Movatterモバイル変換


[0]ホーム

URL:


JPH04242980A - Light-receiving element - Google Patents

Light-receiving element

Info

Publication number
JPH04242980A
JPH04242980AJP3000158AJP15891AJPH04242980AJP H04242980 AJPH04242980 AJP H04242980AJP 3000158 AJP3000158 AJP 3000158AJP 15891 AJP15891 AJP 15891AJP H04242980 AJPH04242980 AJP H04242980A
Authority
JP
Japan
Prior art keywords
type
semiconductor substrate
diffusion layer
resistivity semiconductor
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3000158A
Other languages
Japanese (ja)
Other versions
JP2700356B2 (en
Inventor
Yoshiaki Nozaki
義明 野崎
Naoki Fukunaga
直樹 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp CorpfiledCriticalSharp Corp
Priority to JP3000158ApriorityCriticalpatent/JP2700356B2/en
Publication of JPH04242980ApublicationCriticalpatent/JPH04242980A/en
Application grantedgrantedCritical
Publication of JP2700356B2publicationCriticalpatent/JP2700356B2/en
Anticipated expirationlegal-statusCritical
Expired - Fee Relatedlegal-statusCriticalCurrent

Links

Landscapes

Abstract

Translated fromJapanese

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

Translated fromJapanese
【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、受光素子の応答速度を
高速化する構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure for increasing the response speed of a light receiving element.

【0002】0002

【従来の技術】受光素子は、フォトカプラ、光ファイバ
等に広く用いられており、応答速度を高速化するために
、種々の構造が提案されている。
2. Description of the Related Art Photodetectors are widely used in photocouplers, optical fibers, etc., and various structures have been proposed to increase response speed.

【0003】図9はその一例のpinフォトダイオード
の略断面図である。このような装置は、以下のような工
程で作成される。まず、N型低比抵抗半導体基板1に、
たとえば、100オームcm程度のN型高比抵抗エピタ
キシャル層6が積層される。次にN型高比抵抗エピタキ
シャル層6の表面に、アノードとしてP型拡散層3が形
成される。受光素子を5ボルトの逆バイアスで使用する
とした場合、カソード側の空乏層の幅は、約12ミクロ
ンとなるのでN型高比抵抗エピタキシャル層6の厚さは
、受光素子のP型拡散層3の底面からN型低比抵抗半導
体基板1の表面までが約12ミクロンとなるように設定
される。この表面は酸化シリコンのような表面保護膜4
で被覆される。この表面保護膜4の所望の場所に穴を開
け、アノード端子5が設けられる。図示されていないが
、カソード端子はN型低比抵抗半導体基板1の裏面に設
けられる。
FIG. 9 is a schematic cross-sectional view of an example of a pin photodiode. Such a device is created through the following steps. First, on an N-type low resistivity semiconductor substrate 1,
For example, an N-type high resistivity epitaxial layer 6 of about 100 ohm-cm is laminated. Next, a P-type diffusion layer 3 is formed as an anode on the surface of the N-type high resistivity epitaxial layer 6. When the photodetector is used with a reverse bias of 5 volts, the width of the depletion layer on the cathode side is approximately 12 microns, so the thickness of the N-type high resistivity epitaxial layer 6 is equal to the thickness of the P-type diffusion layer 3 of the photodetector. The distance from the bottom surface of the N-type low resistivity semiconductor substrate 1 to the surface of the N-type low resistivity semiconductor substrate 1 is approximately 12 microns. This surface is covered with a surface protective film 4 such as silicon oxide.
covered with. A hole is made at a desired location in this surface protection film 4, and an anode terminal 5 is provided. Although not shown, a cathode terminal is provided on the back surface of the N-type low resistivity semiconductor substrate 1.

【0004】以上のようにN型高比抵抗エピタキシャル
層6を受光部とすることによって、高速応答を得る工夫
がされている。
As described above, attempts have been made to obtain high-speed response by using the N-type high resistivity epitaxial layer 6 as a light receiving section.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記の
ような構造の受光素子では、カソードとなるN型層の高
比抵抗部分をエピタキシャル層で形成するため、さらに
高比抵抗化することが困難で、300オームcm程度が
限界であり、接合容量を十分低減することができない。このためCR時定数を十分小さくできないので高速化を
妨げる。また、エピタキシャル成長等の高温熱処理によ
り、不純物濃度の高いN型低比抵抗半導体基板1から、
N型高比抵抗エピタキシャル層6にN型不純物が這上が
ってしまうため、空乏層化していない這上がり部分で発
生したキャリアが、拡散により空乏層に到達するため、
応答速度の高速化を妨げる。
[Problems to be Solved by the Invention] However, in the light receiving element having the above structure, the high resistivity portion of the N-type layer that becomes the cathode is formed of an epitaxial layer, so it is difficult to further increase the resistivity. , 300 ohm-cm is the limit, and the junction capacitance cannot be sufficiently reduced. For this reason, the CR time constant cannot be made sufficiently small, which hinders speeding up. In addition, by high-temperature heat treatment such as epitaxial growth, from the N-type low resistivity semiconductor substrate 1 with a high impurity concentration,
Since N-type impurities creep up into the N-type high resistivity epitaxial layer 6, carriers generated in the creep-up portion that has not become a depletion layer reach the depletion layer by diffusion.
This prevents faster response speed.

【0006】本発明の目的は、前述の欠点を除き、受光
素子の応答速度の高速化を図ることにある。
An object of the present invention is to eliminate the above-mentioned drawbacks and increase the response speed of a light receiving element.

【0007】[0007]

【課題を解決するための手段】本発明においては、たと
えばN型の低比抵抗半導体基板の表面に、基板接着法に
よりN型の高比抵抗半導体基板を貼合わせ、このN型の
高比抵抗半導体基板の厚さは、その表面に形成されるア
ノード底面からN型の低比抵抗半導体基板の表面に到る
までの厚さが、受光素子に加えられる逆バイアスによっ
て広がる空乏層の幅に等しくなるように設定した。
[Means for Solving the Problems] In the present invention, for example, an N-type high specific resistance semiconductor substrate is bonded to the surface of an N-type low specific resistance semiconductor substrate by a substrate bonding method, and The thickness of the semiconductor substrate is such that the thickness from the bottom of the anode formed on its surface to the surface of the N-type low resistivity semiconductor substrate is equal to the width of the depletion layer that is expanded by the reverse bias applied to the light receiving element. I set it so that

【0008】[0008]

【作用】本発明は、以上のような構造であるから、カソ
ードの高比抵抗部分に高比抵抗半導体基板を用いるため
、エピタキシャル成長では得られない、たとえば、10
00オームcm程度の高比抵抗層が得られ、接合容量を
十分低減でき、CR時定数を小さくすることができる。また、基板接着法により高比抵抗基板と低比抵抗半導体
基板とを貼合わせるため、低比抵抗半導体基板から高比
抵抗半導体基板への不純物の這上がりが抑えられ、不純
物濃度プロファイルを急峻に保つことができる。これに
より、受光素子に印加される逆バイアスによって広がる
空乏層以外の領域の不純物濃度プロファイルを急峻にで
きるため、空乏層外で発生したキャリアはライフタイム
が短く、光電流に寄与しなくなる。
[Function] Since the present invention has the above-described structure, a high resistivity semiconductor substrate is used for the high resistivity portion of the cathode.
A high specific resistance layer of about 0.00 ohm cm can be obtained, the junction capacitance can be sufficiently reduced, and the CR time constant can be made small. In addition, since the high resistivity substrate and the low resistivity semiconductor substrate are bonded together using the substrate bonding method, the creeping up of impurities from the low resistivity semiconductor substrate to the high resistivity semiconductor substrate is suppressed, and the impurity concentration profile is maintained steeply. be able to. As a result, the impurity concentration profile in the region other than the depletion layer, which is expanded by the reverse bias applied to the light-receiving element, can be made steep, so carriers generated outside the depletion layer have a short lifetime and do not contribute to the photocurrent.

【0009】このような構造にすることによって、応答
速度の高速化の妨げとなる拡散電流成分の寄与しない、
時定数の小さい優れた受光素子が得られる。
[0009] By adopting such a structure, the contribution of the diffusion current component, which hinders the increase in response speed, is eliminated.
An excellent light receiving element with a small time constant can be obtained.

【0010】0010

【実施例】図1は本発明の一実施例の構造を示す略断面
図である。図9の従来例と異なるところは、N型高比抵
抗エピタキシャル層6の代わりにN型高比抵抗半導体基
板2を用い、所望の厚さまで研摩していることである。図9との同一の部分については、同一の符号で表わされ
る。この装置は図2及び図3の略断面図に示されるよう
な工程で製造される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic sectional view showing the structure of an embodiment of the present invention. The difference from the conventional example shown in FIG. 9 is that an N-type high-resistivity semiconductor substrate 2 is used instead of the N-type high-resistivity epitaxial layer 6 and polished to a desired thickness. The same parts as in FIG. 9 are represented by the same reference numerals. This device is manufactured through the steps shown in the schematic cross-sectional views of FIGS. 2 and 3.

【0011】まず、図2に示されるように、第1の導電
型をN型とすると、N型低比抵抗半導体基板1の表面に
、1000オームcm程度のN型高比抵抗半導体基板2
が、ウェハ接着法により矢印の方向に貼合わされる。
First, as shown in FIG. 2, if the first conductivity type is N type, an N type high resistivity semiconductor substrate 2 of about 1000 ohm cm is formed on the surface of an N type low resistivity semiconductor substrate 1.
are pasted together in the direction of the arrow by the wafer bonding method.

【0012】次に、図3に示されるように、N型高比抵
抗半導体基板2は、所望の厚さまで研摩される。受光素
子を5ボルトの逆バイアスで使用するとした場合、カソ
ード側の空乏層の幅は約35ミクロンとなるので、N型
高比抵抗半導体基板の厚さは、後で形成されるアノード
となるP型拡散層3の底面からN型低比抵抗半導体基板
1の表面までが約35ミクロンとなるように設定される
Next, as shown in FIG. 3, the N-type high resistivity semiconductor substrate 2 is polished to a desired thickness. When the photodetector is used with a reverse bias of 5 volts, the width of the depletion layer on the cathode side is approximately 35 microns, so the thickness of the N-type high resistivity semiconductor substrate is the same as that of P, which will be formed later. The distance from the bottom of the type diffusion layer 3 to the surface of the N-type low resistivity semiconductor substrate 1 is set to be about 35 microns.

【0013】次に図1に示すように、N型高比抵抗半導
体基板2の表面にアノードとなる第2の導電型のP型拡
散層3が設けられる。これらの表面は表面保護膜4で被
覆され、その所望の場所に穴を開け、アノード端子5が
設けられる。図示されていないが、カソード端子はN型
低比抵抗半導体基板1の裏面に設けられる。
Next, as shown in FIG. 1, a P-type diffusion layer 3 of a second conductivity type is provided on the surface of the N-type high resistivity semiconductor substrate 2 to serve as an anode. These surfaces are covered with a surface protective film 4, holes are made at desired locations, and anode terminals 5 are provided. Although not shown, a cathode terminal is provided on the back surface of the N-type low resistivity semiconductor substrate 1.

【0014】前記の実施例においては、単一の受光素子
のみを形成する構造について述べたが、受光素子と信号
処理回路を同一チップ上に形成する構造についても適用
できる。
In the above embodiments, a structure in which only a single light-receiving element is formed has been described, but the present invention can also be applied to a structure in which a light-receiving element and a signal processing circuit are formed on the same chip.

【0015】図4は、受光素子と信号処理回路を同一チ
ップ上に形成する構造の一実施例を示す略断面図である
。図1と同一の部分については同一の符号で表わされる
。図の左方には受光素子部20が形成され、右方には信
号処理回路部21が形成されている。
FIG. 4 is a schematic cross-sectional view showing an embodiment of a structure in which a light receiving element and a signal processing circuit are formed on the same chip. The same parts as in FIG. 1 are denoted by the same reference numerals. A light receiving element section 20 is formed on the left side of the figure, and a signal processing circuit section 21 is formed on the right side.

【0016】この装置は、図5ないし図8の略断面図に
示されるような工程で製造される。まず、図5に示され
るように、約1000オームcm程度のN型高比抵抗半
導体基板2の信号処理回路予定領域にP型埋込拡散層7
を形成する。次に、このN型高比抵抗半導体基板2を、
N型低比抵抗半導体基板1の表面に、ウェハ接着法によ
り矢印の方向に貼合わせる。ここでP型埋込拡散層7は
、受光素子と信号処理回路を電気的に分離するためのも
のである。
This device is manufactured through the steps shown in the schematic cross-sectional views of FIGS. 5 to 8. First, as shown in FIG. 5, a P-type buried diffusion layer 7 is formed in a signal processing circuit area of an N-type high resistivity semiconductor substrate 2 of approximately 1000 ohm cm.
form. Next, this N-type high resistivity semiconductor substrate 2 is
It is bonded to the surface of an N-type low resistivity semiconductor substrate 1 in the direction of the arrow by a wafer bonding method. Here, the P-type buried diffusion layer 7 is for electrically separating the light receiving element and the signal processing circuit.

【0017】次に、図6に示すように、N型高比抵抗半
導体基板2を所望の厚さまで研摩する。受光素子を5ボ
ルトの逆バイアスで使用するとした場合、前記実施例と
同様、カソード側の空乏層の幅は約35ミクロンとなる
ので、N型高比抵抗半導体基板2の厚さは、後の工程で
形成されるアノードとなるP型拡散層11の底面からN
型低比抵抗半導体基板1の表面まで約35ミクロンとな
るように設定される。
Next, as shown in FIG. 6, the N-type high resistivity semiconductor substrate 2 is polished to a desired thickness. When the photodetector is used with a reverse bias of 5 volts, the width of the depletion layer on the cathode side is approximately 35 microns, as in the previous embodiment, so the thickness of the N-type high resistivity semiconductor substrate 2 is as follows. N
The distance to the surface of the low resistivity semiconductor substrate 1 is approximately 35 microns.

【0018】次に、図7に示すように、信号処理回路予
定領域のみにN型埋込拡散層8を形成し、それらの表面
の全面に信号処理回路に適した不純物濃度のN型エピタ
キシャル層9が積層される。
Next, as shown in FIG. 7, an N-type buried diffusion layer 8 is formed only in the region where the signal processing circuit is planned, and an N-type epitaxial layer with an impurity concentration suitable for the signal processing circuit is formed on the entire surface thereof. 9 are stacked.

【0019】次に、図8に示されるように、各素子を分
離するため、P型埋込拡散層7の周縁部の上に、P型分
離拡散層10が形成される。また同時に、受光素子部は
その表面にアノードとなるP型拡散層11が形成される
Next, as shown in FIG. 8, a P-type isolation diffusion layer 10 is formed on the peripheral edge of the P-type buried diffusion layer 7 in order to isolate each element. At the same time, a P-type diffusion layer 11 serving as an anode is formed on the surface of the light receiving element section.

【0020】次に、図4に示されるように、信号処理回
路予定領域の表面にP型のベース拡散層12、N型のコ
レクタ拡散層14、ベース拡散層12の一部にN型のエ
ミッタ拡散層13が形成される。これらによってNPN
トランジスタが構成される。これらの表面は表面保護膜
4で被覆され、この表面保護膜4の所望の場所に穴を開
け、アノード端子5、ベース端子15、コレクタ端子1
7、エミッタ端子16等が設けられる。カソード端子は
、前述のように図示されていないが、N型低比抵抗半導
体基板1の裏面に設けられる。
Next, as shown in FIG. 4, a P-type base diffusion layer 12, an N-type collector diffusion layer 14, and an N-type emitter are formed on a part of the base diffusion layer 12 on the surface of the signal processing circuit area. A diffusion layer 13 is formed. By these, NPN
A transistor is configured. These surfaces are covered with a surface protective film 4, and holes are made at desired locations in this surface protective film 4 to form an anode terminal 5, a base terminal 15, and a collector terminal 1.
7. An emitter terminal 16 and the like are provided. Although the cathode terminal is not illustrated as described above, it is provided on the back surface of the N-type low resistivity semiconductor substrate 1.

【0021】本実施例においては、カソード端子を裏面
に設けているが、受光素子20の適当な場所に、N型埋
込拡散層のような適当な拡散を順次行なうことによって
、そのカソード端子を表面に設けることもできる。また
、P型埋込拡散層7を、N型低比抵抗半導体基板1とN
型高比抵抗半導体基板2を貼合わせる前に形成している
が、N型高比抵抗半導体基板2の研摩後に行なっても構
わない。
In this embodiment, the cathode terminal is provided on the back surface, but by sequentially applying appropriate diffusion such as an N-type buried diffusion layer to an appropriate location of the light receiving element 20, the cathode terminal can be It can also be provided on the surface. Furthermore, the P-type buried diffusion layer 7 is connected to the N-type low resistivity semiconductor substrate 1 and the N-type buried diffusion layer 7.
Although it is formed before bonding the N-type high-resistivity semiconductor substrate 2, it may be performed after polishing the N-type high-resistivity semiconductor substrate 2.

【0022】前記のP型半導体をN型半導体に置換える
こともできる。
[0022] The P-type semiconductor described above can also be replaced with an N-type semiconductor.

【0023】[0023]

【発明の効果】本発明は、不純物濃度の低い高比抵抗半
導体基板をpinフォトダイオードのi層として用いる
ため、i層の比抵抗をエピタキシャル層では不可能な3
00オームcm以上の高比抵抗とすることができ、受光
素子のカソード側の空乏層の幅が大きくなり、接合容量
を低減できるため、CR時定数を小さくすることができ
る。
Effects of the Invention The present invention uses a high resistivity semiconductor substrate with a low impurity concentration as the i-layer of a pin photodiode, so that the resistivity of the i-layer can be reduced to 3, which is impossible with an epitaxial layer.
A high specific resistance of 00 ohm-cm or more can be achieved, the width of the depletion layer on the cathode side of the light receiving element is increased, and the junction capacitance can be reduced, so that the CR time constant can be reduced.

【0024】また、貼合わせ技術を用いることで、N型
低比抵抗半導体基板1からのN型不純物の這上がりがな
くなり、カソード側に広がる空乏層外の不純物濃度プロ
ファイルを急峻に保てるため、空乏層外で発生するキャ
リアのライフタイムが短くなり、空乏層に到達する拡散
成分を大幅に低減でき、受光素子の高速動作が可能とな
る。
Furthermore, by using the bonding technique, creeping up of N-type impurities from the N-type low resistivity semiconductor substrate 1 is eliminated, and the impurity concentration profile outside the depletion layer spreading toward the cathode side can be maintained steeply. The lifetime of carriers generated outside the layer is shortened, the diffusion component reaching the depletion layer can be significantly reduced, and the light-receiving element can operate at high speed.

【0025】また、受光素子と信号処理回路を同一チッ
プ上に形成する構造においても、P型埋込拡散層7形成
時の熱処理をウェハ貼合わせ前に行なえるため、N型低
比抵抗半導体基板1からのN型不純物の這上がりを抑え
ることができる。そのために受光素子の高速動作が可能
となる。
Furthermore, even in a structure in which the light receiving element and the signal processing circuit are formed on the same chip, the heat treatment for forming the P-type buried diffusion layer 7 can be performed before bonding the wafers, so that the N-type low resistivity semiconductor substrate The rise of N-type impurities from 1 can be suppressed. This allows the light receiving element to operate at high speed.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の略断面図である。FIG. 1 is a schematic cross-sectional view of an embodiment of the invention.

【図2】本発明の工程の略断面図である。FIG. 2 is a schematic cross-sectional view of the process of the invention.

【図3】本発明の工程の略断面図である。FIG. 3 is a schematic cross-sectional view of the process of the invention.

【図4】本発明の他の実施例の略断面図である。FIG. 4 is a schematic cross-sectional view of another embodiment of the invention.

【図5】図4の工程を示す略断面図である。FIG. 5 is a schematic cross-sectional view showing the process of FIG. 4;

【図6】図4の工程を示す略断面図である。FIG. 6 is a schematic cross-sectional view showing the process of FIG. 4;

【図7】図4の工程を示す略断面図である。7 is a schematic cross-sectional view showing the process of FIG. 4. FIG.

【図8】図4の工程を示す略断面図である。8 is a schematic cross-sectional view showing the process of FIG. 4. FIG.

【図9】従来の一例の略断面図である。FIG. 9 is a schematic cross-sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

1  N型低比抵抗半導体基板2  N型高比抵抗半導体基板3  P型拡散層4  表面保護膜6  N型高比抵抗エピタキシャル層7  P型埋込拡散層8  N型埋込拡散層9  N型エピタキシャル層10  P型分離拡散層11  P型拡散層12  ベース拡散層13  エミッタ拡散層14  コレクタ拡散層15  ベース端子16  エミッタ端子17  コレクタ端子1 N-type low resistivity semiconductor substrate2 N-type high resistivity semiconductor substrate3 P-type diffusion layer4 Surface protective film6 N-type high resistivity epitaxial layer7 P-type buried diffusion layer8 N-type buried diffusion layer9 N-type epitaxial layer10 P-type separation diffusion layer11 P-type diffusion layer12 Base diffusion layer13 Emitter diffusion layer14 Collector diffusion layer15 Base terminal16 Emitter terminal17 Collector terminal

Claims (1)

Translated fromJapanese
【特許請求の範囲】[Claims]【請求項1】  第1の導電型の低比抵抗半導体基板と
、これに張合わせられた同じ導電型の高比抵抗半導体基
板とよりなり、高比抵抗半導体基板の表面に第2の導電
型の拡散層が形成され、第2の導電型の拡散層の底面か
ら前記の低比抵抗半導体基板の表面までの厚さは逆バイ
アス時の空乏層の幅に等しくなるようにされた受光素子
Claim 1: Consisting of a low resistivity semiconductor substrate of a first conductivity type and a high resistivity semiconductor substrate of the same conductivity type bonded thereto, a semiconductor substrate of a second conductivity type is formed on the surface of the high resistivity semiconductor substrate. A light receiving element in which a diffusion layer of the second conductivity type is formed, and the thickness from the bottom surface of the second conductivity type diffusion layer to the surface of the low resistivity semiconductor substrate is equal to the width of the depletion layer at the time of reverse bias.
JP3000158A1991-01-071991-01-07 Light receiving elementExpired - Fee RelatedJP2700356B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP3000158AJP2700356B2 (en)1991-01-071991-01-07 Light receiving element

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP3000158AJP2700356B2 (en)1991-01-071991-01-07 Light receiving element

Publications (2)

Publication NumberPublication Date
JPH04242980Atrue JPH04242980A (en)1992-08-31
JP2700356B2 JP2700356B2 (en)1998-01-21

Family

ID=11466236

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP3000158AExpired - Fee RelatedJP2700356B2 (en)1991-01-071991-01-07 Light receiving element

Country Status (1)

CountryLink
JP (1)JP2700356B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US7649236B2 (en)2004-03-312010-01-19Hamamatsu Photonics K.K.Semiconductor photodetector and photodetecting device having layers with specific crystal orientations
JP2010045313A (en)*2008-08-182010-02-25Univ Of TokyoMethod of manufacturing detection element, and method of manufacturing far-infrared detector
WO2011129149A1 (en)2010-04-142011-10-20浜松ホトニクス株式会社Semiconductor light detecting element
WO2012020498A1 (en)*2010-08-122012-02-16富士電機株式会社Manufacturing method for semi-conductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS5864072A (en)*1981-10-131983-04-16Nippon Telegr & Teleph Corp <Ntt>Electron beam emission type semiconductor diode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS5864072A (en)*1981-10-131983-04-16Nippon Telegr & Teleph Corp <Ntt>Electron beam emission type semiconductor diode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US7649236B2 (en)2004-03-312010-01-19Hamamatsu Photonics K.K.Semiconductor photodetector and photodetecting device having layers with specific crystal orientations
JP2010045313A (en)*2008-08-182010-02-25Univ Of TokyoMethod of manufacturing detection element, and method of manufacturing far-infrared detector
WO2011129149A1 (en)2010-04-142011-10-20浜松ホトニクス株式会社Semiconductor light detecting element
US9293499B2 (en)2010-04-142016-03-22Hamamatsu Photonics K.K.Semiconductor light detecting element having silicon substrate and conductor
WO2012020498A1 (en)*2010-08-122012-02-16富士電機株式会社Manufacturing method for semi-conductor device
US8685801B2 (en)2010-08-122014-04-01Fuji Electric Co., Ltd.Method of manufacturing semiconductor device

Also Published As

Publication numberPublication date
JP2700356B2 (en)1998-01-21

Similar Documents

PublicationPublication DateTitle
US4831430A (en)Optical semiconductor device and method of manufacturing the same
US6458619B1 (en)Process for producing an isolated planar high speed pin photodiode with improved capacitance
JP2800827B2 (en) Optical semiconductor device and method for manufacturing the same
CN101373782A (en) Semiconductor device and manufacturing method thereof
JP2700356B2 (en) Light receiving element
JPH05335618A (en) Optical position detection semiconductor device
JP2001237452A (en) Photodiode and method of manufacturing photodiode
JP2802459B2 (en) Photo Triac
JP2957837B2 (en) Photo detector and photo detector with built-in circuit
JPS6214478A (en) photo sensor
JPS62131570A (en) Semiconductor photodetector
JP2000200894A (en) Photodetector with built-in circuit
JP2501556B2 (en) Optical sensor and manufacturing method thereof
JP4100474B2 (en) Optical semiconductor device and manufacturing method thereof
JPH02196463A (en) Photodetector with built-in circuit
JP2649862B2 (en) Manufacturing method of photodetector with built-in circuit
JPH04146671A (en) Photodetector with built-in circuit
JPH02142181A (en) Photodetector with built-in circuit
JPH01205565A (en) Optical semiconductor device and its manufacturing method
JP2957834B2 (en) Photodetector with built-in circuit
JPH02260657A (en)Manufacture of circuit built-in photodetector
JPS622575A (en)Semiconductor photo detector
JP2002319698A (en) Semiconductor device and manufacturing method thereof
JPS6243348B2 (en)
JPH0864794A (en) Light receiving element with built-in circuit

Legal Events

DateCodeTitleDescription
LAPSCancellation because of no payment of annual fees

[8]ページ先頭

©2009-2025 Movatter.jp