Movatterモバイル変換


[0]ホーム

URL:


JPH0418155B2 - - Google Patents

Info

Publication number
JPH0418155B2
JPH0418155B2JP32639487AJP32639487AJPH0418155B2JP H0418155 B2JPH0418155 B2JP H0418155B2JP 32639487 AJP32639487 AJP 32639487AJP 32639487 AJP32639487 AJP 32639487AJP H0418155 B2JPH0418155 B2JP H0418155B2
Authority
JP
Japan
Prior art keywords
pressure
discharge
gas
main pipe
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP32639487A
Other languages
Japanese (ja)
Other versions
JPH01167498A (en
Inventor
Kyoichi Yoshii
Shiro Hirose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel LtdfiledCriticalKobe Steel Ltd
Priority to JP32639487ApriorityCriticalpatent/JPH01167498A/en
Publication of JPH01167498ApublicationCriticalpatent/JPH01167498A/en
Publication of JPH0418155B2publicationCriticalpatent/JPH0418155B2/ja
Grantedlegal-statusCriticalCurrent

Links

Landscapes

Description

Translated fromJapanese

【発明の詳細な説明】(産業上の利用分野) 本発明は、例えばガスホルダへのガス圧送の際
に適用する遠心圧縮機の容量制御方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for controlling the capacity of a centrifugal compressor, which is applied, for example, to pressure-feeding gas to a gas holder.

(従来の技術) 従来、ガス圧送装置として第2図に示すものが
特開昭53−113306号公報により公知であり、遠心
圧縮機1の吸込流路側に吸込案内翼、吸込絞り弁
等の流量調節手段(以下、PCVという。)2と、
吐出流路側に逆止弁3とが設けてあり、図中逆止
弁3の右側の吐出母管4は例えば図示しないガス
ホルダに至つている。
(Prior Art) Conventionally, a gas pressure feeding device shown in FIG. 2 is known from Japanese Patent Application Laid-Open No. 53-113306, in which a suction guide vane, a suction throttle valve, etc. are installed on the suction flow path side of the centrifugal compressor 1. Adjustment means (hereinafter referred to as PCV) 2;
A check valve 3 is provided on the discharge flow path side, and a discharge main pipe 4 on the right side of the check valve 3 in the figure leads to, for example, a gas holder (not shown).

また、遠心圧縮機1と逆止弁3との間で吐出流
路を分岐させて分岐流路に大気放風弁又は、圧縮
機吸込管へ通過する圧縮機バイパス弁(以下、
FCVという。)5を設けるとともに、この分岐部
分の手前に吐出流量の低下を検出する流量低下検
出スイツチ(以下、FSという。)6を取付け、こ
のFS6により吐出流量が検出圧力における下限
設定値(FSL)に達したのを確認した場合に無負
荷運転信号を発信し、三方切換弁7を介して
FCV5を全開させるように形成してある。すな
わち、吐出流量が検出圧力における下限設定値
PSLにいたる以前には負荷運転指令信号により、
三方切換弁7のa−bポートが連通して、流路8
からの所定圧の計装空気によりFCV5は閉じて
いるのに対して、吐出流量が下限設定値FSLに達
した場合には、b−cポートが連通し、FCV5
の駆動部に加圧されていた計装空気は大気に開放
排気されFCV5は全開となる。
In addition, the discharge flow path may be branched between the centrifugal compressor 1 and the check valve 3, and the branch flow path may include an atmospheric discharge valve or a compressor bypass valve (hereinafter referred to as
It's called FCV. ) 5 is installed, and a flow rate drop detection switch (hereinafter referred to as FS) 6 is installed in front of this branch part to detect a drop in the discharge flow rate, and this FS 6 allows the discharge flow rate to reach the lower limit set value (FSL) at the detection pressure. When it is confirmed that the load has been reached, a no-load operation signal is sent and the signal is sent via the three-way switching valve 7.
It is designed to fully open FCV5. In other words, the discharge flow rate is the lower limit set value at the detected pressure.
Before reaching PSL, the load operation command signal
The a-b ports of the three-way switching valve 7 communicate with each other, and the flow path 8
FCV5 is closed by instrument air at a predetermined pressure from
The instrument air that had been pressurized in the drive section is vented to the atmosphere and the FCV5 is fully opened.

同様にして、FS6により制御される三方切換
弁9を介して吐出母管4に圧力検出可能に取付け
た、また、圧力の下限設定器を内蔵した母管圧力
調節計(以下、PICという。)10によりPCV2
の開度θを調節するようにしてある。
Similarly, a main pipe pressure regulator (hereinafter referred to as PIC) is installed in the discharge main pipe 4 so as to detect pressure via a three-way switching valve 9 controlled by the FS 6, and also has a built-in pressure lower limit setting device. PCV2 by 10
The opening degree θ is adjusted.

次に、この装置によるガス圧送の際に行われて
いる容量制御方法を第3図を参照しつつ説明す
る。
Next, a capacity control method performed during gas pressure feeding by this device will be explained with reference to FIG. 3.

第3図は各種の圧力−流量関係を同一面上に表
わしたもので、曲線はFCV5の全開時におけ
るFCVの抵抗曲線を示し、下端がこの曲線上
にある曲線群はPCV2の開度θをθ1……θmin
と変化させた場合の、各開度における圧縮機の吐
出圧力とガス流量,直線はサージ圧とガス流量
との関係、直線は各吐出圧力におけるサージ防
止のための許容限である下限設定流量を示してい
る。また、縦軸上の▼印はPIC10における定風
圧制御の圧力設定値,PSLは吐出母管4での圧力
下限設定値を示す。
Figure 3 shows various pressure-flow relationships on the same plane. The curve shows the resistance curve of the FCV when FCV5 is fully open, and the group of curves whose lower end lies on this curve shows the opening degree θ of PCV2. θ1 ...θmin
The straight line shows the relationship between the surge pressure and the gas flow rate, and the straight line shows the lower limit flow rate, which is the allowable limit for preventing surges, at each discharge pressure. It shows. Further, the mark ▼ on the vertical axis indicates the pressure setting value for constant air pressure control in the PIC 10, and PSL indicates the pressure lower limit setting value in the discharge main pipe 4.

そして、圧縮機の運転が開始すると、まず、こ
の設定圧力にある点A,B間でPCV2の開度調
節による定風圧制御が行われる。この点A,Bで
示される圧力は、この制御時の吐出母管4での圧
力を示し、PIC10における偏差(検出圧力−設
定値)が+の場合にはPCV2の開度θを小さく
し、−の場合には開度θを大きくして吐出母管4
での圧力が略一定に保たれる。偏差が一の状態で
続くとPCV2の開度θは増大して行き、圧縮機
最大能力であるA点に達する。
When the compressor starts operating, first, constant air pressure control is performed by adjusting the opening degree of the PCV 2 between points A and B at this set pressure. The pressures indicated by points A and B indicate the pressure in the discharge main pipe 4 during this control, and if the deviation (detected pressure - set value) in the PIC 10 is +, the opening degree θ of the PCV 2 is made small, -, the opening degree θ is increased and the discharge main pipe 4 is
The pressure at is kept approximately constant. As the deviation continues to remain constant, the opening degree θ of PCV2 increases and reaches point A, which is the maximum capacity of the compressor.

これに対して、母管圧力が上昇傾向にあつて偏
差が+の状態が続くとPCV2の開度θは小さく
なつて行き(θmin側に作動して行く。)、やがて、
吐出ガス流量はサージ防止用のFS6の下限設定
流量(FSL)を示す直線と交差する点Bの状態
に達する。
On the other hand, when the main pipe pressure tends to rise and the deviation continues to be positive, the opening degree θ of PCV2 becomes smaller (operating toward the θmin side), and eventually,
The discharge gas flow rate reaches a point B where it intersects the straight line indicating the lower limit flow rate (FSL) of FS6 for surge prevention.

この結果、FS6が作動して無負荷運転指令信
号を出し、FCV5が全開し(第3図中、吐出口
部分をB点よりC′点の状態へ移行させる。)、続け
て、PCV2の開度θを最小値θminの状態にする
(同様に、C′点よりD点の状態へ移行させる。)。
この結果、吐出ガスはD点の状態となり、この状
態は圧縮機の最小負荷状態で、消費動力は最小と
なる。また、この状態では吐出母管4側へのガス
圧送はなく、かつ逆止弁3によりガスの逆流は阻
止されており、吐出母管4側に圧送ガスは畜圧さ
れた状態にあり、その消費とともに徐々に圧力降
下が生じる。そして、吐出母管4の圧力が下限設
定値PSLまで下がると、すなわち、PIC10によ
りPSLの値に等しい圧力値が検出されると、図中
三方切換弁9のa−bポートを連通させてPIC1
0による制御状態にする。即ちPCV2をPIC10
と接続し、PCV2を全開にする(同様に、D点
よりE点の状態に移行させる。)。続けて図中三方
切換弁7のa−bポートを連通させてFCV5を
全閉にする(同様に、E点よりA′点の状態に移
行させる。)。
As a result, FS6 operates and issues a no-load operation command signal, FCV5 fully opens (transfers the discharge port from point B to point C' in Figure 3), and then PCV2 opens. The degree θ is set to the minimum value θmin (Similarly, the state is shifted from point C' to point D.).
As a result, the discharged gas is in the state of point D, which is the minimum load state of the compressor and the power consumption is the minimum. In addition, in this state, there is no gas being force-fed to the discharge main pipe 4 side, and the backflow of gas is prevented by the check valve 3, and the pressure of the pressurized gas to the discharge main pipe 4 side is accumulated. A gradual pressure drop occurs with consumption. When the pressure in the discharge main pipe 4 drops to the lower limit set value PSL, that is, when the PIC 10 detects a pressure value equal to the value of PSL, the ports a and b of the three-way switching valve 9 in the figure are communicated with each other.
0 control state. In other words, PCV2 is PIC10
and fully open PCV2 (Similarly, move from point D to point E). Subsequently, ports a and b of the three-way switching valve 7 in the figure are brought into communication to fully close the FCV 5 (similarly, the state is shifted from point E to point A').

さらに、吐出圧力が上昇した点A′を超えると、
吐出ガスの吐出母管4への圧送が始まり、吐出母
管4内の圧力は徐々に上昇して点Aの水準に達
し、これまでのB点からD点を経てA点に至る
ON−OFF制御から上記A−B線上の定風圧制御
に移行し、以後、上記同様な制御の繰り返しとな
る。
Furthermore, when the discharge pressure exceeds the point A' where it has increased,
Pressure feeding of the discharged gas to the discharge main pipe 4 begins, and the pressure inside the discharge main pipe 4 gradually increases to reach the level at point A, and then from point B to point D, and then to point A.
The ON-OFF control shifts to the constant air pressure control on the line A-B, and thereafter the same control as above is repeated.

第3図中、一点鎖線による曲線Vが以上の制御
による吐出ガスの状態変化を示す。
In FIG. 3, a curve V indicated by a dashed dotted line indicates a change in the state of the discharged gas due to the above control.

即ち、この公知技術は、圧縮機の吐出流量がサ
ージング領域に近い所定の流量下限値以下に達す
ると、直ちに吸入弁であるPCVを遮断し、排気
弁(放風弁)であるFCVを開放して無負荷運転
することでサージングを防止することを前提とし
た技術である。
That is, in this known technology, when the discharge flow rate of the compressor reaches a predetermined flow rate lower limit close to the surging region or less, the PCV, which is the suction valve, is immediately shut off, and the FCV, which is the exhaust valve (blowing valve), is opened. This technology is based on the premise of preventing surging by operating without load.

(発明が解決しようとする問題点) ところが、この公知技術においては、ガスの消
費量の変動が多い用途に供された場合、上記定風
圧制御と上記ON−OFF制御とが頻繁に繰り返さ
れるので、制御機器の損傷が激しく装置寿命を縮
めるという問題が生じる。
(Problem to be Solved by the Invention) However, in this known technique, when used in applications where gas consumption fluctuates frequently, the above-mentioned constant air pressure control and the above-mentioned ON-OFF control are frequently repeated. , the problem arises that the control equipment is severely damaged and the life of the equipment is shortened.

これを防止するために、定風圧制御での運転圧
力(圧力調整器での設定圧)を高く設定しておく
ことが考えられるが、そのようにすれば装置各部
の容量が大きくなり設備費が増大を招くという問
題が生じる。
In order to prevent this, it is possible to set the operating pressure (set pressure on the pressure regulator) high in constant air pressure control, but this will increase the capacity of each part of the device and reduce equipment costs. A problem arises in that it causes an increase.

本発明は、上記従来の装置の容量制御方法にお
いて、斯る問題に鑑み、吐出流量がサージング領
域に近い所定の流量下限値以下に達すると、直ち
に無負荷運転に切換えるのではなく、定風圧制御
をなす圧力調節計PICの上限設定値を上昇させる
ことで、一旦一時的に流量を増大させることでサ
ージング領域に入るのを防止することを基本的技
術思想とするものである。
In view of this problem, the present invention provides a constant air pressure control method for controlling the capacity of a conventional device, instead of immediately switching to no-load operation when the discharge flow rate reaches a predetermined flow rate lower limit close to the surging region. The basic technical idea is to prevent the flow rate from entering the surging region by temporarily increasing the flow rate by increasing the upper limit setting of the pressure regulator PIC.

(問題点を解決するための手段) 上記問題点を解決するために、本発明は、大風
量域では定風圧制御用吐出母管圧力調節計
(PIC)の設定値を必要吐出圧力の最小値に設定
し、定風圧制御の下限値を吐出流量検出用流量検
出スイツチ(FS)により検出し、放風制御域に
達した場合には上記圧力調節計の上限設定値を上
昇させることにより運転圧力を上昇させて、吐出
母管圧力を高めてガスを畜圧し、吐出母管圧力が
上限値に達すると圧縮機を無負荷運転状態にして
吐出母管内に畜圧したガスだけを消費させ、畜圧
したガスが消費されて圧力が上記圧力調節計の下
限設定値に達すると圧縮機を再び負荷運転状態に
して、吐出母管へのガス圧送を開始するようにし
た。
(Means for Solving the Problems) In order to solve the above problems, the present invention sets the setting value of the discharge main pipe pressure controller (PIC) for constant air pressure control to the minimum required discharge pressure in a large air volume region. The lower limit value for constant air pressure control is detected by the flow rate detection switch (FS) for detecting the discharge flow rate, and when the air discharge control range is reached, the operating pressure is increased by increasing the upper limit setting value of the pressure controller. When the discharge header pressure reaches the upper limit, the compressor is put into no-load operation to consume only the gas that has been accumulated in the discharge header, and the gas is stored. When the compressed gas is consumed and the pressure reaches the lower limit set value of the pressure regulator, the compressor is put into a load operation state again and gas pressure feeding to the discharge main pipe is started.

(実施例) 次に、本発明の一実施例を図面にしたがつて説
明する。
(Example) Next, an example of the present invention will be described with reference to the drawings.

本発明に係る容量制御方法は、図面上第2図に
示すガス圧送装置にそのまま適用でき、この装置
に本方法を適用して説明する。
The capacity control method according to the present invention can be applied as is to the gas pressure feeding apparatus shown in FIG. 2, and the method will be explained by applying it to this apparatus.

ただし、PIC10についてはその設定値を下限
と上限の2点を選定できる計器とする。
However, PIC10 is an instrument that allows the setting value to be selected from two points: the lower limit and the upper limit.

まず、本方法では定風圧制御におけるPIC設定
値を上記PSLとし、すなわち、第3図に示すよう
に、A−B線より下降させたA′−B′線の範囲を
大風量域における定風圧制御線として運転圧力を
下げる。また、吐出母管4内の圧力が上昇して、
PIC10によりPCV2が絞られて吐出ガスがB′点
の状態に達したときには、上記同様にFS6が作
動するが、その後PIC10の設定値を上限設定値
(PSH)であるa−b線まで上げ、定風圧制御を
行う。
First, in this method, the PIC setting value in constant air pressure control is set to the above PSL, that is, as shown in Figure 3, the range of the A'-B' line, which is lower than the A-B line, is the constant air pressure in the large air volume area. Reduce operating pressure as a control line. In addition, the pressure inside the discharge main pipe 4 increases,
When the PCV2 is throttled by the PIC10 and the discharge gas reaches point B', the FS6 is activated in the same way as above, but then the set value of the PIC10 is raised to the upper limit set value (PSH), line a-b. Performs constant air pressure control.

すなわち、第1図に示すように、ステツプ#1
で吐出母管圧力がa−b線の状態に到達している
か否かをPIC10により判断して、到達していな
い場合はステツプ#2に、到達している場合はス
テツプ#7に進む。
That is, as shown in FIG.
The PIC 10 determines whether or not the discharge main pipe pressure has reached the state of line a-b. If it has not reached the state, the process proceeds to step #2; if it has reached the state, the process proceeds to step #7.

ステツプ#2で、PIC10の偏差(検出圧力−
設定値)が−か+かを判断し、−の場合は吐出母
管圧力は下降していると判断するためステツプ
#3に、+の場合は逆に吐出母管圧力は上昇して
いると判断するため、ステツプ#4に進む。
In step #2, the deviation of PIC10 (detected pressure -
If the set value) is - or +, go to step #3 to judge that the discharge main pipe pressure is decreasing, and if it is +, conversely, the discharge main pipe pressure is increased. Proceed to step #4 for determination.

ステツプ#3でPCV2の開度θを一定量だけ
大きくして流量を増大させ、その後、ステツプ
#1に戻る。
In step #3, the opening degree θ of PCV2 is increased by a certain amount to increase the flow rate, and then the process returns to step #1.

ステツプ#4で、PCV2の開度θを一定量だ
け小さくして流量を減少させ、ステツプ#5に進
む。
In step #4, the opening degree θ of PCV2 is reduced by a certain amount to reduce the flow rate, and the process proceeds to step #5.

ステツプ#5で、FS6により吐出流量が検出
圧力における下限値(FSL)より大きいか否かを
判断し、FSLより大きい場合はステツプ#1に戻
り、FSL以下の場合すなわちB′点に達した場合
はステツプ#6に進む。
In step #5, FS6 determines whether the discharge flow rate is greater than the lower limit value (FSL) at the detection pressure. If it is greater than FSL, return to step #1; if it is less than FSL, that is, point B' has been reached. Proceed to step #6.

ステツプ#6で、PIC10の設定値を上限設定
値であるa−b線まで上げてステツプ#1に戻
る。
In step #6, the set value of the PIC 10 is increased to the upper limit set value, line a-b, and the process returns to step #1.

この結果、PIC10は吐出母管圧力が低下して
いると判断するため、PCV2を開けるように作
用し、これに伴つて吐出母管圧力をPIC10の上
限の設定値まで引き上げるように圧縮機容量を増
大させる。
As a result, the PIC10 determines that the discharge header pressure is decreasing, so it acts to open the PCV2, and accordingly increases the compressor capacity to raise the discharge header pressure to the upper limit set value of the PIC10. increase

ステツプ#7で、FCV5を全開として放風制
御域に移る(第3図中、a−b線上からc点の状
態へ移行させる。)すなわち、ステツプ#6によ
り吐出母管圧力が上昇し、やがてa−b線に到達
するので、FCV5を全開として、ステツプ#1
からステツプ#6までの定風圧制御から以下の
ON−OFF制御に切換える。それと同時にPIC1
0の設定値をPSHからPSLへ下降させる。
In step #7, the FCV 5 is fully opened and the flow is moved to the air discharge control region (the state is moved from the line a-b to point c in Fig. 3).In other words, the discharge main pipe pressure increases in step #6, and eventually As you reach line a-b, fully open FCV5 and proceed to step #1.
From the constant air pressure control from step #6 to the following
Switch to ON-OFF control. At the same time PIC1
Decrease the set value of 0 from PSH to PSL.

ステツプ#8で、PCV2の開度θをθminにす
る(同様に、C点からD点の状態に移行させ
る。)。すなわち、PCV2をPIC10から切離す。
In step #8, the opening degree θ of the PCV2 is set to θmin (similarly, the state is transferred from point C to point D). That is, PCV2 is separated from PIC10.

ステツプ#9で、吐出母管圧力が下限設定値
PSLすなわちA′−B′線に到達したか否かを判断
して到達していない場合は、そのまま運転を続
け、到達している場合はステツプ#10に進む。
At step #9, the discharge main pipe pressure reaches the lower limit set value.
It is determined whether the PSL, that is, line A'-B' has been reached. If the line has not been reached, the operation continues; if it has been reached, the process proceeds to step #10.

ステツプ#10でPCV2を全開として、PCV
2をPIC10に接続して、PIC10の制御下にお
く(同様に、D点よりE点の状態に移行させ
る。)。
In step #10, fully open PCV2 and
2 is connected to the PIC 10 and placed under the control of the PIC 10 (Similarly, the state is transferred from point D to point E.).

これにより、流量を増大させる。 This increases the flow rate.

ステツプ#11で、FCV5を全閉として(同
様に、E点よりA′点の状態に移行させる。)、ス
テツプ#1に戻り、再び定風圧制御運転を繰り返
す。
In step #11, the FCV 5 is fully closed (similarly, the state is shifted from point E to point A'), and the process returns to step #1 to repeat the constant air pressure control operation again.

第3図中、実線による曲線が以上の制御によ
る吐出ガスの状態変化を示す。
In FIG. 3, the solid curve shows the change in the state of the discharged gas due to the above control.

なお、上記実施例ではPIC10の設定値を変化
させたものを示したが、この他FS6の作動によ
り、PCV2を強制全開し、母管圧力をPSHまで
上昇させ、無負荷状態に切換えるようにしてもよ
い。
In addition, in the above example, the set value of PIC10 was changed, but in addition, by operating FS6, PCV2 was forcibly opened fully, the main pipe pressure was increased to PSH, and the state was switched to a no-load state. Good too.

さらに、PIC10の設定値については、殊に上
限値を複数設定しておき、圧縮機の用途,使用状
態の特性に応じて適宜選択するようにしても良い
ことは勿論である。
Furthermore, it goes without saying that a plurality of upper limit values may be set for the set value of the PIC 10, and the upper limit value may be appropriately selected depending on the application of the compressor and the characteristics of the usage state.

(発明の効果) 以上の説明より明らかなように、本発明によれ
ば、大風量域では定風圧制御用PICの設定値を必
要吐出圧力の最小値に設定し、定風圧制御域の下
限値をFSにより検出し、放風制御域に達した場
合には、PICの上限設定値を上昇させることによ
り運転圧力を上昇させて、吐出母管圧力を高めて
ガスを畜圧し、吐出母管圧力が上限値に達すると
ON−OFF制御を行うようにしてある。このよう
に、ON−OFF制御に移る前に一旦PICにおける
設定値を上昇させて吐出母管側に高い圧力でガス
を畜圧するため、畜圧するガスの量が増大する結
果、ON−OFF制御の頻度が小さくなり、制御機
器の損傷を抑え、装置自体の耐久性を向上させる
ことが出来る。
(Effects of the Invention) As is clear from the above explanation, according to the present invention, in a large air volume region, the setting value of the PIC for constant air pressure control is set to the minimum value of the required discharge pressure, and the lower limit of the constant air pressure control area is set. is detected by the FS, and if it reaches the air discharge control range, the operating pressure is increased by increasing the upper limit setting value of the PIC, increasing the discharge main pipe pressure and accumulating the gas, and reducing the discharge main pipe pressure. When reaches the upper limit
It is designed to perform ON-OFF control. In this way, before moving to ON-OFF control, the set value in the PIC is increased and the gas is accumulated at a high pressure on the discharge main pipe side. As a result, the amount of gas to be accumulated increases, and as a result, the ON-OFF control is The frequency is reduced, damage to control equipment can be suppressed, and the durability of the device itself can be improved.

また、大風量域での運転圧力が低いので装置各
部の容量を小さく出来るという効果を奏する。
Furthermore, since the operating pressure is low in a large air volume region, the capacity of each part of the device can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る容量制御方法を示すフロ
ーチヤート、第2図はガス圧送装置のガスおよび
制御系統図、第3図は遠心圧縮機の特性および容
量制御におけるガス圧力とガス流量との関係を示
す図である。 1…遠心圧縮機、2…PCV(流量調節手段)、
4…吐出母管、5…FCV(放風弁)、6…FS(流量
低下検出スイツチ)、10…PIC(母管圧力調節
計)。
Fig. 1 is a flowchart showing the capacity control method according to the present invention, Fig. 2 is a gas and control system diagram of the gas pumping device, and Fig. 3 is a diagram of the characteristics of the centrifugal compressor and the relationship between gas pressure and gas flow rate in capacity control. It is a figure showing a relationship. 1...Centrifugal compressor, 2...PCV (flow rate adjustment means),
4...Discharge main pipe, 5...FCV (air discharge valve), 6...FS (flow rate drop detection switch), 10...PIC (main pipe pressure regulator).

Claims (1)

Translated fromJapanese
【特許請求の範囲】[Claims]1 大風量域では定風圧制御用吐出母管圧力調節
計(PIC)の設定値を必要吐出圧力の最小値に設
定し、定風圧制御域の下限値を吐出流量検出用流
量検出スイツチ(FS)により検出し、放風制御
域に達した場合には上記圧力調節計の上限設定値
を上昇させることにより運転圧力を上昇させて、
吐出母管圧力を高めてガスを畜圧し、吐出母管圧
力が上限値に達すると圧縮機を無負荷運転状態に
して吐出母管内に畜圧したガスだけを消費させ、
畜圧したガスが消費されて圧力が上記圧力調節計
の下限設定値に達すると圧縮機を再び負荷運転状
態にして、吐出母管へのガス圧送を開始すること
を特徴とする遠心圧縮機の容量制御方法。
1 In the large air volume range, set the discharge main pipe pressure controller (PIC) for constant air pressure control to the minimum required discharge pressure, and set the lower limit value of the constant air pressure control area to the flow rate detection switch (FS) for detecting the discharge flow rate. When the air discharge control range is reached, the operating pressure is increased by increasing the upper limit setting of the pressure regulator.
The discharge header pressure is increased to accumulate gas, and when the discharge header pressure reaches the upper limit, the compressor is put into a no-load operation state and only the gas that has been accumulated in the discharge header is consumed.
The centrifugal compressor is characterized in that when the pressure of the accumulated gas is consumed and the pressure reaches the lower limit set value of the pressure regulator, the compressor is put into a load operation state again and pressure feeding of gas to the discharge main pipe is started. Capacity control method.
JP32639487A1987-12-231987-12-23Capacity control method for centrifugal compressorGrantedJPH01167498A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP32639487AJPH01167498A (en)1987-12-231987-12-23Capacity control method for centrifugal compressor

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP32639487AJPH01167498A (en)1987-12-231987-12-23Capacity control method for centrifugal compressor

Publications (2)

Publication NumberPublication Date
JPH01167498A JPH01167498A (en)1989-07-03
JPH0418155B2true JPH0418155B2 (en)1992-03-26

Family

ID=18187307

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP32639487AGrantedJPH01167498A (en)1987-12-231987-12-23Capacity control method for centrifugal compressor

Country Status (1)

CountryLink
JP (1)JPH01167498A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP4069675B2 (en)*2002-05-222008-04-02株式会社日立プラントテクノロジー Turbo compressor and capacity control method thereof
JP6450990B2 (en)*2014-10-022019-01-16三菱日立パワーシステムズ株式会社 Compressor equipment, gas turbine plant equipped with the same, and compressor equipment control method

Also Published As

Publication numberPublication date
JPH01167498A (en)1989-07-03

Similar Documents

PublicationPublication DateTitle
JP2754079B2 (en) Control method and control device for compressor system
JP3837278B2 (en) Compressor operation method
KR101167556B1 (en)Number-of-compressors controlling system
US6474953B2 (en)Compressor control system and method for controlling the same
CN100400871C (en) compressor
JP3125794B2 (en) Method and apparatus for controlling capacity of screw compressor
US4815950A (en)Multi-stage compressor capacity control apparatus
JPS60249694A (en) Compressor start-up unloading device
JP3470042B2 (en) Screw compressor pressure control method
JPH0418155B2 (en)
JP6997648B2 (en) Compressor system
JPH09264255A (en)Air compressor
JP3384894B2 (en) Turbo compressor capacity control method
JPH0466796A (en) Control method and device for compression equipment
KR200212869Y1 (en)pipe arrangement system for inducing vacuum in fabrication of semiconductor
JP2803238B2 (en) Compressor capacity control device
JP2774433B2 (en) Centrifugal compressor capacity control device
CN214145797U (en)Energy-conserving air compressor machine that fuel injection quantity intelligent control adjusted
JPH0769275A (en)Liquid level control method of vapor-liquid separation tank for stripping device
JPH05113191A (en)Compressor
JPH02112679A (en) Compressor capacity control method
JP4399655B2 (en) Compressed air production facility
JP2793510B2 (en) Centrifugal compressor capacity control device
JP2001132654A (en) Compressor operation control method and device
JPS6357634B2 (en)

[8]ページ先頭

©2009-2025 Movatter.jp