【0001】0001
【産業上の利用分野】この発明はシリコンウェハーなど
の薄板を加工するために変形させることなく保持する真
空チャック装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum chuck device for holding thin plates such as silicon wafers without deforming them for processing.
【0002】0002
【従来の技術】シリコンウェハーなどの薄板を変形させ
ることなく保持する従来の方法として、図5に示す方法
がある。先ず、精度よく平面が仕上った厚板治具2の面
に、被加工物である薄板1を接着剤3を用いてはりつけ
、接着剤3の乾燥後、密着用Oリング溝を持つ真空吸着
器本体であるボディ4にOリング5を装着した後、そこ
へ前記厚板治具2の非接着面側を押し当て、ボディ4内
をパイプ6で真空に引いて厚板治具2を吸着保持する。かくして厚板治具2と一体になってボディ4に固着され
た薄板1を加工するものであった。2. Description of the Related Art As a conventional method for holding a thin plate such as a silicon wafer without deforming it, there is a method shown in FIG. First, a thin plate 1, which is a workpiece, is attached to the surface of a thick plate jig 2 whose plane has been precisely finished using an adhesive 3, and after the adhesive 3 dries, a vacuum suction device having an O-ring groove for adhesion is attached. After attaching the O-ring 5 to the main body 4, the non-adhesive side of the thick plate jig 2 is pressed against it, and the inside of the body 4 is evacuated with a pipe 6 to hold the thick plate jig 2 by suction. do. In this way, the thin plate 1 fixed to the body 4 is processed integrally with the thick plate jig 2.
【0003】0003
【発明が解決しようとする課題】薄板1と厚板治具2を
接着する接着剤3は、金属類などを素材とする薄板1の
接着には適している。しかし接着不能材料を素材とする
薄板1ではこの方法は使用できない。また、薄板1の加
工後の接着剤3の除去作業が必要であり、除去作業が困
難である欠点を持っていた。さらに薄板1と厚板治具2
を接着する接着剤3は、接着層を形成するため、接着層
の厚さの差により、ロッドごとに加工精度のばらつきが
生じ、均一な薄板1の加工精度を得るためには、その接
着工程の管理が複雑になるという欠点を有していた。こ
の発明は上記のような問題点を解消するためになされた
もので、薄板1を直接真空吸着でき、接着剤および厚板
治具を用いないで薄板1を加工できる真空吸着器を得る
とことを目的とする。The adhesive 3 for bonding the thin plate 1 and the thick plate jig 2 is suitable for bonding the thin plate 1 made of metal or the like. However, this method cannot be used for thin plates 1 made of non-bondable materials. In addition, it is necessary to remove the adhesive 3 after processing the thin plate 1, which is difficult. Furthermore, thin plate 1 and thick plate jig 2
The adhesive 3 that bonds the thin plate 1 forms an adhesive layer, so the difference in the thickness of the adhesive layer causes variations in processing accuracy for each rod.In order to obtain uniform processing accuracy for the thin plate 1, it is necessary to The disadvantage was that the management was complicated. This invention was made in order to solve the above-mentioned problems, and provides a vacuum suction device that can directly vacuum suction the thin plate 1 and process the thin plate 1 without using adhesives or thick plate jigs. With the goal.
【0004】0004
【課題を解決するための手段】本発明による真空吸着器
は、粒子材などのコア材にNiメッキなどを施してなる
被覆処理材をあらかじめ製作しておき、この被覆処理材
を真空吸着器本体であるボディの凹所に積み重ね、加熱
を行い被覆処理材を相互に溶着させる。その際、ボディ
の吸着表面が、精度よい平面になるように融着するかあ
るいは、融着後に吸着表面を機械加工により精度よい平
面になるように仕上げたものである。[Means for Solving the Problems] In the vacuum suction device of the present invention, a coating material is prepared in advance by applying Ni plating to a core material such as a particulate material, and this coating material is applied to the main body of the vacuum suction device. The coating materials are stacked in the recess of the body and heated to weld the coating materials together. At this time, the suction surface of the body is fused so that it becomes a precisely flat surface, or the suction surface is machined after fusion so that it becomes a precisely flat surface.
【0005】[0005]
【作用】この発明による内部および吸着表面が多孔状で
ある真空吸着器はろう材のような被覆材をメッキや蒸着
によりコア材に施してなる被覆処理材をあらかじめ製作
し、これら被覆処理材をボディの凹所に積み重ねた後加
熱を行い被覆材を互いに融着させたのでコア材10の間
に空間が維持されて多孔質層が形成される。かくしてそ
の隙間から真空吸着することにより薄板を保持すること
ができる。なお、吸着表面が精度よい平面になるように
仕上げられているので薄板は変形されることなく多孔質
層で支えられる。[Operation] The vacuum suction device according to the present invention has a porous interior and a porous suction surface.A coating material such as a brazing material is applied to the core material by plating or vapor deposition, which is prepared in advance. After being stacked in the recess of the body, heating was performed to fuse the coating materials together, thereby maintaining a space between the core materials 10 and forming a porous layer. Thus, the thin plate can be held by vacuum suction from the gap. Note that since the suction surface is finished to be a precisely flat surface, the thin plate is supported by the porous layer without being deformed.
【0006】[0006]
【実施例】以下、この発明の実施例を図について説明す
る。図1は、内部および吸着表面が多孔状である本発明
の真空吸着器の断面を示したものである。真空吸着器本
体であるボディ4の凹所に多孔質層20が形成されてい
る。この多孔質層20を含む真空吸着器の吸着表面に薄
板1を押し当て、ボディ4内をこれと一体になったパイ
プ6から真空に引き、多孔質層20を通して薄板1を吸
着保持する。かくして加工装置により、加工を行うもの
である。次に本発明による内部および吸着表面が多孔状
である真空吸着器を製造する第一の方法について説明す
る。図2に示す実施例では、粒径0.5 から1mmの
ステンレス粒子をコア材10として使用し、無電解Ni
メッキ(ニッケル:87〜93%、りん:4〜12%、
その他1%)溶液中で90℃、20分のメッキ処理を行
い、コア材10に被覆材11となるニッケルメッキ膜を
形成して、ステンレス粒子に3μ程度のNiメッキ膜を
持つ被覆処理材12を得る。図2は模式的に示した図で
あり、実際の寸法に対して被覆材11の膜厚を厚く描い
てある。真空吸着器の本体であり融点が被覆材11より高い材料
(本実施例ではステンレス材)からなるボディ4の吸着
表面側に、ぬれ性が著しく悪く、被覆材11より融点が
高い材料からなる板材14をボディ凹所を覆すように敷
き、前記ボディ4と板材14に囲まれた空間15をボデ
ィ4にあけられた横穴に真空ポンプPをつなぐことによ
りこの空間15を負圧にして、ボディ4と一体でありボ
ディ4と同じ材料のパイプ6から、前記被覆処理材12
の多数を流し込んで隙間なく均等に積み重ねる。ステン
レス粒子に3μ程度のNiメッキ膜を施してあるため、
摩擦係数が下がりスムーズにまんべんなく空間15に被
覆処理材12は充填される。この状態で、これを真空(
10−3Torr程度)の雰囲気のろう付炉の中に入れ
950℃、30分加熱する。加熱処理によりNiメッキ
の被覆材11は融解して、表面張力、ぬれ性などにより
互いに引き集り、被覆処理材12の非接触部分のNiメ
ッキ層が消失し、ステンレスを素材とするコア材10の
表面が露出する。加熱処理を終了すると、この状態でN
iメッキの被覆材11が凝固して固定される。そして、
炉から取り出した後板材14を取り除くことにより、図
1に示した如く内部および吸着表面が多孔状である真空
吸着器ができる。この吸着表面は薄板1を吸着してもこ
れを変形させることはない。勿論前記ボディ4の横穴を
塞ぎパイプ6を通して真空吸着器を真空に引く。DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the drawings. FIG. 1 shows a cross-section of a vacuum suction device of the present invention in which the interior and suction surface are porous. A porous layer 20 is formed in the recess of the body 4, which is the main body of the vacuum suction device. The thin plate 1 is pressed against the suction surface of a vacuum suction device including the porous layer 20, and the inside of the body 4 is evacuated from a pipe 6 integrated with the body 4, and the thin plate 1 is suctioned and held through the porous layer 20. Processing is thus performed by the processing device. Next, a first method of manufacturing a vacuum suction device according to the present invention having a porous interior and a porous suction surface will be described. In the example shown in FIG. 2, stainless steel particles with a particle size of 0.5 to 1 mm are used as the core material 10, and electroless Ni
Plating (nickel: 87-93%, phosphorus: 4-12%,
Other 1%) Perform plating treatment at 90°C for 20 minutes in a solution to form a nickel plating film that will become the coating material 11 on the core material 10, and coated material 12 with a Ni plating film of about 3μ on the stainless particles. get. FIG. 2 is a diagram schematically showing the thickness of the covering material 11 compared to the actual dimensions. On the suction surface side of the body 4, which is the main body of the vacuum suction device and is made of a material (stainless steel material in this example) whose melting point is higher than that of the covering material 11, there is a plate material that has extremely poor wettability and is made of a material whose melting point is higher than that of the covering material 11. A vacuum pump P is connected to a side hole made in the body 4 to create a negative pressure in the space 15 surrounded by the body 4 and the plate material 14. The coating material 12 is extracted from the pipe 6 which is integral with the body 4 and made of the same material as the body 4.
Pour in a large number of pieces and stack them evenly without any gaps. Because the stainless steel particles are coated with a Ni plating film of about 3μ,
The coefficient of friction decreases and the space 15 is filled with the coating material 12 smoothly and evenly. In this state, vacuum it (
It is placed in a brazing furnace with an atmosphere of about 10-3 Torr and heated at 950°C for 30 minutes. Due to the heat treatment, the Ni-plated coating material 11 melts and attracts each other due to surface tension, wettability, etc., and the Ni-plated layer on the non-contact portion of the coating material 12 disappears, causing the core material 10 made of stainless steel to melt. The surface is exposed. When the heat treatment is finished, N
The i-plated covering material 11 is solidified and fixed. and,
By removing the plate material 14 after taking it out of the furnace, a vacuum suction device having a porous interior and suction surface as shown in FIG. 1 is obtained. This suction surface does not deform the thin plate 1 even if it suctions it. Of course, the side hole of the body 4 is closed and the vacuum suction device is evacuated through the pipe 6.
【0007】次に、第二の方法について説明する。前記
と同様の被覆処理材12をボディ4の吸着表面13を越
えるまで、図3に示すように適当な層数積み上げる。こ
の時、パイプ6にこの被覆処理材12が落ちないように
メッシュ16がはってある。この状態で前述と同様な条
件で加熱、融着させる。その後ボディ4と吸着表面が平
面になるように機械加工により仕上げる。かくして図1
に示したと同じ内部および吸着表面が多孔状である真空
吸着器ができる。Next, the second method will be explained. A suitable number of layers of coating material 12 similar to that described above are stacked up until it exceeds the suction surface 13 of the body 4, as shown in FIG. At this time, a mesh 16 is provided on the pipe 6 to prevent the coating material 12 from falling. In this state, it is heated and fused under the same conditions as described above. Thereafter, the body 4 and the suction surface are finished by machining so that they become flat. Thus, Figure 1
A vacuum adsorber with a porous interior and adsorption surface similar to that shown in Figure 1 can be obtained.
【0008】図2および図3に示した方法では、ボディ
4には、Niメッキの被覆材11を施していなかったが
、図4に示すようにボディ4の凹所内の壁面にも被覆材
11を施せば、被覆処理材12とボディ4との相互の接
合強度が向上する。なお、実施例ではコア材10として
粒子形状の物の例を示したが、必ずしも球形に限るわけ
でなく、三角錘や、立方体などでもよい。さらに、実施
例では、コア材10の粒子径を0.5 から1mmとし
たが、薄板1の厚さや精度により、最適な粒形を選択で
きる。たとえば、実施例よりも薄い薄板1を加工するた
めの真空吸着器を製作する時には、粒子経を更に細かく
し(10μm程度)、その際コア材10に施すNiメッ
キの被覆材11の厚さは、1μm程度に薄くすることが
必要となる。また、コア材10とボディ4の材料に、実
施例ではステンレスを使用したが、銅、ニッケル、ベリ
リウム銅などの金属、あるいはガラスなどの無機物質、
あるいはスチレンなどのポリマーでもよく、被覆材11
も本例では、Niメッキであったが、銀、銀ろう、アル
ミ半田などの半田材でも同様の効果がある。In the method shown in FIGS. 2 and 3, the Ni plating coating 11 was not applied to the body 4, but as shown in FIG. By applying this, the mutual bonding strength between the coating material 12 and the body 4 is improved. In addition, in the embodiment, an example of a particle-shaped core material 10 is shown, but the core material 10 is not necessarily limited to a spherical shape, and may be a triangular pyramid, a cube, or the like. Further, in the embodiment, the particle size of the core material 10 was set to 0.5 to 1 mm, but the optimum particle size can be selected depending on the thickness and precision of the thin plate 1. For example, when manufacturing a vacuum suction device for processing a thin plate 1 that is thinner than the example, the particle diameter is made even finer (about 10 μm), and the thickness of the Ni-plated coating material 11 applied to the core material 10 is , it is necessary to reduce the thickness to about 1 μm. Although stainless steel was used in the embodiment as the material for the core material 10 and the body 4, metals such as copper, nickel, and beryllium copper, or inorganic materials such as glass, etc.
Alternatively, a polymer such as styrene may be used, and the coating material 11
Although Ni plating was used in this example, solder materials such as silver, silver solder, and aluminum solder can also have the same effect.
【0009】[0009]
【発明の効果】以上のように、この発明によればコア材
に、ろう材のような被覆材をメッキ処理により被覆し、
これを真空吸着器の本体であるボディの凹所内に積み重
ね、加熱を行い、ボディ4の吸着表面が精度よい平面に
なるように融着するプロセスを行うか、あるいは融着後
、ボディ4の吸着表面を機械加工により仕上げることに
より多孔質層を得、多孔質層の隙間から真空吸着するこ
とにより薄板を直接保持することができ、なおかつ薄板
が変形しないように多孔質層で支えることができ、均一
な薄板の加工品ができる。[Effects of the Invention] As described above, according to the present invention, a core material is coated with a coating material such as a brazing material by plating,
This is stacked in the recess of the main body of the vacuum suction device, heated, and fused so that the suction surface of the body 4 becomes a precisely flat surface, or after fusion, the suction surface of the body 4 is A porous layer is obtained by finishing the surface by machining, and the thin plate can be directly held by vacuum suction from the gaps in the porous layer, and the porous layer can support the thin plate so that it does not deform. A uniform thin plate processed product can be produced.
【図1】本発明による一実施例の真空吸着器の断面図で
ある。FIG. 1 is a sectional view of a vacuum suction device according to an embodiment of the present invention.
【図2】本発明による真空吸着器の第1の製造方法を説
明する図である。FIG. 2 is a diagram illustrating a first manufacturing method of a vacuum suction device according to the present invention.
【図3】本発明による真空吸着器の第2の製造方法を説
明する図である。FIG. 3 is a diagram illustrating a second method for manufacturing a vacuum suction device according to the present invention.
【図4】本発明による真空吸着器の製造方法の別の態様
を説明する図である。FIG. 4 is a diagram illustrating another embodiment of the method for manufacturing a vacuum adsorber according to the present invention.
【図5】従来の真空吸着器の断面図である。FIG. 5 is a sectional view of a conventional vacuum suction device.
4 ボディ10 コア材11 被覆材12 被覆処理材13 吸着表面14 板材15 空間4 Body10 Core material11 Covering material12 Coating treatment material13 Adsorption surface14 Plate material15 Space
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2402992AJPH04216649A (en) | 1990-12-18 | 1990-12-18 | Vacuum suction device having porous inside and suction surface and its manufacture |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2402992AJPH04216649A (en) | 1990-12-18 | 1990-12-18 | Vacuum suction device having porous inside and suction surface and its manufacture |
| Publication Number | Publication Date |
|---|---|
| JPH04216649Atrue JPH04216649A (en) | 1992-08-06 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2402992APendingJPH04216649A (en) | 1990-12-18 | 1990-12-18 | Vacuum suction device having porous inside and suction surface and its manufacture |
| Country | Link |
|---|---|
| JP (1) | JPH04216649A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5467525A (en)* | 1994-03-14 | 1995-11-21 | Motorola, Inc. | Apparatus for picking and placing components using a morphing vacuum tip |
| JPH08153660A (en)* | 1994-11-28 | 1996-06-11 | Ckd Corp | Heat treatment apparatus for plate material and heat treatment method |
| US5546654A (en)* | 1994-08-29 | 1996-08-20 | General Electric Company | Vacuum fixture and method for fabricating electronic assemblies |
| JP2018041776A (en)* | 2016-09-06 | 2018-03-15 | 株式会社ディスコ | Chuck table and transfer pad |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5467525A (en)* | 1994-03-14 | 1995-11-21 | Motorola, Inc. | Apparatus for picking and placing components using a morphing vacuum tip |
| US5546654A (en)* | 1994-08-29 | 1996-08-20 | General Electric Company | Vacuum fixture and method for fabricating electronic assemblies |
| JPH08153660A (en)* | 1994-11-28 | 1996-06-11 | Ckd Corp | Heat treatment apparatus for plate material and heat treatment method |
| JP2018041776A (en)* | 2016-09-06 | 2018-03-15 | 株式会社ディスコ | Chuck table and transfer pad |
| Publication | Publication Date | Title |
|---|---|---|
| JPS6071579A (en) | How to join alumina and metal | |
| US3252722A (en) | Delay line bond | |
| CN107755837A (en) | The manufacture method of target material assembly | |
| JPH0441067A (en) | Production of base material having perforated surface | |
| US3128545A (en) | Bonding oxidized materials | |
| US5893511A (en) | Pressure sintering method for fastening electronic components on a substrate | |
| WO1995024113A1 (en) | Copper ball and method for producing the same | |
| CA1247046A (en) | Method of bonding ceramic article | |
| JPH04216649A (en) | Vacuum suction device having porous inside and suction surface and its manufacture | |
| US12191183B2 (en) | Wafer placement table and method of manufacturing the same | |
| US4410394A (en) | Methods of making cooled, thermally stable composite mirrors | |
| US5750202A (en) | Preparation of gold-coated molybdenum articles and articles prepared thereby | |
| US4948029A (en) | Method of bonding two bodies | |
| JPH06128738A (en) | Sputtering target manufacturing method | |
| US3703306A (en) | Method of hermetically sealing silicon to a low expansion alloy | |
| US11253951B2 (en) | Method for the pretreatment of rare-earth magnets prior to soldering using nanocrystalline soldering foils and magnetic component | |
| JPS5918184A (en) | Ceramics metallization method | |
| JP2017518186A5 (en) | ||
| JP2017518186A (en) | Process for permanently joining two parts by transient liquid phase interdiffusion | |
| JPH0699317A (en) | Splicing method | |
| JP2004025196A (en) | Solid joining method | |
| US3654694A (en) | Method for bonding contacts to and forming alloy sites on silicone carbide | |
| JPH1197618A (en) | Silicon wafer bonding method | |
| CN115302207B (en) | Composite base manufacturing method and composite base | |
| JPH0122150B2 (en) |