【発明の詳細な説明】(産業上の利用分野)この発明は加圧流体の適用により膨径変形して軸線方向
に収縮する弾性収縮体を対として複数組用いたロボット
アーム、特には、架空送電線の周囲での作業を行うのに
適したロボットアームに関するものである。Detailed Description of the Invention (Field of Industrial Application) This invention relates to a robot arm that uses a plurality of pairs of elastic contracting bodies that expand in diameter and contract in the axial direction by applying pressurized fluid, and in particular, This invention relates to a robot arm suitable for working around power lines.
(従来の技術)電気を送るために機器間に配設される架空送電線は、そ
の使用場所、期間、そして周囲温度により種々の影響を
受けることから、例えば、高温多湿の地域で使用される
場合には、耐候性に優れた被覆材を使用すること勿論の
こと、送電線の保守監視をすることも極めて重要となっ
てくる。(Prior art) Overhead power transmission lines installed between devices to transmit electricity are affected in various ways depending on the location, period, and ambient temperature of their use. For example, they are used in hot and humid areas. In such cases, it is extremely important not only to use a covering material with excellent weather resistance, but also to maintain and monitor power transmission lines.
しかしなから、架空電線は、通常、それか高所に張設さ
れものであり、また、送電電圧の高いものにあっては、
通電状態下で作業は極めて危険であり、その保守点検作
業を極めて危険なものとしていた。このため、送電を一
時中止すると共に、伸縮自在のブームの先端に取付けら
れた作業台に乗った作業者か順次点検を行うが、或いは
、ブーム先端にTVカメラを具備する遠隔操作されるロ
ボットアームにより、点検作業を行う方法などが考えら
れてきた。However, overhead power lines are usually installed at high places, and when the transmission voltage is high,
The work is extremely dangerous under energized conditions, making the maintenance and inspection work extremely dangerous. For this reason, power transmission is temporarily suspended and inspections are carried out one by one by a worker sitting on a workbench attached to the tip of a telescoping boom, or by a remotely controlled robot arm equipped with a TV camera at the tip of the boom. Accordingly, methods for carrying out inspection work have been considered.
(発明か解決しようとする課題)しかしながら、遠隔操作されるロボットアームにあって
は、通例、それ自身剛性か高いものであることから、風
なとの影響で揺れた架空電線と接触したり、或いはその
誤操作により接触すると、容易に電線を切断してしまう
ことかあり、何らかの解決方法が必要とされていた。(Problem to be solved by the invention) However, since remote-controlled robot arms are usually rigid or highly rigid, they may come into contact with overhead power lines that are swayed by the wind. Otherwise, if contact occurs due to incorrect operation, the electric wire may easily be cut, so some kind of solution is needed.
このため、アーム先端にTVカメラ又は距離センサーを
取付けて、電線とロボットアームとの接触を防ぐことが
考えられるが、揺れる電線をTVカメラて監視しながら
ロボットアームを操作することは熟練を必要とするばか
りでなく、作業者に緊張を強いることとなり、好ましい
ものではない。For this reason, it is possible to install a TV camera or a distance sensor at the end of the arm to prevent contact between the electric wire and the robot arm, but it requires skill to operate the robot arm while monitoring the swaying electric wire with a TV camera. Not only this, but it also forces the worker to be nervous, which is not desirable.
一方、距離センサーを用いたものにあっては、対象物が
電線のように細いものにあっては余り適したものとは言
えず、ましてや風などの影響により電線か揺れる場合に
あっては、実質的に適用し得ないと言う問題があった。On the other hand, devices using distance sensors are not very suitable when the target object is something thin like an electric wire, and even more so when the wire is swaying due to wind or other factors. There was a problem that it could not be practically applied.
本発明はこのような問題に鑑みてなされたものであり、
柔軟な構造を有し、細い電線の存在を確実に検知して接
触することのないロボットアームを提供することをその
目的とする。The present invention was made in view of such problems,
The purpose of the present invention is to provide a robot arm that has a flexible structure and can reliably detect the presence of thin electric wires without coming into contact with them.
(課題を解決するかめの手段)この目的を達成するため、本発明装置、一端か不動部に
連結され他端が回動軸に直接又は間接的に連結された少
なくとも二本で一対の弾性収縮体をそれぞれ有し、回動
軸を介して相対運動可能に連結された複数のアーム部材
を具備し、各アーム部材の対をなすそれぞれの弾性収縮
体への加圧流体の給排により、回転および/又は並進運
動を行うロボットアームてあって、少なくとも一個のア
ーム部材が、架空送電線の周囲に生起される磁界を検知
する検知手段を具えてなる。(Means for Solving the Problem) In order to achieve this object, the device of the present invention includes a pair of at least two elastic contracting bodies, one end of which is connected to an immovable part and the other end of which is connected directly or indirectly to a rotating shaft. It is equipped with a plurality of arm members connected so as to be able to move relative to each other via a rotation axis, and rotation and and/or a translational robot arm, wherein at least one arm member is provided with sensing means for sensing a magnetic field generated around the overhead power line.
(作 用)このロボットアームは、それ自身が柔軟性を有するもの
であるので、誤って電線に接触したとしても電線が損傷
することかない。しかも、少なくとも一個のアーム部材
に配設した磁界検知手段が、通電状態での電線の周囲に
生起される磁界の存在を検知するので、そこらかの検知
信号に基づいて、各アーム部材の弾性収縮体への加圧流
体を給排を制御することにより、架空電線に接触するこ
となくアームを移動させることかできる。(Function) Since this robot arm itself has flexibility, the wire will not be damaged even if it comes into contact with the wire by mistake. Moreover, since the magnetic field detection means disposed on at least one arm member detects the presence of a magnetic field generated around the electric wire in the energized state, elastic contraction of each arm member is performed based on the detection signal there. By controlling the supply and discharge of pressurized fluid to and from the body, the arm can be moved without coming into contact with overhead power lines.
(実施例)以下、図面を参照しながら本発明の好適な実施例に付い
て詳述する。(Embodiments) Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
第1図に示す本発明架空送電線用ロボットアーム10は
、相対運動可能に連結されたアーム部材12.13.1
4そして15を具え、アーム部材12の一端は、図示し
ないトラックなとの搬送車両の伸縮自在のブームの先端
又はそこに設けた基台なとに取付けられ、その他端には
、これも図示しない回動軸か適当な軸受を介して回動自
在に支持される。A robot arm 10 for an overhead power transmission line according to the present invention shown in FIG.
4 and 15, one end of the arm member 12 is attached to the tip of a telescoping boom of a transport vehicle such as a truck (not shown) or a base provided thereon, and the other end is attached to a base (also not shown). It is rotatably supported via a rotating shaft or a suitable bearing.
この回動軸には、隣接するアーム13の一端か一体的に
取付けられると共に、図示しないスプロケットか固着さ
れており、一方、当該スプロケットには、アーム12の
不動部に一端か連結された仮想線で示す二組の対をなす
弾性収縮体16の他端に連結されたチェーン17か巻回
される。One end of the adjacent arm 13 is integrally attached to this rotating shaft, and a sprocket (not shown) is also fixed thereto. A chain 17 connected to the other ends of two pairs of elastic contraction bodies 16 shown in is wound.
弾性収縮体16は、ゴム又はゴム状弾性材料よりなる管
状体の外周を所定角度に編組まれた高張力繊維類の編組
み補強構造体にて補強し、両端開口を封止部材で封止し
た、いわゆるエアーバック゛タイプ構造をしており、内
部空間への加圧流体の給排により膨径変形して軸線方向
に収縮力を生起するものである。そして、液圧シリンダ
ーや電動モータなどの従来のアクチュエータに比して、
軽量、小型で簡潔な構造をしており、更には、その構造
ゆえに柔軟なアクチュエータである。The elastic contractile body 16 is a tubular body made of rubber or rubber-like elastic material, the outer periphery of which is reinforced with a braided reinforcing structure made of high-tensile fibers braided at a predetermined angle, and openings at both ends are sealed with sealing members. It has a so-called air bag type structure, and expands and deforms in diameter by supplying and discharging pressurized fluid to the internal space, thereby generating a contraction force in the axial direction. And compared to conventional actuators such as hydraulic cylinders and electric motors,
It is lightweight, compact, and has a simple structure, and furthermore, because of its structure, it is a flexible actuator.
それゆえ、対をなす各弾性収縮体に適宜に加圧流体を給
排することにより、アーム部材12の一端に回動自在に
支持された回動軸18、ひいては隣接するアーム部材1
3に所望Q回動運動を付与することかできる。勿論、必
要に応じて対をなす弾性収縮体の数を増加させること、
更には、対をなす弾性収縮体を二組以上用いることもで
きる。Therefore, by appropriately supplying and discharging pressurized fluid to each of the elastic contracting bodies forming the pair, the rotation shaft 18 rotatably supported at one end of the arm member 12, and the adjacent arm member 1
3 can be given a desired Q rotational motion. Of course, the number of paired elastic contracting bodies can be increased as necessary.
Furthermore, two or more pairs of elastic contraction bodies can be used.
アーム部材13も、その一端に回動軸19か適当な軸受
を介して回動自在に取付けられており、そこに固着した
スプロケットに噛合するチェーン20の両端部にそれぞ
れ連結された対をなす弾性収縮体21への加圧流体の適
宜の給排により、回動軸19に一端か取付けられたアー
ム部材14に回転運動を付与する。The arm member 13 is also rotatably attached to one end of the arm member 13 via a pivot shaft 19 or a suitable bearing, and has a pair of elastic members connected to both ends of a chain 20 that meshes with a sprocket fixed thereto. By appropriately supplying and discharging pressurized fluid to and from the contracting body 21, rotational movement is imparted to the arm member 14, one end of which is attached to the rotation shaft 19.
また、アーム部材14の他端にも、既述したと同様に、
適当な軸受を介して回動軸22か回動自在に支持されて
おり、回動軸22に一体的に取付けられたスプロケット
23に噛合するチェーン24の両端部にそれぞれ連結さ
た対をなす弾性収縮体25への加圧流体の適宜の給排に
より、アーム部材15を回動軸22の軸線周りに回動さ
せることができる。Also, at the other end of the arm member 14, as described above,
The rotating shaft 22 is rotatably supported via a suitable bearing, and a pair of elastic rings are connected to both ends of a chain 24 that meshes with a sprocket 23 integrally attached to the rotating shaft 22. By appropriately supplying and discharging pressurized fluid to the contracting body 25, the arm member 15 can be rotated around the axis of the rotation shaft 22.
ところで、アーム部材15の他端には、一つのカサ歯車
を介して互いに噛合する一対のカサ歯車を回動自在に支
持するブラケット26が取付けられており、対をなすカ
サ歯車に関連して対をなす二組の弾性収縮体27(図で
は簡略のため、−組の弾性収縮体のみ示す)への加圧流
体の適宜の給排により、作業用ハンド28をアーム部材
15と同様に、対をなすカサ歯車の軸線周りに回動させ
、更にはそれらカサ歯車に噛合する他のカサ歯車の軸線
周りに回動させることができる。それゆえ、このロボッ
トアーム10は、自由度か6の軽量で簡潔な構造をした
柔軟性に優れたアームと言うことかでき、また必要であ
れは、その自由度を適宜に増減し得ることは勿論である
。Incidentally, a bracket 26 is attached to the other end of the arm member 15 to rotatably support a pair of bevel gears that mesh with each other via one bevel gear. By appropriately supplying and discharging pressurized fluid to the two sets of elastic contracting bodies 27 (for simplicity, only the negative set of elastic contracting bodies is shown in the figure), the working hand 28 can be moved in the same way as the arm member 15. The gears can be rotated around the axis of the bevel gears that form the gears, and further can be rotated around the axis of other bevel gears meshing with these bevel gears. Therefore, this robot arm 10 can be said to be a highly flexible arm with a lightweight, simple structure and six degrees of freedom, and the degrees of freedom can be increased or decreased as necessary. Of course.
更に、このロボットアーム10は、そのアーム部材の少
なくとも一つ、本実施例にあっては、アーム部材15.
14、そして13のそれぞれに、送電状態にある電線3
0の周囲に生起される磁界を検知し得る、例えば、ホー
ル素子を有する検知手段32を具える。なお、本実施例
では、上記アーム部材13〜・15のそれぞれに検知手
段32を二個−組にして配設し、各組の対をなす検知手
段からの検知信号によ、電線30の相対距離を検知し得
る構成としたが、この実施例に限定されるものでなく、
アーム部材12〜15の何れかに一組を配設すること、
単に一個の検知手段を何れか−のアーム部材に配設した
もてあっても良い。Furthermore, this robot arm 10 includes at least one of its arm members, in this embodiment, arm member 15.
14 and 13, respectively, the electric wire 3 in the power transmission state
The detection means 32 includes, for example, a Hall element capable of detecting a magnetic field generated around zero. In this embodiment, two sets of detection means 32 are arranged on each of the arm members 13 to 15, and the relative position of the electric wire 30 is determined by the detection signal from the pair of detection means in each set. Although the configuration is such that distance can be detected, the present invention is not limited to this embodiment.
disposing one set on any of the arm members 12 to 15;
It is also possible to simply arrange one detection means on either arm member.
ところで、各弾性収縮体への加圧流体の給排は、第2図
に模式的に示したように、中央演算処理装置33により
予め設定された演算手順にしたがって行われ、そこから
の制御信号か駆動ユニット34に送られる。この駆動ユ
ニット34は、例えば、アーム部材15を構成する対を
なす弾性収縮体27に供給される加圧流体の圧力を調整
するバルブユニット35を作動させる一方、各弾性収縮
体に送られる加圧流体の圧力も同時にモニターする。こ
のバルブユニット35は、図示しない操作圧力源から各
弾性収縮体に適用される加圧流体の圧力を制御信号に応
じて調整し得るものであれば良く、本実施例では、電磁
式流量制御弁を対として具備し、弾性収縮体への加圧流
体の供給量及びそこからの排出量を、それら制御弁の弁
開度を制御信号に応じて変化させるとにより、適用され
る加圧流体の圧力を変更することかできるものを用いた
。By the way, as schematically shown in FIG. 2, the supply and discharge of pressurized fluid to each elastic contractile body is performed according to a calculation procedure set in advance by the central processing unit 33, and control signals from there are performed. or is sent to the drive unit 34. This drive unit 34 operates, for example, a valve unit 35 that adjusts the pressure of the pressurized fluid supplied to the pair of elastic contracting bodies 27 constituting the arm member 15, and pressurization sent to each elastic contracting body. The fluid pressure is also monitored at the same time. The valve unit 35 may be any device as long as it can adjust the pressure of pressurized fluid applied to each elastic contractile body from an operation pressure source (not shown) according to a control signal, and in this embodiment, an electromagnetic flow control valve is used. are provided as a pair, and the amount of pressurized fluid supplied to the elastic contracting body and the amount of discharged therefrom are controlled by changing the valve opening degrees of the control valves according to the control signal. A device that allows the pressure to be changed was used.
また、対をなす各弾性収縮体への加圧流体の給排に際し
ての相対的な軸線方向への運動に起因するアーム部材1
5の運動量を検知する検知手段37、例えば、回動軸に
設けたロータリエンコーダからの出力信号を、バッファ
38を介して駆動ユニット34にフィードバックし、中
央演算処理装置33からの制御信号との差を補償する構
成とした。なお、符号40は、駆動ユニット34、バル
ブユニット35、そしてバッファ38に電力を供給する
操作用電源を示しており、各アーム部材に関連する弾性
収縮体への加圧流体の給排も同様にして行われる。In addition, arm member 1 due to relative movement in the axial direction when supplying and discharging pressurized fluid to and from each pair of elastic contracting bodies.
A detection means 37 for detecting the amount of motion of the motor 5, for example, an output signal from a rotary encoder provided on the rotation shaft is fed back to the drive unit 34 via a buffer 38, and the difference with the control signal from the central processing unit 33 is detected. The structure is designed to compensate for Note that the reference numeral 40 indicates an operating power source that supplies power to the drive unit 34, valve unit 35, and buffer 38, and the supply and discharge of pressurized fluid to the elastic contracting body associated with each arm member is also performed in the same manner. will be carried out.
そして、一定の操作手順に従う作業用ハンド28の動作
に伴う第1図に示す架空電線30にアーム部材15か接
近し、当該アーム部材に配設した検知手段32からの磁
界検知信号か基準値を越えると、中央演算処理装置33
か当該検知信号を取込み、前もって設定された演算手順
にしたかって演算を行って制御信号を駆動ユニット34
に出力し、予め設定された手順に優先してアーム部材1
5に関連する弾性収縮体への加圧流体の給排を行い、ア
ーム部材15の電線30への一層の接近を制限する。Then, as the working hand 28 moves according to a certain operating procedure, the arm member 15 approaches the overhead electric wire 30 shown in FIG. If it exceeds the central processing unit 33
The detection signal is taken in and calculated according to a preset calculation procedure, and the control signal is sent to the drive unit 34.
arm member 1 with priority over the preset procedure.
The pressurized fluid is supplied to and discharged from the elastic contracting body related to 5, thereby restricting the further approach of the arm member 15 to the electric wire 30.
また、風なとの影響で電線か揺れた状態にあっても、電
線の周囲に生起される磁界を検知してロボットアームの
作動を制御し得るので、電線の動きに追従させなからロ
ボットアームを操作することかできる。しかもロボット
アームそれ自身か柔軟な構造をしているのて、万が一当
該アームが電線に接触したとしても、従来の剛固なアー
ムのように電線を損傷することかない。In addition, even if the wires are swaying due to the influence of wind, the robot arm can be controlled by detecting the magnetic field generated around the wires. can be operated. Moreover, since the robot arm itself has a flexible structure, even if the arm were to come into contact with the wires, it would not damage the wires like a conventional rigid arm would.
(発明の効果)以上詳述したように、本発明装置によれは、通電状態に
ある架空電線の周囲に生起される磁界に基ついて、電線
の存在を検知することとしたので、TVカメラや距離セ
ンサーを用いた場合に比して、容易に電線を検知するこ
とかでき、電線とロボットアームとの接触を確実に阻止
することかできる。(Effects of the Invention) As detailed above, the device of the present invention detects the presence of electric wires based on the magnetic field generated around the overhead electric wires in the energized state. Compared to the case where a distance sensor is used, the electric wire can be detected more easily, and contact between the electric wire and the robot arm can be reliably prevented.
しかも、弾性収縮体を用いたものであることから、ロボ
ットアームそれ自身を柔軟な構造とし得るのて、例えア
ームに触れたとしても電線を損傷することかない。Moreover, since the robot arm itself uses an elastic contractile body, the robot arm itself can have a flexible structure, so even if the robot arm touches the arm, the electric wires will not be damaged.
また、磁界を検知する検知手段からの検知信号に基つい
て各アーム部材への加圧流体の給排を制御する二とによ
り、強風下にあってもロボットアームと架空電線との接
触を有効に阻止することかできる。In addition, by controlling the supply and discharge of pressurized fluid to each arm member based on the detection signal from the detection means that detects the magnetic field, effective contact between the robot arm and the overhead power lines can be achieved even in strong winds. It is possible to prevent it.
第1図は、本発明ロボットアームの好適な実施例を示す
模式図、そして、第2図は、その制御方法を示す路線図である。IO−ロボットアーム 12〜15−アーム部材16
.21,25.27−一弾性収縮体17、20.24−
−チェーン 18.19.22 回動軸23−スプ
ロケット 26−ブラケット18−作業用ハンド
30−電線32 検知手段 33−中央演算処理装置3
4−駆動ユニット 35−バルブユニット作′XI
!Iハ・′ト2d第1図FIG. 1 is a schematic diagram showing a preferred embodiment of the robot arm of the present invention, and FIG. 2 is a route map showing its control method. IO-Robot arm 12-15-Arm member 16
.. 21, 25.27 - Elastic contraction body 17, 20.24 -
- Chain 18.19.22 Rotating shaft 23 - Sprocket 26 - Bracket 18 - Working hand
30-Wire 32 Detection means 33-Central processing unit 3
4-Drive unit 35-Valve unit production'XI
! Figure 1
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2122879AJPH0421306A (en) | 1990-05-15 | 1990-05-15 | Robot arm for aerial transmission line |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2122879AJPH0421306A (en) | 1990-05-15 | 1990-05-15 | Robot arm for aerial transmission line |
| Publication Number | Publication Date |
|---|---|
| JPH0421306Atrue JPH0421306A (en) | 1992-01-24 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2122879APendingJPH0421306A (en) | 1990-05-15 | 1990-05-15 | Robot arm for aerial transmission line |
| Country | Link |
|---|---|
| JP (1) | JPH0421306A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5471445A (en)* | 1994-06-20 | 1995-11-28 | International Business Machines Corporation | Apparatus and method for sensing and holding an item |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5471445A (en)* | 1994-06-20 | 1995-11-28 | International Business Machines Corporation | Apparatus and method for sensing and holding an item |
| Publication | Publication Date | Title |
|---|---|---|
| EP3095564B1 (en) | Robot for inspection of confined spaces | |
| EP1800114B1 (en) | Mobile radiographic device with articulating boom and sliding rails for movement of a C-arm | |
| CA1210421A (en) | Split-ball type wrist and manipulator assembly for robot | |
| CN113787538B (en) | Driving mechanism, robot device, method, readable medium, and support member | |
| US8253367B2 (en) | Control apparatus, control method, and control program for elastic actuator drive mechanism | |
| US4689538A (en) | Driving device having tactility | |
| JP2533027B2 (en) | Autonomous mobile piping maintenance robot | |
| US11413772B2 (en) | Industrial robot system with supervision sensor | |
| KR101879037B1 (en) | Method for controlling a manipulator system | |
| CN111042752A (en) | Positioning device and method for drill rod loading and unloading manipulator | |
| JP2020527471A (en) | Modular crawler robot for field gap inspection | |
| CN110199128B (en) | Large manipulator with articulated mast capable of being folded and unfolded quickly | |
| WO1994022099B1 (en) | System for positioning a workpoint | |
| CN107199562B (en) | Robot control device and robot control method | |
| CN110900654A (en) | Inflatable flexible light mechanical arm | |
| CN107848123B (en) | Robot with Energy Line Harness | |
| KR20200100937A (en) | automatic mooring device | |
| JPH0421306A (en) | Robot arm for aerial transmission line | |
| JP7085438B2 (en) | Moving body and cable reel mounting method | |
| CN207087861U (en) | Biomimetic manipulator | |
| CN107160372A (en) | Biomimetic manipulator | |
| CN116061158A (en) | Underactuated follower-drive series-joint robot with fixed wrist posture | |
| JPH06344283A (en) | Manipulator device | |
| JPH0442714A (en) | Inspecting device provided with reflector | |
| JPS6241406A (en) | Drive assembly using elastic shrinkage body |