22を一つにまとめることが可能である。(Example 2) The same electrode portion as shown in FIG. 1 was formed by screen printing in the same manner as in Example 1 on an insulating substrate made of polyethylene terephthalate, and then polished and heat treated. . Next, as shown in FIG. 2, it corresponds to the branched space part of the spacer 11,
In addition, potassium ferricyanide was added to a phosphate buffer solution (pH=
5.6) was added dropwise and dried by heating to form a hydrogen ion concentration control section 20 containing potassium ferricyanide. moreover,
Phosphate buffer containing potassium ferricyanide (pH=4
.. 5) was added dropwise and dried by heating to form hydrogen ion concentration control sections 21 and 22 containing potassium ferricyanide. In this case as well, it is possible to combine the hydrogen ion concentration control sections 21 and 22 into one, as in the first embodiment.
【0024】このフェリシアン化カリウムを含む水素イ
オン濃度制御部を作製する際の加熱温度によって乾燥に
要する時間が変化し、その結果フェリシアン化カリウム
の結晶粒径をコントロールすることができる。乾燥時間
を短くすると結晶粒径は小さくなり、試料液への溶解速
度が高められる。よってセンサ応答速度を速くすること
が可能である。フェリシアン化カリウムが反応層中で酵
素と共存している場合には、加熱によって酵素活性が低
下するため、自由に加熱乾燥することはできない。さら
に、水素イオン濃度制御部にフェリシアン化カリウムを
含ませることによって、センサ作製後、使用直前まで酵
素とフェリシアン化カリウムを分離することができ、セ
ンサの保存特性を著しく向上させることができる。The time required for drying changes depending on the heating temperature when producing the hydrogen ion concentration control section containing potassium ferricyanide, and as a result, the crystal grain size of potassium ferricyanide can be controlled. When the drying time is shortened, the crystal grain size becomes smaller and the rate of dissolution into the sample liquid is increased. Therefore, it is possible to increase the sensor response speed. When potassium ferricyanide coexists with an enzyme in the reaction layer, the enzyme activity is reduced by heating, so it cannot be freely heated and dried. Furthermore, by including potassium ferricyanide in the hydrogen ion concentration control section, the enzyme and potassium ferricyanide can be separated after the sensor is manufactured until just before use, and the storage characteristics of the sensor can be significantly improved.
【0025】つぎに、GODを0.5wt%CMC水溶
液に溶かしたものを、対極9の一部分と測定極6を覆う
ようにして展開し、乾燥させて反応層17を形成した。つぎに、フルクトースデヒドロゲナーゼを0.5wt%
CMC水溶液に溶かしたものを、対極9の一部分と測定
極7を覆うようにして展開、乾燥させて反応層18を形
成した。さらに、GOD、ムタロターゼ、インベルター
ゼを0.5wt%CMC水溶液に溶解させたものを対極
9の一部分と測定極8を覆うようにして展開、乾燥させ
て反応層19を形成した。最後に実施例1と同様にスペ
ーサー、カバーと共に一体化して糖センサを作製した。Next, a solution of GOD dissolved in a 0.5 wt % CMC aqueous solution was spread to cover a portion of the counter electrode 9 and the measurement electrode 6, and dried to form a reaction layer 17. Next, add 0.5 wt% fructose dehydrogenase.
A reaction layer 18 was formed by spreading and drying a CMC solution dissolved in an aqueous CMC solution so as to cover a portion of the counter electrode 9 and the measurement electrode 7 . Further, a solution of GOD, mutarotase, and invertase dissolved in a 0.5 wt % CMC aqueous solution was spread so as to cover a portion of the counter electrode 9 and the measurement electrode 8, and dried to form a reaction layer 19. Finally, in the same manner as in Example 1, a sugar sensor was produced by integrating the spacer and the cover.
【0026】このようにして作製した糖センサに、実施
例1と同様にして、試料液としてグルコース、フルクト
ース、蔗糖を含む水溶液10μlを試料供給孔13より
供給し、2分後のセンサセンサ応答電流を測定したとこ
ろ、実施例1と同様に各電極間の電流値より試料液中の
各成分濃度を得ることができた。In the same manner as in Example 1, 10 μl of an aqueous solution containing glucose, fructose, and sucrose was supplied as a sample solution to the sugar sensor thus prepared through the sample supply hole 13, and the sensor response current was measured after 2 minutes. As a result, as in Example 1, it was possible to obtain the concentration of each component in the sample liquid from the current value between each electrode.
【0027】センサ応答の時間依存性を調べたところ、
実施例1の構成のものに比べて、フェリシアン化カリウ
ムを水素イオン濃度制御部に含むものの方が、より速い
センサ応答が得られた。これは、フェリシアン化カリウ
ムを含む水素イオン濃度制御部を作製する際、温度を制
御することによってフェリシアン化カリウムの結晶粒径
がより小さくなり、その結果、試料液に対する溶解速度
が高まって、全体の反応速度が高められたことによる。When we investigated the time dependence of the sensor response, we found that
Compared to the configuration of Example 1, the configuration in which potassium ferricyanide was included in the hydrogen ion concentration control section provided a faster sensor response. This is because when producing a hydrogen ion concentration control unit containing potassium ferricyanide, the crystal grain size of potassium ferricyanide becomes smaller by controlling the temperature, and as a result, the dissolution rate in the sample liquid increases, resulting in an overall reaction rate. This is due to the increase in
【0028】なお、上記実施例1および2では糖センサ
について示したが、本発明は、酵素としてアルコールオ
キシダーゼ、乳酸オキシダーゼ、コレステロールオキシ
ダーゼ、キサンチンオキシダーゼ、アミノ酸オキシダー
ゼなどの酵素を自由に組み合わせることによって、グル
コース、アルコール、乳酸、コレステロールなど試料液
中の測定対象成分に応じたバイオセンサを構成すること
ができる。[0028] In Examples 1 and 2 above, sugar sensors have been described, but the present invention provides glucose sensors by freely combining enzymes such as alcohol oxidase, lactate oxidase, cholesterol oxidase, xanthine oxidase, and amino acid oxidase. It is possible to configure a biosensor according to a component to be measured in a sample liquid, such as alcohol, lactic acid, or cholesterol.
【0029】また、上記実施例1および2では3成分の
同時測定について述べたが、本発明はこれに限定される
ものではなく、電極系の数を増やすことによってより多
成分の同時測定を行うこともできる。Furthermore, although the above-mentioned Examples 1 and 2 described the simultaneous measurement of three components, the present invention is not limited to this, and by increasing the number of electrode systems, simultaneous measurement of more components can be carried out. You can also do that.
【0030】上記実施例1および2では親水性高分子と
してCMCを用いたが、本発明はこれに限定されるもの
ではなく、ビニルアルコール系、セルロース系、ビニル
ピロリドン系、ゼラチン系、アクリル酸塩系、デンプン
系、無水マレイン酸系、アクリルアミド系、メタクリレ
ート樹脂などを用いてもそれぞれ同様の効果が得られた
。Although CMC was used as the hydrophilic polymer in Examples 1 and 2 above, the present invention is not limited thereto, and vinyl alcohol, cellulose, vinyl pyrrolidone, gelatin, and acrylate polymers may be used. Similar effects were obtained using other resins such as a starch-based resin, a starch-based resin, a maleic anhydride-based resin, an acrylamide-based resin, and a methacrylate resin.
【0031】また、上記実施例1および2では、各電極
系を測定極と対極の二極電極系としたが、参照極を加え
た三電極方式にすれば、より正確な測定が可能である。Furthermore, in Examples 1 and 2 above, each electrode system was a two-electrode system consisting of a measurement electrode and a counter electrode, but more accurate measurements can be made by using a three-electrode system in which a reference electrode is added. .
【0032】さらに、電子受容体としては、上記実施例
1および2に示したフェリシアン化カリウム以外に、p
−ベンゾキノン、フェナジンメトサルフェート、フェロ
センなどのレドックス化合物も使用できる。Furthermore, as an electron acceptor, in addition to the potassium ferricyanide shown in Examples 1 and 2, p
- Redox compounds such as benzoquinone, phenazine methosulfate, ferrocene can also be used.
【0033】一方、水素イオン濃度制御部にはリン酸緩
衝液を用いたが、本発明はこれに限定されるものではな
く、用いる酵素の最も高い酵素活性が得られるpHを得
る緩衝液を自由に用いることができる。酢酸緩衝液のよ
うな常温で液体のものであっても、保液性の高い高分子
と共に用いることによって水素イオン濃度制御部を構成
することができる。On the other hand, although a phosphate buffer solution was used in the hydrogen ion concentration control section, the present invention is not limited to this, and the buffer solution that provides the pH that provides the highest enzyme activity of the enzyme used can be freely selected. It can be used for. Even if it is liquid at room temperature, such as acetate buffer, the hydrogen ion concentration control unit can be constructed by using it together with a polymer having high liquid retention properties.
【0034】[0034]
【発明の効果】以上の実施例の説明からも明らかなよう
にように本発明によれば、試料液中の複数成分について
、試料の水素イオン濃度を予め調整することなく、酵素
の特性に応じた最適な水素イオン濃度を設定することが
できる。その結果、一回の試料供給で複数成分について
、より短い時間で高精度な測定のできるバイオセンサが
得られる。[Effects of the Invention] As is clear from the explanation of the above embodiments, according to the present invention, multiple components in the sample solution can be adjusted according to the characteristics of the enzyme without adjusting the hydrogen ion concentration of the sample in advance. The optimum hydrogen ion concentration can be set. As a result, a biosensor can be obtained that can measure multiple components with high precision in a shorter time by supplying a sample once.
【図1】本発明の一実施例のバイオセンサの、反応層お
よび水素イオン濃度制御部を除いた糖センサの分解斜視
図。FIG. 1 is an exploded perspective view of a sugar sensor of a biosensor according to an embodiment of the present invention, excluding a reaction layer and a hydrogen ion concentration control section.
【図2】同バイオセンサの実施例の糖センサの測定極と
対極を除いた糖センサの分解斜視図。FIG. 2 is an exploded perspective view of the sugar sensor of the embodiment of the biosensor, excluding the measurement electrode and counter electrode.
1 絶縁性の基板2,3,4,5 リード6,7,8 測定極9 対極10 絶縁層11 スペーサー12 カバー13 試料供給孔14,15,16 空気孔17,18,19 反応層1 Insulating substrate2, 3, 4, 5 lead6, 7, 8 Measuring pole9. Opposite10 Insulating layer11 Spacer12 Cover13 Sample supply hole14, 15, 16 Air holes17, 18, 19 Reaction layer
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3024601AJPH04264246A (en) | 1991-02-19 | 1991-02-19 | biosensor |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3024601AJPH04264246A (en) | 1991-02-19 | 1991-02-19 | biosensor |
| Publication Number | Publication Date |
|---|---|
| JPH04264246Atrue JPH04264246A (en) | 1992-09-21 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP3024601APendingJPH04264246A (en) | 1991-02-19 | 1991-02-19 | biosensor |
| Country | Link |
|---|---|
| JP (1) | JPH04264246A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH06109698A (en)* | 1992-09-30 | 1994-04-22 | Matsushita Electric Ind Co Ltd | Substrate concentration measurement method |
| WO1998048266A1 (en)* | 1997-04-24 | 1998-10-29 | Daikin Industries, Ltd. | Sensor |
| WO2000040150A1 (en) | 1999-01-04 | 2000-07-13 | Terumo Kabushiki Kaisha | Assembly having lancet and means for collecting and detecting body fluid |
| WO2003012421A1 (en)* | 2001-08-01 | 2003-02-13 | Arkray, Inc. | Analyzing implement, analyzing device, and method of manufacturing analyzing implement |
| WO2005010519A1 (en)* | 2003-07-25 | 2005-02-03 | National Institute Of Advanced Industrial Science And Technology | Biosensor and production method therefor |
| JP2005531759A (en)* | 2002-06-28 | 2005-10-20 | ノヴェンバー アクティエンゲゼルシャフト | Electrochemical detection apparatus and method |
| JP2006184270A (en)* | 2004-12-03 | 2006-07-13 | Sumitomo Electric Ind Ltd | Sensor chip and manufacturing method thereof |
| JP2007108104A (en)* | 2005-10-17 | 2007-04-26 | Sumitomo Electric Ind Ltd | Sensor chip and manufacturing method thereof |
| JP2007121018A (en)* | 2005-10-26 | 2007-05-17 | Sumitomo Electric Ind Ltd | Sensor chip and manufacturing method thereof |
| CN100356167C (en)* | 2002-09-03 | 2007-12-19 | 松下电器产业株式会社 | Biosensor and assay method using same |
| JP2008509406A (en)* | 2004-08-13 | 2008-03-27 | エゴメディカル テクノロジーズ アクチエンゲゼルシャフト | Analyte testing system for quantifying analyte concentration in physiological or aqueous liquids |
| US7473398B2 (en) | 2001-05-25 | 2009-01-06 | Roche Diagnostics Operations, Inc. | Biosensor |
| JP2009075112A (en)* | 2007-09-22 | 2009-04-09 | F Hoffmann-La Roche Ag | Analytical system for measuring analytes in body fluids |
| WO2010052867A1 (en)* | 2008-11-04 | 2010-05-14 | 株式会社日立製作所 | Potentiometric sensor chip, potentiometric method, and measuring kit |
| JP2010256368A (en)* | 2003-12-11 | 2010-11-11 | Ceragem Medisys Inc | Biomaterial measuring device and method of manufacturing the same |
| JP2010540934A (en)* | 2007-09-24 | 2010-12-24 | バイエル・ヘルスケア・エルエルシー | Multi-region / multi-potential test sensor, method and system |
| US8114270B2 (en)* | 1997-02-06 | 2012-02-14 | Abbott Diabetes Care Inc. | Small volume in vitro analyte sensor |
| JP2012504233A (en)* | 2008-09-30 | 2012-02-16 | メナイ メディカル テクノロジーズ リミテッド | Sample measurement system |
| JP5164193B1 (en)* | 2012-05-31 | 2013-03-13 | 富山県 | Multi-biosensor chip assembly kit, multi-biosensor chip manufacturing method, and multi-biosensor chip |
| JP2013068602A (en)* | 2011-09-09 | 2013-04-18 | Toyama Prefecture | Multi-biosensor chip assembling kit, method for manufacturing multi-biosensor chip, and multi-biosensor chip |
| JP2014153243A (en)* | 2013-02-12 | 2014-08-25 | Tanita Corp | Biosensor and measurement method employing the same |
| US9234863B2 (en) | 1998-10-08 | 2016-01-12 | Abbott Diabetes Care Inc. | Small volume in vitro analyte sensor |
| JP2017519212A (en)* | 2014-06-24 | 2017-07-13 | ライフスキャン・スコットランド・リミテッド | End-filled electrochemical analytical test strip with vertically intersecting sample receiving chambers |
| JP2020534532A (en)* | 2017-09-18 | 2020-11-26 | エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト | Electrochemical sensors and sensor systems for detecting at least one analyte |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH01114747A (en)* | 1987-10-29 | 1989-05-08 | Matsushita Electric Ind Co Ltd | Biosensor |
| JPH01291153A (en)* | 1988-05-18 | 1989-11-22 | Matsushita Electric Ind Co Ltd | Biosensor |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH01114747A (en)* | 1987-10-29 | 1989-05-08 | Matsushita Electric Ind Co Ltd | Biosensor |
| JPH01291153A (en)* | 1988-05-18 | 1989-11-22 | Matsushita Electric Ind Co Ltd | Biosensor |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH06109698A (en)* | 1992-09-30 | 1994-04-22 | Matsushita Electric Ind Co Ltd | Substrate concentration measurement method |
| US9234864B2 (en) | 1997-02-06 | 2016-01-12 | Abbott Diabetes Care Inc. | Small volume in vitro analyte sensor |
| US8114270B2 (en)* | 1997-02-06 | 2012-02-14 | Abbott Diabetes Care Inc. | Small volume in vitro analyte sensor |
| WO1998048266A1 (en)* | 1997-04-24 | 1998-10-29 | Daikin Industries, Ltd. | Sensor |
| US9891185B2 (en) | 1998-10-08 | 2018-02-13 | Abbott Diabetes Care Inc. | Small volume in vitro analyte sensor |
| US9341591B2 (en) | 1998-10-08 | 2016-05-17 | Abbott Diabetes Care Inc. | Small volume in vitro analyte sensor |
| US9291592B2 (en) | 1998-10-08 | 2016-03-22 | Abbott Diabetes Care Inc. | Small volume in vitro analyte sensor |
| US9234863B2 (en) | 1998-10-08 | 2016-01-12 | Abbott Diabetes Care Inc. | Small volume in vitro analyte sensor |
| US9316609B2 (en) | 1998-10-08 | 2016-04-19 | Abbott Diabetes Care Inc. | Small volume in vitro analyte sensor |
| WO2000040150A1 (en) | 1999-01-04 | 2000-07-13 | Terumo Kabushiki Kaisha | Assembly having lancet and means for collecting and detecting body fluid |
| US7473398B2 (en) | 2001-05-25 | 2009-01-06 | Roche Diagnostics Operations, Inc. | Biosensor |
| US7047795B2 (en) | 2001-08-01 | 2006-05-23 | Arkray, Inc. | Analyzing instrument, analyzing device, and method of manufacturing analyzing instrument |
| CN100374851C (en)* | 2001-08-01 | 2008-03-12 | 爱科来株式会社 | Analyzing implements, analyzing device, and method of manufacturing analyzing implement |
| WO2003012421A1 (en)* | 2001-08-01 | 2003-02-13 | Arkray, Inc. | Analyzing implement, analyzing device, and method of manufacturing analyzing implement |
| JP2005531759A (en)* | 2002-06-28 | 2005-10-20 | ノヴェンバー アクティエンゲゼルシャフト | Electrochemical detection apparatus and method |
| CN100356167C (en)* | 2002-09-03 | 2007-12-19 | 松下电器产业株式会社 | Biosensor and assay method using same |
| WO2005010519A1 (en)* | 2003-07-25 | 2005-02-03 | National Institute Of Advanced Industrial Science And Technology | Biosensor and production method therefor |
| JP2010256368A (en)* | 2003-12-11 | 2010-11-11 | Ceragem Medisys Inc | Biomaterial measuring device and method of manufacturing the same |
| JP2008509406A (en)* | 2004-08-13 | 2008-03-27 | エゴメディカル テクノロジーズ アクチエンゲゼルシャフト | Analyte testing system for quantifying analyte concentration in physiological or aqueous liquids |
| JP2006184270A (en)* | 2004-12-03 | 2006-07-13 | Sumitomo Electric Ind Ltd | Sensor chip and manufacturing method thereof |
| JP2007108104A (en)* | 2005-10-17 | 2007-04-26 | Sumitomo Electric Ind Ltd | Sensor chip and manufacturing method thereof |
| JP2007121018A (en)* | 2005-10-26 | 2007-05-17 | Sumitomo Electric Ind Ltd | Sensor chip and manufacturing method thereof |
| JP2009075112A (en)* | 2007-09-22 | 2009-04-09 | F Hoffmann-La Roche Ag | Analytical system for measuring analytes in body fluids |
| US9846136B2 (en) | 2007-09-24 | 2017-12-19 | Ascensia Diabetes Care Holdings Ag | Multi-region and potential test sensors, methods and systems |
| JP2014122911A (en)* | 2007-09-24 | 2014-07-03 | Bayer Healthcare Llc | Analyte testing sensor, method, and system in multi-region analysis |
| US10895550B2 (en) | 2007-09-24 | 2021-01-19 | Ascensia Diabetes Care Holdings Ag | Multi-region and potential test sensors, methods, and systems |
| JP2010540934A (en)* | 2007-09-24 | 2010-12-24 | バイエル・ヘルスケア・エルエルシー | Multi-region / multi-potential test sensor, method and system |
| JP2016197113A (en)* | 2007-09-24 | 2016-11-24 | バイエル・ヘルスケア・エルエルシーBayer HealthCare LLC | Analyte biosensor system |
| JP2012504233A (en)* | 2008-09-30 | 2012-02-16 | メナイ メディカル テクノロジーズ リミテッド | Sample measurement system |
| US8712701B2 (en) | 2008-11-04 | 2014-04-29 | Hitachi, Ltd. | Potentiometric-sensor chip, potentiometric assay, and assay kit |
| JP5139538B2 (en)* | 2008-11-04 | 2013-02-06 | 株式会社日立製作所 | Potential difference sensor chip, potential difference measuring method, and measurement kit |
| WO2010052867A1 (en)* | 2008-11-04 | 2010-05-14 | 株式会社日立製作所 | Potentiometric sensor chip, potentiometric method, and measuring kit |
| JP2013068602A (en)* | 2011-09-09 | 2013-04-18 | Toyama Prefecture | Multi-biosensor chip assembling kit, method for manufacturing multi-biosensor chip, and multi-biosensor chip |
| JP5164193B1 (en)* | 2012-05-31 | 2013-03-13 | 富山県 | Multi-biosensor chip assembly kit, multi-biosensor chip manufacturing method, and multi-biosensor chip |
| JP2014153243A (en)* | 2013-02-12 | 2014-08-25 | Tanita Corp | Biosensor and measurement method employing the same |
| JP2017519212A (en)* | 2014-06-24 | 2017-07-13 | ライフスキャン・スコットランド・リミテッド | End-filled electrochemical analytical test strip with vertically intersecting sample receiving chambers |
| JP2020534532A (en)* | 2017-09-18 | 2020-11-26 | エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト | Electrochemical sensors and sensor systems for detecting at least one analyte |
| Publication | Publication Date | Title |
|---|---|---|
| JPH04264246A (en) | biosensor | |
| EP0590661B1 (en) | A method for measuring concentrations of substrates in a sample liquid by using a biosensor | |
| EP0969097B1 (en) | Biosensor containing an enzyme and a sugar | |
| JP2671693B2 (en) | Biosensor and manufacturing method thereof | |
| CA2150791C (en) | Biosensor and method for producing the same | |
| USRE36991E (en) | Biosensor and method for producing the same | |
| JP3102613B2 (en) | Biosensor | |
| JPH1142098A (en) | Substrate quantification method | |
| JP2658769B2 (en) | Biosensor | |
| JP3024394B2 (en) | Biosensor and measurement method using the same | |
| JP3272882B2 (en) | Biosensor and manufacturing method thereof | |
| JP3437016B2 (en) | Biosensor and method of quantifying substrate using the same | |
| JPH01253648A (en) | biosensor | |
| JP3770757B2 (en) | Biosensor | |
| JP3370414B2 (en) | Manufacturing method of biosensor | |
| JP2702818B2 (en) | Biosensor and manufacturing method thereof | |
| JP3429581B2 (en) | Biosensor | |
| JP3063442B2 (en) | Biosensor and manufacturing method thereof | |
| JP3245103B2 (en) | Biosensor and Substrate Quantification Method Using It | |
| JP3163218B2 (en) | Biosensor manufacturing method | |
| JP2004061496A (en) | Biosensor | |
| JP3115167B2 (en) | Biosensor | |
| JPH0783872A (en) | Biosensor and manufacturing method thereof | |
| JPH10104192A (en) | Biosensor | |
| JP3297623B2 (en) | Biosensor |