【発明の詳細な説明】〈産業上の利用分野〉本発明は固体高分子電解質膜燃料電池のセルユニットに
関し、薄型で高電圧が得られるように工夫したものであ
る。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a cell unit for a solid polymer electrolyte membrane fuel cell, and is designed to be thin and capable of producing high voltage.
〈従来の技術〉燃料電池は、資源の枯渇間層を有する化石燃料を使う必
要がない上、騒音をほとんど発生せず、エネルギの回収
動車も他のエネルギ機関と較べて非常に高(できる等の
優れた特徴を持っているため、例えばビルディング単位
や工場単位の比較的小型の発電プラントとして利用され
ている。<Prior art> Fuel cells do not require the use of fossil fuels that have depleted resources, generate almost no noise, and have very high energy recovery speeds compared to other energy engines. Because of its excellent characteristics, it is used as a relatively small power generation plant for each building or factory, for example.
近年、この燃料電池を車載用の内燃機関に代えて作動す
るモータの電源として利用し、このモータにより車両等
を駆動することが考えられている。この場合に重要なこ
とは、反応によって生成する物質をできるだけ再利用す
る乙とは当然のこととして、車載用であることからも明
らかなように、余り大きな出力は必要でないものの、全
ての付帯設備と共に可能な限り小型であることが望まし
く、このような点から固体高分子電解質膜燃料電池が注
目されている。In recent years, it has been considered to use this fuel cell as a power source for a motor that operates in place of an internal combustion engine in a vehicle, and to use this motor to drive a vehicle or the like. In this case, it is important to reuse the substances produced by the reaction as much as possible, and as is clear from the fact that it is for automotive use, it is not necessary to have a large output, but all incidental equipment In addition, it is desirable that the fuel cell be as small as possible, and from this point of view, solid polymer electrolyte membrane fuel cells are attracting attention.
ここで、−例として固体高分子電解質膜燃料電池本体の
基本構造を第2図を参照しながら説明する。同図に示す
ように、電池本体01は固体高分子電解質膜02の両側
にガス拡散電極03A、03Bが接合されろことにより
構成されている。そしてこの接合体(よ、固体高分子電
解質膜02の両側にガス拡散電極03A、03Bを合せ
た後、ホノヘプレス等することにより製造される。また
、ガス拡散電極03A、03B!よそれぞれ反応膜04
A。Here, as an example, the basic structure of a solid polymer electrolyte membrane fuel cell main body will be explained with reference to FIG. As shown in the figure, the battery body 01 is constructed by gas diffusion electrodes 03A and 03B connected to both sides of a solid polymer electrolyte membrane 02. This bonded body is manufactured by aligning the gas diffusion electrodes 03A and 03B on both sides of the solid polymer electrolyte membrane 02, and then pressing the gas diffusion electrodes 03A and 03B!
A.
04B及びガス拡散膜05A、05Bが接合されたもの
であり、電解!I摸02とは反応膜04A、04Bの表
面が接触している。したがって、電池反応は主に電解質
膜02と反応膜04A、04Bとの間の接触面で起こる
。04B and gas diffusion membranes 05A and 05B are joined, and electrolytic! The surfaces of the reaction membranes 04A and 04B are in contact with the I-print 02. Therefore, the battery reaction mainly occurs at the contact surface between the electrolyte membrane 02 and the reaction membranes 04A and 04B.
また、上記ガス拡散電極03Aの表面には、酸素供給溝
06aを有するガスセパレータが、また他方のガス拡散
電極03Bの表面には水素供給溝07aを有するガスセ
パレータ07がそれぞれ接合されており、酸素極と水素
極を構成している。Further, a gas separator having an oxygen supply groove 06a is bonded to the surface of the gas diffusion electrode 03A, and a gas separator 07 having a hydrogen supply groove 07a is bonded to the surface of the other gas diffusion electrode 03B. It constitutes a pole and a hydrogen pole.
そして、酸素供給溝06a及び水素供給溝07aは酸素
及び水素をそれぞれ供給すると、酸素、水素は、各々の
ガス拡散膜05A、05Bを介して反応!PI!04A
、04B側へ供給され、各反応膜04A、04Bと電解
質膜02との界面で次のような反応が起こる。Then, when oxygen and hydrogen are supplied to the oxygen supply groove 06a and the hydrogen supply groove 07a, respectively, the oxygen and hydrogen react through the respective gas diffusion films 05A and 05B! PI! 04A
, 04B side, and the following reaction occurs at the interface between each reaction membrane 04A, 04B and the electrolyte membrane 02.
反応膜04Aの界面:0 + 4 H”〒4 e−→2 HO反応膜04B
の界面:2 H2→4 H”+4 e−ここで、4H+は電解質膜02を通って水素極から酸素
極へ流れるが、48−は負荷08を通って水素極から酸
素極へ流れることになh1電気エネルギが得られる。Interface of reaction film 04A: 0 + 4 H”〒4 e-→2 HO reaction film 04B
Interface: 2 H2 → 4 H"+4 e- Here, 4H+ flows from the hydrogen electrode to the oxygen electrode through the electrolyte membrane 02, but 48- flows from the hydrogen electrode to the oxygen electrode through the load 08. h1 electrical energy is obtained.
〈発明が解決しようとする課題〉上述した構成の燃料電池本体01では、電池反応は主に
、電解質膜02と各反応膜04A。<Problems to be Solved by the Invention> In the fuel cell main body 01 having the above-described configuration, the cell reaction mainly occurs in the electrolyte membrane 02 and each reaction membrane 04A.
04Bとの接触面で起こるので、電池性能を向上させる
には電極自体を大きくしなければならないという問題が
ある。Since this occurs at the contact surface with 04B, there is a problem in that the electrode itself must be made larger in order to improve battery performance.
そして、通常、一つの燃料電池本体01、つまリーセル
ユニットから得られる電圧は1■以下なので、一般には
多数のセルユニットを直列に積層することにより高電圧
を得ているので大型化が避けられないのが現状である。Generally, the voltage obtained from one fuel cell main body 01 or re-cell unit is 1■ or less, so high voltage is generally obtained by stacking a large number of cell units in series, so increasing the size can be avoided. The current situation is that there is no such thing.
本発明はこのような事情に鑑み、小型、特に薄型で高電
圧が得られる固体高分子膜燃料電池のセルユニットを提
供することを目的とする。In view of these circumstances, an object of the present invention is to provide a cell unit for a solid polymer membrane fuel cell that is small, particularly thin, and capable of producing high voltage.
<*+mを解決するための手段〉前記目的を達成する本発明に係る固体高分子膜燃料電池
のセルユニットは、固体高分子電解質膜を水素極及び酸
素極となる2枚のガス拡散電極で挟んで接合してなる接
合体を複数枚面方向に配列した状態で両側から絶縁性プ
レートにより挾持してなり、上記絶縁性プレートは、上
記接合体の水素極には水素原料ガスを供給すると共に酸
素極には酸素原料ガスを供給する原料ガス供給手段と、
各接合体の水素極と酸素極とを電気的に交互に直列に接
続して集電する集電手段とを具えていることを特徴とす
る。<Means for solving +m> The cell unit of the solid polymer membrane fuel cell according to the present invention that achieves the above object includes a solid polymer electrolyte membrane with two gas diffusion electrodes serving as a hydrogen electrode and an oxygen electrode. A plurality of bonded bodies formed by sandwiching and bonding are arranged in the plane direction and sandwiched between insulating plates from both sides, and the insulating plates supply hydrogen source gas to the hydrogen electrode of the bonded body, and a source gas supply means for supplying oxygen source gas to the oxygen electrode;
It is characterized by comprising a current collecting means that electrically connects the hydrogen electrodes and oxygen electrodes of each bonded body alternately in series to collect current.
く作 用〉2枚の絶縁性プレートに挾持された複数枚の接合体に、
原料ガス供給手段により水素原料ガス及び酸素原料ガス
を供給すると、各接合体においてそれぞれ電池反応が生
じる。そして、発電された電気は集電手段により直列に
集電され、高電圧が得られる。Effect〉 Multiple bonded bodies sandwiched between two insulating plates,
When hydrogen source gas and oxygen source gas are supplied by the source gas supply means, a cell reaction occurs in each assembly. Then, the generated electricity is collected in series by the current collecting means, and a high voltage is obtained.
く実 施 例〉以下、本発明に係る固体高分子電解質膜燃料電池のセル
ユニットについて実施例に基づいて説明する。Examples> Hereinafter, a cell unit of a solid polymer electrolyte membrane fuel cell according to the present invention will be described based on examples.
第1図(a)、(blには、一実施例に係るセルユニッ
トを概念的に示す。両図に示すように、本実施例のセル
ユニット10は2枚の絶縁性プレー)11A、IIBの
間に複数枚の接合体12を面方向に配列・挾持したもの
である。FIGS. 1(a) and (bl) conceptually show a cell unit according to an embodiment. As shown in both figures, the cell unit 10 of this embodiment includes two insulating plates) 11A, IIB. A plurality of joined bodies 12 are arranged and sandwiched in the plane direction between them.
各接合体12は、固体高分子電解質膜13の両側にガス
拡散電極14A、14Bを接合したものである。Each assembly 12 has gas diffusion electrodes 14A and 14B joined to both sides of a solid polymer electrolyte membrane 13.
ここで、上記固体高分子電解質膜13としテI! O−
17m厚のパーフルオロステフォン酸ポリマー膜(ナフ
ィオン117:デュポン社製)を用いた。Here, let us assume that the solid polymer electrolyte membrane 13 is the same as the solid polymer electrolyte membrane 13. O-
A perfluorostefonic acid polymer membrane (Nafion 117: manufactured by DuPont) with a thickness of 17 m was used.
一方、ガス拡散電極14A、14Bは、平均粒径50人
の白金と平均粒径450人の親水性カーボンブラックと
疎水性カーボンブラックと平均粒径0.3μのポリテト
ラフルオロエチレンとが0.7: 7: 3: 3
の割合で成る反応膜15A、15Bと、平均粒径420
人の疎水性カーボンブラックと平均粒径0.3μのポリ
テトラフルオロエチレンとが7: 3の割合から成る疎
水性ガス拡散膜16A、16Bとから構成されている。On the other hand, the gas diffusion electrodes 14A and 14B are made of platinum with an average particle size of 50, hydrophilic carbon black with an average particle size of 450, hydrophobic carbon black, and polytetrafluoroethylene with an average particle size of 0.3μ. : 7: 3: 3
Reaction films 15A and 15B having a ratio of 420 and an average particle size of 420
The hydrophobic gas diffusion membranes 16A and 16B are composed of human hydrophobic carbon black and polytetrafluoroethylene having an average particle size of 0.3 μ in a ratio of 7:3.
反応膜15A、15B及び疎水性ガス拡散膜16A、1
6Bは、白金以外の各原料粉末にソルベントナフサ、ア
ルコール、水、炭化水素などの溶媒を混合した後、圧縮
成形することにより得ることができる。そして、これら
を重ねて圧延し、反応膜15A、15B側に、塩化白金
酸化還元法によりPt0.56■/dを担持させること
によりガス拡散電極14A、14Bが製造されろ。Reaction membranes 15A, 15B and hydrophobic gas diffusion membranes 16A, 1
6B can be obtained by mixing each raw material powder other than platinum with a solvent such as solvent naphtha, alcohol, water, or hydrocarbon, and then compression molding the mixture. Then, the gas diffusion electrodes 14A, 14B are manufactured by stacking these and rolling them, and supporting Pt0.56/d on the side of the reaction membranes 15A, 15B by a platinum chloride redox method.
本実施例では、かかるガス拡散膜514A。In this embodiment, such a gas diffusion film 514A.
14Bの間に固体高分子電解質膜13をはさみ、ホット
プレスすることにより接合体12としている。The solid polymer electrolyte membrane 13 is sandwiched between the parts 14B and hot pressed to form the joined body 12.
また、絶縁プレー)11A、IIBの各ガス拡散電極1
4A、14Bに接続する部分には、各ガス拡散電極14
Aの表面に沿って酸素供給溝17が、各ガス拡散電極1
4Bの表面に沿って水素供給溝18と水供給溝19とが
交互に形成されている。すなわち、各ガス拡散電極14
Aは酸素極、各ガス拡散電極14Bは水素極となる固体
高分子電解膜燃料電池が構成されている。なお、水素極
側へ水供給溝19を設けたのは、冷力及び固体高分子電
解質膜13への加湿のための水を通すためである。In addition, each gas diffusion electrode 1 of insulation plate) 11A and IIB
Each gas diffusion electrode 14 is connected to the portion connected to 4A and 14B.
An oxygen supply groove 17 is provided along the surface of each gas diffusion electrode 1.
Hydrogen supply grooves 18 and water supply grooves 19 are alternately formed along the surface of 4B. That is, each gas diffusion electrode 14
A solid polymer electrolyte membrane fuel cell is constructed in which A is an oxygen electrode and each gas diffusion electrode 14B is a hydrogen electrode. The reason why the water supply groove 19 was provided on the hydrogen electrode side is to pass water for cooling power and humidification to the solid polymer electrolyte membrane 13.
そして、各接合体12で発電される電気は、セルユニッ
ト10毎に直列に集電されるようになっている。すなわ
ち、各接合体12は、接続ケーブル20により水素極と
酸素極とが交互になるように直列に接続され、両端が集
電部21A、21Bに接続されている。The electricity generated by each assembly 12 is collected in series for each cell unit 10. That is, each zygote 12 is connected in series by the connection cable 20 so that hydrogen electrodes and oxygen electrodes alternate, and both ends are connected to current collectors 21A and 21B.
なお、絶縁性プレー)11A、IIBは絶縁性の樹脂で
形成され、各接合体12の各ガス拡散電極14A、14
Bが1em状態となるようになっている。そして、各ガ
ス拡散電極14A、14Bには集電のため、図示しない
銅製等の金網が埋め込まれており、上記接続ケーブル2
0は当該金網を接続するように設けられている。Note that the insulating plates 11A and IIB are made of insulating resin, and the gas diffusion electrodes 14A and 14 of each bonded body 12 are
B is in a 1em state. A wire mesh (not shown) made of copper or the like is embedded in each gas diffusion electrode 14A, 14B for current collection, and the connection cable 2
0 is provided to connect the wire mesh.
以上の構成において、各酸素供給溝17へ例えば空気を
、また、各水素供給溝18へ例えばメタノール改質装置
で製造される改質ガスを供給すると、各接合体12枚に
発電され、発電された電気は集電部21A、21Bから
取り出されろ。In the above configuration, when air, for example, is supplied to each oxygen supply groove 17 and reformed gas produced by, for example, a methanol reformer is supplied to each hydrogen supply groove 18, power is generated in each of the 12 joined bodies. The generated electricity is taken out from the current collectors 21A and 21B.
2枚の絶縁プレートIIA、IIBの間に5cm四方の
接合体12を70枚並べてセルユニット10としたとこ
ろ、1枚の接合体12毎に071V得られるので、集電
部21A。When 70 bonded bodies 12 of 5 cm square are lined up between two insulating plates IIA and IIB to form a cell unit 10, 071V is obtained for each bonded body 12, so current collector 21A.
21B間では49Vの高電圧が得られろ。なお・このセ
ルユニット10の厚さは5mである。A high voltage of 49V can be obtained between 21B. Note that the thickness of this cell unit 10 is 5 m.
また、かかるセルユニット10を20セット重ね合セル
と、約10kw (49VX 208A)の燃料電池と
なる。なお、この場合にも厚さtfilOO職と非常に
薄いものである。In addition, 20 sets of such cell units 10 are stacked to form a fuel cell of about 10 kW (49VX 208A). In this case as well, the thickness is very thin, tfilOO.
上記実施例では、各接合体12の例えば水素極が同じ側
になるように配列したが、これに限定されるものではな
く、水素極と酸素極とが交互に隣接するように配設して
もよい。In the above embodiment, the hydrogen electrodes of each bonded body 12 are arranged on the same side, but the arrangement is not limited to this, and the hydrogen electrodes and oxygen electrodes may be arranged alternately adjacent to each other. Good too.
この場合には平面状の接続部とすることができ、集電効
率が向上するという効果を奏する。In this case, it is possible to form a planar connection portion, which has the effect of improving current collection efficiency.
また、上記実施例では各接合体12の例えば水素極が同
じ側になるように配列してぃろが、勿論これに限定され
ろものではなく、例えば水素極と酸素極とが隣接するよ
うに配設してもよい。なお、この場合には接続ケーブル
20として平面状のものを用いろことができ、集電効率
の向上を図ることができる。Further, in the above embodiment, the hydrogen electrodes of each bonded body 12 are arranged on the same side, but the arrangement is not limited to this, for example, and the hydrogen electrode and the oxygen electrode are arranged adjacent to each other. May be placed. In this case, a flat connection cable 20 can be used, and current collection efficiency can be improved.
〈発明の効果〉以上説明したように、本発明に係る固体高分子電解質層
燃料電池のセルユニットは小面積の接合体を面方向に配
列し、電気的に直列に集電するようにしているので、薄
型で高電圧が得られるものである。<Effects of the Invention> As explained above, in the cell unit of the solid polymer electrolyte layer fuel cell according to the present invention, small-area conjugates are arranged in a planar direction so as to collect current electrically in series. Therefore, it is thin and can obtain high voltage.
第1図(alは一実施例に係るセルユニットの断面図、
第1図(blはそのA−A線断面図、第2図は従来技術
に係る固体高分子膜燃料電池を概念的に示す説明図であ
る。−面 中、10はセルユニット、11A、IIBは絶縁性プレート、12は接合体、13は固体高分子電解質膜、14A、14Bはガス拡散電極、15A、15Bは反応膜、16A、16Bはガス拡散膜、17は酸素供給溝、18は水素供給溝、19は水供給溝、20は接続ケーブル、21A、21Bは集電部である。特 許 出 願 人三菱重工業株式会社代 理 人FIG. 1 (al is a cross-sectional view of a cell unit according to one embodiment,
FIG. 1 (bl is a cross-sectional view taken along the line A-A, and FIG. 2 is an explanatory diagram conceptually showing a solid polymer membrane fuel cell according to the prior art. In the figure, 10 is a cell unit, 11A, IIB 12 is an insulating plate, 12 is a bonded body, 13 is a solid polymer electrolyte membrane, 14A, 14B are gas diffusion electrodes, 15A, 15B are reaction membranes, 16A, 16B are gas diffusion membranes, 17 is an oxygen supply groove, 18 is hydrogen 19 is a water supply groove, 20 is a connection cable, and 21A and 21B are current collectors. Patent applicant: Mitsubishi Heavy Industries, Ltd. Agent
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2325449AJPH04206162A (en) | 1990-11-29 | 1990-11-29 | Cell unit for solid high polymer electrolyte film fuel cell |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2325449AJPH04206162A (en) | 1990-11-29 | 1990-11-29 | Cell unit for solid high polymer electrolyte film fuel cell |
| Publication Number | Publication Date |
|---|---|
| JPH04206162Atrue JPH04206162A (en) | 1992-07-28 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2325449APendingJPH04206162A (en) | 1990-11-29 | 1990-11-29 | Cell unit for solid high polymer electrolyte film fuel cell |
| Country | Link |
|---|---|
| JP (1) | JPH04206162A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1996018217A1 (en)* | 1994-12-09 | 1996-06-13 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Pem fuel cell with structured plates |
| WO1996019015A3 (en)* | 1994-12-17 | 1996-08-15 | Univ Loughborough | Galvanic and fuel cell arrangements |
| WO1999057780A1 (en)* | 1998-04-30 | 1999-11-11 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Fuel cell module |
| JP2001283892A (en)* | 2000-03-17 | 2001-10-12 | Samsung Electronics Co Ltd | Single electrode cell pack for hydrogen ion exchange membrane solid polymer fuel cell and direct methanol fuel cell |
| JP2003051319A (en)* | 2001-08-06 | 2003-02-21 | Nissan Motor Co Ltd | Cell plate for solid oxide fuel cell and power generation unit |
| WO2002009218A3 (en)* | 2000-07-18 | 2003-09-25 | Motorola Inc | Fuel cell array |
| WO2004004055A1 (en) | 2002-06-26 | 2004-01-08 | Honda Giken Kogyo Kabushiki Kaisha | Solid high polymer type cell assembly |
| JP2004504700A (en)* | 2000-07-18 | 2004-02-12 | モトローラ・インコーポレイテッド | Direct methanol fuel cell system |
| JP2004319455A (en)* | 2003-03-31 | 2004-11-11 | Honda Motor Co Ltd | Planar stacked fuel cell |
| US7422814B2 (en) | 2003-01-29 | 2008-09-09 | Honda Motor Co., Ltd. | Fuel cell system |
| JP2009009952A (en)* | 2003-07-29 | 2009-01-15 | Ind Technol Res Inst | Planar fuel cell assembly and manufacturing method thereof |
| JP2010504604A (en)* | 2006-07-11 | 2010-02-12 | ソシエテ ビック | Improved fuel cell assembly |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1996018217A1 (en)* | 1994-12-09 | 1996-06-13 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Pem fuel cell with structured plates |
| WO1996019015A3 (en)* | 1994-12-17 | 1996-08-15 | Univ Loughborough | Galvanic and fuel cell arrangements |
| US6040075A (en)* | 1994-12-17 | 2000-03-21 | Loughborough University Of Technology | Electrolytic and fuel cell arrangements |
| WO1999057780A1 (en)* | 1998-04-30 | 1999-11-11 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Fuel cell module |
| US6558832B1 (en) | 1998-04-30 | 2003-05-06 | Emitec Gesellschaft Fur Emissionstechnologie Mbh | Fuel cell module |
| JP2001283892A (en)* | 2000-03-17 | 2001-10-12 | Samsung Electronics Co Ltd | Single electrode cell pack for hydrogen ion exchange membrane solid polymer fuel cell and direct methanol fuel cell |
| JP2004504700A (en)* | 2000-07-18 | 2004-02-12 | モトローラ・インコーポレイテッド | Direct methanol fuel cell system |
| WO2002009218A3 (en)* | 2000-07-18 | 2003-09-25 | Motorola Inc | Fuel cell array |
| JP2003051319A (en)* | 2001-08-06 | 2003-02-21 | Nissan Motor Co Ltd | Cell plate for solid oxide fuel cell and power generation unit |
| WO2004004055A1 (en) | 2002-06-26 | 2004-01-08 | Honda Giken Kogyo Kabushiki Kaisha | Solid high polymer type cell assembly |
| CN100336260C (en)* | 2002-06-26 | 2007-09-05 | 本田技研工业株式会社 | Solid polymer battery assembly |
| EP1517392A4 (en)* | 2002-06-26 | 2008-07-16 | Honda Motor Co Ltd | Solid high polymer type cell assembly |
| US7566511B2 (en) | 2002-06-26 | 2009-07-28 | Honda Giken Kogyo Kabushiki Kaisha | Solid polymer cell assembly |
| US7422814B2 (en) | 2003-01-29 | 2008-09-09 | Honda Motor Co., Ltd. | Fuel cell system |
| JP2004319455A (en)* | 2003-03-31 | 2004-11-11 | Honda Motor Co Ltd | Planar stacked fuel cell |
| JP2009009952A (en)* | 2003-07-29 | 2009-01-15 | Ind Technol Res Inst | Planar fuel cell assembly and manufacturing method thereof |
| JP2010504604A (en)* | 2006-07-11 | 2010-02-12 | ソシエテ ビック | Improved fuel cell assembly |
| Publication | Publication Date | Title |
|---|---|---|
| JP3556201B2 (en) | Single electrode type cell pack for direct methanol fuel cell | |
| JP3153817B2 (en) | Solid polymer electrolyte membrane fuel cell | |
| US8367270B2 (en) | Flow field plate arrangement for a fuel cell | |
| JP3424223B2 (en) | Fuel cell stack structure | |
| US20050095485A1 (en) | Fuel cell end plate assembly | |
| CN109494377B (en) | Integrated bipolar electrode and preparation method and application thereof | |
| JP2006253135A (en) | FUEL CELL STACK AND FUEL CELL SYSTEM USING FUEL CELL STACK | |
| JP5251062B2 (en) | Composite current collector plate for fuel cell and fuel cell | |
| JP4750018B2 (en) | Planar fuel cell and method of manufacturing the fuel cell | |
| JPH04206162A (en) | Cell unit for solid high polymer electrolyte film fuel cell | |
| JP5130692B2 (en) | Electrochemical device and manufacturing method thereof | |
| JP2003264003A (en) | Direct fuel cell | |
| CA2596855C (en) | Fuel cell module and fuel cell battery comprising fuel cell module | |
| JP2007506246A (en) | Method for addressing one MEA failure mode by controlling the overlap of MEA catalyst layers | |
| JPH06338342A (en) | Solid polymer electrolyte fuel cell stack structure | |
| JP2000058100A (en) | Electrode layered structure | |
| KR101127028B1 (en) | Fuel cell | |
| JP2005150008A (en) | Fuel cell | |
| JP2948376B2 (en) | Method for producing reaction film and method for producing electrochemical cell | |
| JP2004356031A (en) | Fuel cells and small electrical equipment | |
| JP2004119189A (en) | Fuel cell | |
| JP2000090956A (en) | Polymer electrolyte fuel cell | |
| JP2005216535A (en) | Fuel cell | |
| US20240014429A1 (en) | Fuel cell unit | |
| JP4643178B2 (en) | Fuel cell |