Movatterモバイル変換


[0]ホーム

URL:


JPH04180824A - Porous hollow yarn membrane - Google Patents

Porous hollow yarn membrane

Info

Publication number
JPH04180824A
JPH04180824AJP30779090AJP30779090AJPH04180824AJP H04180824 AJPH04180824 AJP H04180824AJP 30779090 AJP30779090 AJP 30779090AJP 30779090 AJP30779090 AJP 30779090AJP H04180824 AJPH04180824 AJP H04180824A
Authority
JP
Japan
Prior art keywords
membrane
hollow fiber
porous hollow
fiber membrane
hollow yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30779090A
Other languages
Japanese (ja)
Other versions
JP2954327B2 (en
Inventor
Yoshihide Ozawa
小沢 佳秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries LtdfiledCriticalDaicel Chemical Industries Ltd
Priority to JP30779090ApriorityCriticalpatent/JP2954327B2/en
Publication of JPH04180824ApublicationCriticalpatent/JPH04180824A/en
Application grantedgrantedCritical
Publication of JP2954327B2publicationCriticalpatent/JP2954327B2/en
Anticipated expirationlegal-statusCritical
Expired - Lifetimelegal-statusCriticalCurrent

Links

Landscapes

Abstract

PURPOSE:To obtain a membrane having good filtering accuracy, good life and strength by constituting the membrane wall of a porous hollow yarn membrane of an inner layer formed from a reticulated structure and an outer layer formed from a fibrous structure highly oriented in the longitudinal direction of hollow yarn. CONSTITUTION:The membrane wall of a porous hollow yarn membrane has a two-layer structure substantially consisting an inner layer and an outer layer. The inner layer is constituted of a reticulated structure of an org. polymer and the outer layer is constituted of a fibrous structure of an org. polymer highly oriented in the longitudinal direction of hollow yarn. The porous hollow yarn membrane thus obtained has sharp and highly reliable filtering accuracy, excellent filtering life and excellent mechanical strength, especially in such a case that it is used in precise filtering due to an outer pressure whole quantity filtering system.

Description

Translated fromJapanese

【発明の詳細な説明】〔産業上の利用分野〕本発明は多孔性中空糸膜に関するものであり、特に外圧
全量濾過方式による精密濾過に使用した場合、その特徴
的な構造ゆえに、シャープでかつ信頬性の高い濾過精度
と優れた濾過寿命、および実用的に申し分ない機械的強
度を合わせ持った多孔性中空糸膜に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a porous hollow fiber membrane, and in particular, when used for precision filtration using an external pressure total filtration method, due to its characteristic structure, it is sharp and The present invention relates to a porous hollow fiber membrane that has reliable filtration accuracy, excellent filtration life, and mechanical strength that is satisfactory for practical use.

〔従来の技術及び発明が解決しようとする課題〕膜分離
技術は、その省エネルギー性、コンパクト性といった面
で注目され、めざましく進展してきた。中でも精密濾過
膜は古くから実用化されており、微生物を除去する目的
で医薬品の製造や医療分野に使用されて以来、食品工業
、パイオニ業、電子工業、原子カニ業など多くの分野で
優れた分離精製技術として活用されている。また、分離
膜としての他にも、電池の隔膜、透気性防水膜などに応
用される例もあり、あらゆる産業に何らかの形で精密濾
過膜は使用されていると言っても過言ではない。
[Prior art and problems to be solved by the invention] Membrane separation technology has attracted attention for its energy saving and compactness, and has made remarkable progress. Among them, precision filtration membranes have been in practical use for a long time, and have been used in the manufacturing of pharmaceuticals and the medical field for the purpose of removing microorganisms.Since then, they have been used in many fields such as the food industry, pioneer industry, electronic industry, and atomic crab industry. It is used as a separation and purification technology. Furthermore, in addition to separation membranes, there are examples of applications such as battery diaphragms and air-permeable waterproof membranes, so it is no exaggeration to say that precision filtration membranes are used in some form in every industry.

精密濾過膜では膜素材として非常に多種類の材料、例え
ばセルロース類、ポリオレフィン類、フン素樹脂、ポリ
アミド、ポリ塩化ビニル、ポリビニルアルコール、ポリ
カーボネート、ポリスルホン、セラミック等が用途に応
じで使用されている。中でもポリスルホン系樹脂は機械
的強度が大きく、耐熱性、耐薬品性が優れているものと
しで注目されている。
In precision filtration membranes, a wide variety of materials are used as membrane materials, such as celluloses, polyolefins, fluorine resins, polyamides, polyvinyl chloride, polyvinyl alcohol, polycarbonates, polysulfones, ceramics, etc., depending on the purpose. Among them, polysulfone resins are attracting attention because they have high mechanical strength, excellent heat resistance, and chemical resistance.

精密濾過膜の形態としては平膜、チューブ膜、中空糸膜
等が知られているが、このうち中空糸膜はモジュールの
単位容積光たりの膜充填密度を太き(できること、モジ
ュールの構造が単純であるためモジュール化および無菌
系にすることが容易であること、逆洗及びクロスフロー
濾過が可能であり透水速度の低下を防ぐことができるこ
と等から近年注目を集めている。
Flat membranes, tube membranes, hollow fiber membranes, etc. are known forms of precision filtration membranes, but among these, hollow fiber membranes have a thicker membrane packing density per unit volume of light in the module. It has attracted attention in recent years because it is simple and easy to make into a modular and sterile system, and because it allows backwashing and cross-flow filtration and prevents a decrease in water permeation rate.

このような中空糸型精密濾過膜は、延伸法か相分離法の
いずれかで製造されるのが一般的である。延伸法とは、
ポリプロピレンやポリエチレンのような結晶性高分子を
溶融紡糸後、冷延伸により結晶ラメラ間に開裂を生ぜし
め、更に熱延伸により孔を拡大して開孔させる方法であ
る。この方法は相分離法に比べ、強度的に強い中空糸膜
が得られる利点がある反面、その開孔の原理上、開孔で
きる孔径が比較的小さいものに限定されること、膜の厚
み方向に孔径の分布がない均一膜しか製造できないこと
が問題として挙げられる。また、膜全体の空孔率が小さ
いため、透水性能が低いものしか得られない。
Such hollow fiber type precision filtration membranes are generally manufactured by either a stretching method or a phase separation method. What is the stretching method?
This is a method in which a crystalline polymer such as polypropylene or polyethylene is melt-spun, then cold-stretched to cause cleavage between crystal lamellae, and then hot-stretched to enlarge and open the pores. Although this method has the advantage of producing a hollow fiber membrane with stronger strength than the phase separation method, due to the principle of opening the pores, the pore diameter that can be opened is limited to relatively small ones, and the thickness direction of the membrane One problem is that only uniform membranes with no pore size distribution can be produced. Furthermore, since the porosity of the entire membrane is small, only a membrane with low water permeability can be obtained.

一方、相分離法とは、高分子素材を溶媒に溶解して調製
した製膜原液を中空糸の形状に押し出し、主に非溶媒か
らなる凝固浴に浸漬してゾル−ゲル変換せしめ、多孔質
膜とする方法である。この方法による中空糸膜は膜全体
が網状組織で構成され、延伸法に比べると孔径を太き(
、空孔率を高くすることが容易である。また、膜の厚み
方向に孔径の分布がある不均一膜を製造することも比較
的容易である。例えば、孔径が内表面側から外表面側に
向かって連続的に大きくなっている構造のものが知られ
ているが、このような中空糸膜を外圧で全量濾過に使用
した場合、プレフィルタ−を使用するのと同様の効果で
、目詰まりによる濾過速度の低下が軽減でき、濾過寿命
に優れているとされている。しかしながら、膜厚方向の
変化率を大きくすれば、膜の機械的強度の低下はまぬが
れず、支持体を使用しない中空糸膜が実用に耐える強度
を維持するのが困難な点で問題がある。
On the other hand, the phase separation method involves extruding a membrane-forming stock solution prepared by dissolving a polymer material in a solvent into a hollow fiber shape, and immersing it in a coagulation bath mainly consisting of a non-solvent to convert it into a porous fiber. This is a method of forming a film. The hollow fiber membrane produced by this method has a network structure throughout the membrane, and the pores are thicker (
, it is easy to increase the porosity. It is also relatively easy to produce a non-uniform membrane with pore size distribution in the thickness direction of the membrane. For example, a membrane with a structure in which the pore diameter increases continuously from the inner surface to the outer surface is known, but when such a hollow fiber membrane is used for total filtration under external pressure, the pre-filter It has the same effect as using filtration filters, reducing the reduction in filtration speed due to clogging, and is said to have an excellent filtration life. However, if the rate of change in the membrane thickness direction is increased, the mechanical strength of the membrane inevitably decreases, and this poses a problem in that it is difficult for a hollow fiber membrane that does not use a support to maintain a strength sufficient for practical use.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は、上記に述べた公知の中空糸膜の欠点を克服
すべく鋭意研究を重ねた結果、特に外圧全量濾過方式に
よる精密濾過に使用した場合、その特徴的な構造ゆえに
、シャープでかつ信頬性の高い濾過精度と優れた濾過寿
命、および実用的に申し分ない機械的強度を合わせ持っ
た多孔性中空糸膜を見出し、本発明に到達した。
As a result of extensive research to overcome the drawbacks of the known hollow fiber membranes mentioned above, the inventors of the present invention have discovered that, due to their characteristic structure, they are sharp and The present invention was achieved by discovering a porous hollow fiber membrane that has reliable filtration accuracy, excellent filtration life, and practically satisfactory mechanical strength.

即ち、本発明は、有機ポリマーゆ・らなる多孔性中空糸
膜において、該中空糸膜の膜壁が実質的に内層と外層の
2層構造をなし、該内層が有機ポリマーの網状組織で構
成され、該外層が中空糸の長さ方向に高度に配向した有
機ポリマーの繊維状組織で構成されていることを特徴と
する多孔性中空糸膜を提供するものである。
That is, the present invention provides a porous hollow fiber membrane made of an organic polymer, in which the membrane wall of the hollow fiber membrane substantially has a two-layer structure of an inner layer and an outer layer, and the inner layer is composed of a network structure of an organic polymer. The present invention provides a porous hollow fiber membrane characterized in that the outer layer is composed of a fibrous structure of an organic polymer highly oriented in the longitudinal direction of the hollow fiber.

本発明の多孔性中空糸膜はその膜壁の構造に特徴を有す
るものであり、該膜壁は網状組織で構成された内層と中
空糸の長さ方向に高度に配向した繊維状組織で構成され
た外層とからなる実質的に2層構造をとっている。この
ように特徴的な構造はこれまで全く知られていなかった
ものであり、膜全体が実質的に網状組織で構成されてい
る従来の多孔性中空糸膜とは全く異なったものである。
The porous hollow fiber membrane of the present invention is characterized by the structure of its membrane wall, which is composed of an inner layer composed of a network structure and a fibrous structure highly oriented in the length direction of the hollow fibers. It has a substantially two-layer structure consisting of an outer layer and an outer layer. This characteristic structure was completely unknown until now, and is completely different from conventional porous hollow fiber membranes in which the entire membrane is substantially composed of a network structure.

以下、本発明についてさらに詳細に説明する。The present invention will be explained in more detail below.

本発明の多孔性中空糸膜に関する内表面、外表面、およ
び断面の走査型電子顕微鏡写真(52M写真)の典型的
な例を第1〜3図に示す。即ち第1図は本発明の多孔性
中空糸膜の一例を示す内表面のSEM写真であり、第2
図は該多孔性中空系膜の外表面のSEM写真であり、第
3図は該多孔性中空糸膜を中空糸の長さ方向とほぼ垂直
な方向に切断した断面のSEM写真である。
Typical examples of scanning electron micrographs (52M photographs) of the inner surface, outer surface, and cross section of the porous hollow fiber membrane of the present invention are shown in FIGS. 1 to 3. That is, FIG. 1 is an SEM photograph of the inner surface of an example of the porous hollow fiber membrane of the present invention, and FIG.
The figure is a SEM photograph of the outer surface of the porous hollow fiber membrane, and FIG. 3 is a SEM photograph of a cross section of the porous hollow fiber membrane cut in a direction substantially perpendicular to the length direction of the hollow fibers.

第1〜3図に示すように、本発明の多孔性中空糸膜はそ
の膜壁が実質的に内層と外層の2層構造をなしている。
As shown in FIGS. 1 to 3, the porous hollow fiber membrane of the present invention has a membrane wall substantially having a two-layer structure of an inner layer and an outer layer.

内層は従来の精密濾過膜に見られるのと同様の網状組織
で実質的に構成されており、外層は繊維状の形状をした
組織で実質的に構成されている。この外層の繊維状組織
は中空糸の長さ方向に高度に配向しており、繊維状組織
の長さ方向の中心軸と中空糸の長さ方向の中心軸とがお
りなす角度が10度以内である繊維状組織は、外層を構
成する組織の90%以上を占めている。外層に見られる
このような構造は、従来の多孔性中空糸膜では全く知ら
れていない新規なものである。
The inner layer consists essentially of a reticular structure similar to that found in conventional microfiltration membranes, and the outer layer consists essentially of a fibrous shaped structure. The fibrous structure of this outer layer is highly oriented in the longitudinal direction of the hollow fiber, and the angle between the longitudinal central axis of the fibrous structure and the longitudinal central axis of the hollow fiber is within 10 degrees. Some fibrous tissues account for 90% or more of the tissues that make up the outer layer. Such a structure found in the outer layer is completely new and completely unknown in conventional porous hollow fiber membranes.

本発明の多孔性中空糸膜は、その内層の平均孔径が0.
01〜5μ躍であることが好ましく、更に好ましくは0
.1〜1μ蒙であることが精密濾過に使用するためには
望ましい。尚、ここで言う平均孔径とは、第3図に示し
たような断面のSEM写真により細孔の平均孔径として
算出した値である。
The porous hollow fiber membrane of the present invention has an inner layer having an average pore diameter of 0.
It is preferably 01 to 5μ, more preferably 0
.. A thickness of 1 to 1 μm is desirable for use in precision filtration. Note that the average pore diameter referred to here is a value calculated as the average pore diameter of pores from a SEM photograph of a cross section as shown in FIG.

さらに本発明の多孔性中空糸膜は、その純水透過性能が
好ましくは1,000−20,000j2/m2−hr
−atta、更に好ましくは3,000〜10,000
j2/n2・hr−ateという非常に高い値を有する
ものである。尚、ここで言う純水透過性能とは、多孔性
中空糸膜の外表面側から25℃の純水を加圧して透過さ
せ、その透水量を単位膜面積(外表面積)、単位時間、
および単位圧力光たりに換算したものである。
Furthermore, the porous hollow fiber membrane of the present invention preferably has a pure water permeability of 1,000 to 20,000 j2/m2-hr.
-atta, more preferably 3,000 to 10,000
It has a very high value of j2/n2·hr-ate. In addition, the pure water permeation performance referred to here refers to pure water at 25°C being pressurized and permeated from the outer surface side of the porous hollow fiber membrane, and the amount of water permeated by unit membrane area (outer surface area), unit time,
and converted to unit pressure light.

本発明の多孔性中空糸膜は、特に外圧全量濾過による精
密濾過に使用した場合に、その特徴的な構造の効果が著
しく発揮される。即ち、本発明の多孔性中空糸膜は外圧
全量濾過による精密濾過に使用した場合、膜壁全体が網
状組織で構成され、平均孔径が厚み方向で実質的に変わ
らない均一膜に比べて、透水速度の低下が小さく、濾過
寿命が長いという特性を有する。これは精密濾過膜を使
用する上で非常に大きなメリットである。透水速度の低
下が小さい理由は詳細には分からないが、おそらく本発
明の多孔性中空糸膜の特徴である2層構造のうちの外層
が、外圧濾過の場合にはプレフィルタ−の役割を果たし
ているためと思われる。このような効果を発揮・するた
めの外層の適当な厚みは全膜厚の1〜20%である。外
層の厚みが全膜厚の1%未満であるとプレフィルタ−の
効果が不十分であり、全膜厚の20%を超えると網状組
織で構成された内層の割合が少なくなるため、濾過精度
が落ちる恐れがある。
The porous hollow fiber membrane of the present invention exhibits remarkable effects due to its characteristic structure, especially when used for precision filtration by external pressure total filtration. That is, when the porous hollow fiber membrane of the present invention is used for precision filtration by external pressure total filtration, it has a higher water permeability than a uniform membrane in which the entire membrane wall is composed of a network structure and the average pore diameter does not substantially change in the thickness direction. It has the characteristics of a small decrease in speed and a long filtration life. This is a very big advantage in using microfiltration membranes. The reason for the small decrease in water permeation rate is not known in detail, but it is probably because the outer layer of the two-layer structure, which is a feature of the porous hollow fiber membrane of the present invention, plays the role of a pre-filter in the case of external pressure filtration. This seems to be because there are. The appropriate thickness of the outer layer to exhibit such effects is 1 to 20% of the total film thickness. If the thickness of the outer layer is less than 1% of the total membrane thickness, the effect of the pre-filter will be insufficient, and if it exceeds 20% of the total membrane thickness, the proportion of the inner layer composed of network tissue will decrease, resulting in poor filtration accuracy. may fall.

本発明の多孔性中空糸膜は、膜全体の平均孔径が不必要
に大きくならないため、機械的強度にも優れている。加
えて、外層の繊維状組織は中空糸の長さ方向に高度に配
向しているため、中空糸の引っ張りに対する強度を高め
る効果も機械的強度の向上に寄与しているものと思われ
る。
The porous hollow fiber membrane of the present invention also has excellent mechanical strength because the average pore diameter of the entire membrane does not become unnecessarily large. In addition, since the fibrous structure of the outer layer is highly oriented in the longitudinal direction of the hollow fibers, the effect of increasing the tensile strength of the hollow fibers also seems to contribute to the improvement of mechanical strength.

本発明の多孔性中空糸膜は、いかなる方法で製造された
ものであってもかまわないが、例えは膜素材となる有機
ポリマーを含有する製膜原液を2重管型ノズルから内部
凝固液とともGこ押し出し、ノズルから一定距離の空中
部を通過した後、全体を外部凝固液に浸漬する中空糸型
分離膜の製膜方法、いわゆる乾湿式法において、′空中
部に存在する水分量を高く、同時にドラフト比を高く設
定した場合に製造される。尚、ここで言うドラフト比と
は、下式で定義されるものである。
The porous hollow fiber membrane of the present invention may be manufactured by any method, but for example, a membrane forming stock solution containing an organic polymer serving as a membrane material is passed through a double tube nozzle to an internal coagulation liquid. In the so-called dry-wet method, which is a method for manufacturing hollow fiber separation membranes in which the entire membrane is extruded, passed through an air section at a certain distance from a nozzle, and then immersed in an external coagulation liquid, the amount of water present in the air section is It is produced when the draft ratio is set high. Note that the draft ratio referred to here is defined by the following formula.

ドラフト比=(巻取り速度)/(吐出線速度)=v  
(D” −d2)π/Q(式中、■は巻取り速度、Dは製膜原液吐出スリットの
外径、dは製膜原液吐出スリ7)の内径、Qは製膜原液
の吐出量を示す。)空中部の水分量が多いと、製膜原液は空中部を通過する
際に外表面から多くの水分を吸収するため、外表面及び
その近傍では部分的にゲル化している。また、製膜原液
はこの空中部で重力および巻取りの張力を受けて中空糸
の長さ方向に引っ張られる。よって、ドラフト比を高く
設定した場合には、製膜原液の外表面およびその近傍は
部分的なゲル化と同時に、中空糸の長さ方向に強い張力
を受けることになり、結果として中空糸の長さ方向に高
度に配向した繊維状のポリマーから実質的に構成された
構造の外層が形成されるものと考えられる。本発明の多
孔性中空系膜を製造するのに必要な空中部の水分量およ
びドラフト比は、膜素材のポリマー、製膜原液の組成と
温度、空中部の通過時間などの条件により異なるため一
概には言えないが、空中部の水分量が100g/+n3
以上、ドラフト比が2以上、好ましくは、空中部の水分
量が500g/1113以上、ドラフト比が4以上であ
る。
Draft ratio = (winding speed) / (discharge linear speed) = v
(D" - d2) π/Q (In the formula, ■ is the winding speed, D is the outer diameter of the membrane-forming liquid discharge slit, d is the inner diameter of the membrane-forming liquid discharge slit 7), and Q is the discharge amount of the membrane-forming liquid. ) When there is a large amount of moisture in the air, the film-forming stock solution absorbs a lot of water from the outer surface while passing through the air, resulting in partial gelatinization on the outer surface and its vicinity. , the membrane-forming stock solution is pulled in the length direction of the hollow fiber under the force of gravity and the tension of the winding in this aerial region.Therefore, when the draft ratio is set high, the outer surface of the film-forming stock solution and its vicinity are Simultaneously with partial gelation, the hollow fibers are subjected to strong tension along their length, resulting in an outer layer of structure consisting essentially of highly oriented fibrous polymers along the length of the hollow fibers. It is thought that the amount of moisture in the air space and the draft ratio necessary to produce the porous hollow membrane of the present invention depend on the polymer of the membrane material, the composition and temperature of the membrane forming stock solution, and the air space. Although it cannot be generalized as it varies depending on conditions such as transit time, the amount of moisture in the air is 100g/+n3
As mentioned above, the draft ratio is 2 or more, preferably the moisture content in the air is 500 g/1113 or more, and the draft ratio is 4 or more.

本発明の多孔性中空糸膜の膜素材である有機ポリマーは
、セルロース系、ポリアミド系、ポリアクリロニトリル
系、ポリスルホン系など、あるいはこれらのコポリマー
など、要は相転換法で製膜ができればどのようなポリマ
ーであってもかまわない。また、互いに相溶性のある2
種類以上のポリマーをブレンドしたものであってもかま
わない。その中でも5耐熱性や耐薬品性が優れている点
で、ポリスルホン系ポリマーが望ましい。ポリスルホン
系ポリマーとしては、4例えば、次の一般式(T)また
は(II)で表されるような繰り返し単位を有するもの
が挙げられる。
The organic polymer that is the membrane material for the porous hollow fiber membrane of the present invention may be cellulose-based, polyamide-based, polyacrylonitrile-based, polysulfone-based, etc., or a copolymer of these. It may be a polymer. In addition, two mutually compatible
It may be a blend of more than one type of polymer. Among these, polysulfone-based polymers are desirable because they have excellent heat resistance and chemical resistance. Examples of polysulfone-based polymers include those having repeating units represented by the following general formula (T) or (II).

(χs>p    (X6)。(χs>p (X6).

但し、式(1)および(U)において、X、〜X、はメ
チル基、エチル基等のアルキル基、塩素、臭素等のハロ
ゲンに例示される非解離性の置換基、または−COOH
,−5o:IH等の解離性の置換基を示し、/ 、 m
、 n、 01 pおよびqは0〜4の整数を示す。−
船釣には、l + m+ n+ O+ pおよびqのす
べてがOであるポリスルホンが入手しやすく、本発明に
おいても好ましく用いられる。
However, in formulas (1) and (U),
, -5o: indicates a dissociative substituent such as IH, / , m
, n, 01 p and q represent integers of 0 to 4. −
For boat fishing, polysulfone in which l + m + n + O + p and q are all O is easily available and is preferably used in the present invention.

しかし、本発明で用いるポリスルホン系ポリマーは上記
に限定されるものではない。
However, the polysulfone polymer used in the present invention is not limited to the above.

〔実施例〕〔Example〕

以下、本発明を実施例により詳細に説明するが、本発明
はこれらに何ら限定されない。
EXAMPLES Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited thereto.

実施例1ポリエーテルスルホン(IC1社製5200Pパウダー
)16重量%、ポリビニルピロリドン(Aldrich
社製、平均分子量360,000) 9重量%、N−メ
チル−2−ピロリドン75重量%を60°Cで溶解して
製膜原液を調製した。該製膜原液をテトラエチレングリ
コールからなる芯液とともに2重管型の紡糸ノズルから
押し出し、10cmの空中部を通過させた後、水からな
る凝固浴に導いて凝固させて中空糸膜を紡糸した。製膜
原液、芯液、および凝固浴の温度は50°Cに設定した
。製膜原液が通過する空中部は、製膜原液のまわりを筒
状物でおおい、外部から水蒸気を供給して筒状物的の空
中水分量を500〜600g/+n’に調整した。
Example 1 16% by weight of polyethersulfone (5200P powder manufactured by IC1), polyvinylpyrrolidone (Aldrich
Co., Ltd., average molecular weight 360,000) and 75% by weight of N-methyl-2-pyrrolidone were dissolved at 60°C to prepare a film-forming stock solution. The membrane-forming stock solution was extruded from a double-pipe spinning nozzle together with a core liquid made of tetraethylene glycol, passed through a 10 cm space in the air, and then introduced into a coagulation bath made of water to coagulate it and spin a hollow fiber membrane. . The temperatures of the membrane-forming stock solution, core solution, and coagulation bath were set at 50°C. The aerial part through which the membrane-forming stock solution passes was covered with a cylindrical object, and water vapor was supplied from the outside to adjust the air moisture content of the cylindrical object to 500 to 600 g/+n'.

紡糸ノズルの製膜原液吐出スリットは外径0.66am
、内径0.36mmであった。
The spinning nozzle's membrane forming solution discharge slit has an outer diameter of 0.66 am.
, the inner diameter was 0.36 mm.

以上の製膜条件で、内径0.17111#l、外径0.
30+++mの中空糸膜を25m/minの速度で紡糸
した。製膜した中空糸は80°Cの温水で24時間洗浄
した後、その膜性能を評価した。その結果、純水の透過
性能は4,2001 / m” ・hr −atm 、
粒径0.22μmのラテックスを100%阻止した。こ
の多孔性中空糸膜の内表面、外表面、および断面の走査
型電子顕微鏡写真は、それぞれ、第1図、第2図及び第
3図に示すものであり、2層構造を有するものであった
Under the above film forming conditions, the inner diameter is 0.17111 #l and the outer diameter is 0.
A 30+++ m hollow fiber membrane was spun at a speed of 25 m/min. The membrane-formed hollow fibers were washed with warm water at 80°C for 24 hours, and then the membrane performance was evaluated. As a result, the permeation performance of pure water was 4,2001/m”・hr −atm,
Latex with a particle size of 0.22 μm was blocked 100%. Scanning electron micrographs of the inner surface, outer surface, and cross section of this porous hollow fiber membrane are shown in Figures 1, 2, and 3, respectively, and it has a two-layer structure. Ta.

実施例2製膜原液の組成をポリエーテルスルホン15重量%、ポ
リビニルとロリドン(Aldrich社製、平均分子量
40,000) 15重量%、ジメチルホルムアミド7
0重量%とじた以外は実施例1と同様にして内径0.2
0mm、外径0 、32mmの中空糸膜を28m/wi
nの速度で紡糸した。この中空糸膜の膜性能は純水の透
過性能が5.90Of2 /m2− hr−atrn、
粒径0.22μmのラテフクスを100%阻止した。
Example 2 The composition of the membrane forming stock solution was 15% by weight of polyether sulfone, 15% by weight of polyvinyl and lolidone (manufactured by Aldrich, average molecular weight 40,000), and 7% by weight of dimethylformamide.
The inner diameter was 0.2 in the same manner as in Example 1 except that it was bound at 0% by weight.
0mm, outer diameter 0, 32mm hollow fiber membrane 28m/wi
The yarn was spun at a speed of n. The membrane performance of this hollow fiber membrane is that the pure water permeability is 5.90Of2/m2-hr-atrn,
It inhibited 100% of latex with a particle size of 0.22 μm.

また、この中空糸の構造は実施例1と同様の2層構造で
あった。
Further, the structure of this hollow fiber was a two-layer structure similar to that of Example 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1で得られた多孔性中空糸膜の内表面の
繊維形状を示す走査型電子顕微鏡写真、第2図は実施例
1で得られた多孔性中空糸膜の外表面の繊維形状を示す
走査型電子顕微鏡写真、第3図は実施例1で得られた多
孔性中空糸膜の断面の繊維形状を示す走査型電子顕微鏡
写真である。出願人代理人  古 谷   馨(外3名ン第1図第2図第3図
Fig. 1 is a scanning electron micrograph showing the fiber shape of the inner surface of the porous hollow fiber membrane obtained in Example 1, and Fig. 2 is a scanning electron micrograph showing the fiber shape of the inner surface of the porous hollow fiber membrane obtained in Example 1. Scanning electron micrograph showing the fiber shape. FIG. 3 is a scanning electron micrograph showing the fiber shape of the cross section of the porous hollow fiber membrane obtained in Example 1. Applicant's agent: Kaoru Furuya (3 others) Figure 1 Figure 2 Figure 3

Claims (1)

Translated fromJapanese
【特許請求の範囲】1、有機ポリマーからなる多孔性中空糸膜において、該
中空糸膜の膜壁が実質的に内層と外層の2層構造をなし
、該内層が有機ポリマーの網状組織で構成され、該外層
が中空糸の長さ方向に高度に配向した有機ポリマーの繊
維状組織で構成されていることを特徴とする多孔性中空
糸膜。2、該外層の厚さが、膜壁全体の厚さの1〜20%であ
ることを特徴とする請求項1記載の多孔性中空糸膜。3、該内層の平均孔径が0.01〜5μmであることを
特徴とする請求項1又は2記載の多孔性中空糸膜。4、純水透過性能が、1,000〜20,000l/m
^2・hr・atmであることを特徴とする請求項1〜
3のいずれか一項に記載の多孔性中空糸膜。5、ポリスルホン系樹脂から実質的になることを特徴と
する請求項1〜4のいずれか一項に記載の多孔性中空糸
膜。
[Claims] 1. In a porous hollow fiber membrane made of an organic polymer, the membrane wall of the hollow fiber membrane substantially has a two-layer structure of an inner layer and an outer layer, and the inner layer is made of a network structure of an organic polymer. A porous hollow fiber membrane characterized in that the outer layer is composed of a fibrous structure of an organic polymer highly oriented in the longitudinal direction of the hollow fiber. 2. The porous hollow fiber membrane according to claim 1, wherein the thickness of the outer layer is 1 to 20% of the thickness of the entire membrane wall. 3. The porous hollow fiber membrane according to claim 1 or 2, wherein the inner layer has an average pore diameter of 0.01 to 5 μm. 4. Pure water permeability is 1,000 to 20,000 l/m
Claim 1~ characterized in that it is ^2・hr・atm.
3. The porous hollow fiber membrane according to any one of 3. 5. The porous hollow fiber membrane according to any one of claims 1 to 4, characterized in that it consists essentially of a polysulfone resin.
JP30779090A1990-11-131990-11-13 Porous hollow fiber membraneExpired - LifetimeJP2954327B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP30779090AJP2954327B2 (en)1990-11-131990-11-13 Porous hollow fiber membrane

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP30779090AJP2954327B2 (en)1990-11-131990-11-13 Porous hollow fiber membrane

Publications (2)

Publication NumberPublication Date
JPH04180824Atrue JPH04180824A (en)1992-06-29
JP2954327B2 JP2954327B2 (en)1999-09-27

Family

ID=17973281

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP30779090AExpired - LifetimeJP2954327B2 (en)1990-11-131990-11-13 Porous hollow fiber membrane

Country Status (1)

CountryLink
JP (1)JP2954327B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2010029908A1 (en)*2008-09-102010-03-18東レ株式会社Hollow-fiber membrane and process for production of hollow-fiber membrane
WO2014148470A1 (en)*2013-03-212014-09-25旭化成ケミカルズ株式会社Multiporous hollow-fiber membrane and process for producing multiporous hollow-fiber membrane
JP2015011292A (en)*2013-07-022015-01-19住友ベークライト株式会社Method for producing liquid photosensitive resin composition
CN115779699A (en)*2022-12-152023-03-14奥赛科膜科技(天津)有限公司 A preparation method and device for a hollow fiber double-layer membrane with inner and outer layer regulation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2010029908A1 (en)*2008-09-102010-03-18東レ株式会社Hollow-fiber membrane and process for production of hollow-fiber membrane
JPWO2010029908A1 (en)*2008-09-102012-02-02東レ株式会社 Hollow fiber membrane and method for producing hollow fiber membrane
WO2014148470A1 (en)*2013-03-212014-09-25旭化成ケミカルズ株式会社Multiporous hollow-fiber membrane and process for producing multiporous hollow-fiber membrane
JPWO2014148470A1 (en)*2013-03-212017-02-16旭化成株式会社 Porous hollow fiber membrane and method for producing porous hollow fiber membrane
US10023709B2 (en)2013-03-212018-07-17Asahi Kasei Chemicals CorporationMultiporous hollow-fiber membrane and process for producing multiporous hollow-fiber membrane
JP2015011292A (en)*2013-07-022015-01-19住友ベークライト株式会社Method for producing liquid photosensitive resin composition
CN115779699A (en)*2022-12-152023-03-14奥赛科膜科技(天津)有限公司 A preparation method and device for a hollow fiber double-layer membrane with inner and outer layer regulation

Also Published As

Publication numberPublication date
JP2954327B2 (en)1999-09-27

Similar Documents

PublicationPublication DateTitle
US7267872B2 (en)Braid-reinforced hollow fiber membrane
JP3232117B2 (en) Polysulfone porous hollow fiber
WO1997022405A1 (en)Hollow fiber type filtration membrane
JPH0122003B2 (en)
JPWO2017217446A1 (en) Porous membrane and method for producing porous membrane
JP2000093768A (en)Composite porous hollow fiber membrane
JP2006088148A (en)Hollow fiber membrane having excellent water permeability
JPH0569571B2 (en)
JPH0478729B2 (en)
JPH078549B2 (en) Polyvinylidene fluoride-based resin porous membrane and method for producing the same
JPH04180824A (en)Porous hollow yarn membrane
JP3317975B2 (en) Polyacrylonitrile hollow fiber filtration membrane
JP4757396B2 (en) Cellulose derivative hollow fiber membrane
JPH078548B2 (en) Polyvinylidene fluoride-based resin porous membrane and method for producing the same
JP3594946B2 (en) High performance microfiltration membrane
JPS59228016A (en)Hollow yarn membrane of aromatic polysulfone
CN104203378B (en)Perforated membrane and preparation method thereof
JPS60222112A (en)Hollow yarn-shaped filter and its manufacture
JPH0445830A (en)Production of conjugate hollow-fiber membrane
JP2688564B2 (en) Cellulose acetate hollow fiber separation membrane
JP3431622B1 (en) High-performance plasma purification membrane
JPH11179174A (en)Hollow fiber membrane for separation and manufacture thereof
JPH03270721A (en)Porous hollow yarn membrane and preparation thereof
JP3464000B1 (en) Manufacturing method of high performance hollow fiber microfiltration membrane
JPS63123403A (en)Polyacrylonitrile hollow yarn membrane and production thereof

Legal Events

DateCodeTitleDescription
S531Written request for registration of change of domicile

Free format text:JAPANESE INTERMEDIATE CODE: R313532

R350Written notification of registration of transfer

Free format text:JAPANESE INTERMEDIATE CODE: R350

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20080716

Year of fee payment:9

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20080716

Year of fee payment:9

S531Written request for registration of change of domicile

Free format text:JAPANESE INTERMEDIATE CODE: R313531

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20080716

Year of fee payment:9

R350Written notification of registration of transfer

Free format text:JAPANESE INTERMEDIATE CODE: R350

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20090716

Year of fee payment:10

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20100716

Year of fee payment:11

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20110716

Year of fee payment:12

EXPYCancellation because of completion of term
FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20110716

Year of fee payment:12


[8]ページ先頭

©2009-2025 Movatter.jp