【発明の詳細な説明】〔概 要〕MOCVD法に関し。[Detailed description of the invention]〔overview〕Regarding MOCVD method.
MOCVD法により大面積の基板上に原子層オーダに制
御された均一な層を容易に形成可能とすることを目的と
し。The objective is to easily form a uniform layer controlled to the atomic layer order on a large-area substrate using the MOCVD method.
基板が設置された気相成長装置内に組成の異なる複数種
の原料ガスを代わる代わる供給することによりこれら原
料ガスの反応生成物から成る層を該基板表面に成長させ
る化学気相成長法において。In a chemical vapor deposition method in which a plurality of types of raw material gases having different compositions are alternately supplied into a vapor phase growth apparatus in which a substrate is installed, thereby growing a layer made of reaction products of these raw material gases on the surface of the substrate.
前記原料ガスの少なくとも一種の濃度を、前記層の成長
速度対該一種の原料ガス濃度の関係における成長速度変
化率が実質に増加しな(なる範囲に設定して供給するよ
うに構成する。The concentration of at least one of the raw material gases is set and supplied within a range in which a growth rate change rate in the relationship between the growth rate of the layer and the concentration of the one type of raw material gas does not substantially increase.
本発明は、化学気相成長(CVD)法、とくに、化合物
半導体結晶層のエピタキシャル成長に適したMOCVD
(有機金属化学気相成長)法に関する。The present invention is directed to a chemical vapor deposition (CVD) method, in particular, a MOCVD method suitable for epitaxial growth of a compound semiconductor crystal layer.
(organometallic chemical vapor deposition) method.
GaAsに代表される■−V族化合物半導体を用いた半
導体レーザやMESFETあるいはHEMT (高電子
移動度トランジスタ)その他の高速半導体装置の実用化
にともない、これらを構成する半導体結晶層の成長方法
は、量産性の観点から、化学気相成長(CVD)法が主
力となっており、このうちでも、有機金属化学気相成長
(MOCVD)法が主流になりつつある。With the commercialization of semiconductor lasers, MESFETs, HEMTs (high electron mobility transistors), and other high-speed semiconductor devices using ■-V group compound semiconductors such as GaAs, the growth methods of the semiconductor crystal layers that make up these devices have changed. From the viewpoint of mass production, chemical vapor deposition (CVD) is the main method, and among these, metal organic chemical vapor deposition (MOCVD) is becoming mainstream.
一方、化合物半導体のへテロ接合や異方性を高度に利用
した各種の半導体装置の進展が著しく。On the other hand, there has been remarkable progress in various semiconductor devices that make advanced use of the heterojunctions and anisotropy of compound semiconductors.
これを支える技術として、原子層オーダで制御可能な実
用的なエピタキシャル成長法の開発に対する要請が強ま
っている。As a technology to support this, there is an increasing demand for the development of a practical epitaxial growth method that can be controlled on the order of atomic layers.
■族元素の原料ガスとV族元素の原料ガスとを交互に気
相成長装置装管に供給する原子層エピタキシ(ALE)
法は、これら原料ガスの供給ごとに1原子層の半導体層
が成長するセルフリミティング機能を有しており、異種
の化合物半導体層の多層構造を容易に形成可能とした。■Atomic layer epitaxy (ALE), in which a group element source gas and a group V element source gas are alternately supplied to the vapor phase growth apparatus tube.
This method has a self-limiting function in which one atomic layer of a semiconductor layer is grown each time these raw material gases are supplied, making it possible to easily form a multilayer structure of different types of compound semiconductor layers.
しかし、 ALB法は。However, the ALB method...
上記セルフリミティング機能が発揮される温度等の成長
条件の範囲が狭(かつ使用できる原料ガスの種類が制約
されるために1例えば三元化合物半導体のような混晶の
層を得ることが現在のところ困難であり、また、原料ガ
スの成分である炭素がp型不純物として混入するために
導電型の制御が困難である等の問題がある。Currently, it is difficult to obtain a mixed crystal layer such as a ternary compound semiconductor because the range of growth conditions such as temperature in which the self-limiting function is exhibited is narrow (and the types of raw material gases that can be used are limited). In addition, there are problems such as difficulty in controlling the conductivity type because carbon, which is a component of the raw material gas, is mixed in as a p-type impurity.
ところで、 MOCVD法によっても、原子層オーダの
厚さの制御が可能であるが、大面積の基板に化合物半導
体結晶層を均一に成長させるためには、気相成長装置内
において基板結晶の自転と公転とを行うこと、また、気
相成長装置内における原料ガスの流れを、淀みや渦のな
い流体力学的に理想的な層流に保つことが必要とされ、
このために、気相成長装置の設計が複雑かつ高度となる
問題がある。Incidentally, the thickness can be controlled on the order of atomic layers by the MOCVD method, but in order to uniformly grow a compound semiconductor crystal layer on a large-area substrate, it is necessary to control the rotation and rotation of the substrate crystal in a vapor growth apparatus. It is also necessary to maintain the flow of raw material gas in the vapor phase growth apparatus in a hydrodynamically ideal laminar flow without stagnation or eddies.
For this reason, there is a problem that the design of the vapor phase growth apparatus is complicated and sophisticated.
本発明は、上記のような特別の設計を行っていない通常
のMOCVD用の装置を用いて、大面積の基板上に原子
層オーダに制御された均一な層を容易に形成可能とする
ことを目的とする。The present invention makes it possible to easily form a uniform layer controlled to the order of atomic layers on a large-area substrate using an ordinary MOCVD apparatus that is not specially designed as described above. purpose.
上記目的は、基板が設置された気相成長装置内に組成の
異なる複数種の原料ガスを代わる代わる供給することに
よりこれら原料ガスの反応生成物から成る層を該基板表
面に成長させる化学気相成長法であって、前記原料ガス
の少なくとも一種の濃度を、前記層の成長速度対該一種
の原料ガス濃度の関係における成長速度変化率が実質に
増加しなくなる範囲に設定して供給することを特徴とす
る本発明に係る化学気相成長法によって達成される。The above purpose is to grow a layer consisting of reaction products of these raw gases on the surface of the substrate using a chemical vapor phase growth method, by alternately supplying multiple types of raw material gases with different compositions into a vapor phase growth apparatus in which a substrate is installed. In the growth method, the concentration of at least one of the raw material gases is set and supplied within a range in which the growth rate change rate in the relationship between the growth rate of the layer and the concentration of the one type of raw material gas does not substantially increase. This is achieved by the characteristic chemical vapor deposition method of the present invention.
本発明者は、トリエチルガリウム(TEG)をGaの原
料ガスとするMOCVD法によりQaAS結晶層をエピ
タキシャル成長させた場合、第4図に示すように。The present inventor epitaxially grows a QaAS crystal layer by the MOCVD method using triethyl gallium (TEG) as a source gas for Ga, as shown in FIG.
TEG濃度が高くなるにしたがって、成長速度に飽和傾
向が現れることを見出した。同図の横軸は。It has been found that as the TEG concentration increases, a saturation tendency appears in the growth rate. The horizontal axis of the figure is.
キャリヤガスである水素によって希釈されたTEGの、
気相成長装置内におけるモル分率で表した濃度である。of TEG diluted with hydrogen as a carrier gas,
This is the concentration expressed as a mole fraction in the vapor phase growth apparatus.
図示のように、 TEG濃度が低い範囲では。As shown in the figure, in the range where the TEG concentration is low.
TEG濃度の増加にともなって成長速度が大きくなるが
、 TEG濃度が高い範囲では、 GaAs層の成長速
度がTEG濃度に依存しなくなる。この現象は9次のよ
うに解釈される。The growth rate increases as the TEG concentration increases, but in a high TEG concentration range, the growth rate of the GaAs layer becomes independent of the TEG concentration. This phenomenon can be interpreted as follows.
すなわち、 TEG濃度が低い範囲では、成長速度が気
相中からのTEGの供給速度によって律速されているた
め、原料ガス濃度の変化による成長速度の変化率が大き
い。しかし、 TEGの濃度がさらに増加すると、 G
aAsの成長速度は基板結晶表面におけるTEGの分解
反応の速度で決まる反応律速となり。That is, in a range where the TEG concentration is low, the growth rate is limited by the supply rate of TEG from the gas phase, so the rate of change in the growth rate due to changes in the raw material gas concentration is large. However, when the concentration of TEG increases further, G
The growth rate of aAs is rate-determined by the rate of TEG decomposition reaction on the substrate crystal surface.
TUGの濃度変化にほとんど依存しなくなる。It becomes almost independent of changes in TUG concentration.
通常のMOCVD法は、成長速度が原料ガス濃度に比例
する濃度範囲で行われる。これは、複数種の原料ガスを
同時に供給する場合には1反応律速となるTUG濃度範
囲では、成長速度が過大となり。A normal MOCVD method is performed in a concentration range in which the growth rate is proportional to the raw material gas concentration. This is because when multiple types of raw material gases are supplied simultaneously, the growth rate becomes excessive in the TUG concentration range where one reaction is rate-limiting.
成長した結晶層表面のモルフォロジーが悪くなってしま
うためである。This is because the morphology of the surface of the grown crystal layer becomes poor.
本発明は、 ALB法のように複数種の原料ガスを交互
に供給する場合においても、上記と同様にGaAsの成
゛長速度が飽和傾向を示すTEG濃度範囲が存在し、こ
の濃度範囲においても、均一性が良好なGaAs層を得
られるという知見に基づいている。すなわち1本発明に
おいては、この濃度範囲のTEGのみを所定の短時間供
給したのち、砒素(As)の原料ガスである例えばアル
シン(AsH,)のみを供給する。In the present invention, even when multiple types of raw material gases are alternately supplied as in the ALB method, there is a TEG concentration range in which the growth rate of GaAs tends to be saturated as described above, and even in this concentration range. This method is based on the knowledge that a GaAs layer with good uniformity can be obtained. That is, in one aspect of the present invention, only TEG in this concentration range is supplied for a predetermined short time, and then only arsine (AsH,), which is a raw material gas for arsenic (As), is supplied.
上記本発明の作用は、結晶成長が反応律速の状態にある
ときは、原料ガスの流れの状態や濃度の変動の影響を受
けなくなり、その結果、大面積の基板結晶上に1層厚お
よび組成の均一なGaAs結晶層が成長することによる
ものと考えられる。本発明において、 TEGの濃度、
供給時間、成長温度等を選択することによって、上記T
EGとAsH,の交互供給の1サイクルごとに成長する
GaAs結晶層の厚さを数原子層ないしそれ以下に制御
できるので、所望の層厚を有する均一なGaAs結晶層
を得ることができる。The above-mentioned effect of the present invention is that when crystal growth is in a reaction rate-determined state, it is not affected by the flow state or concentration fluctuation of the raw material gas, and as a result, one layer thickness and composition can be grown on a large area substrate crystal. This is thought to be due to the growth of a uniform GaAs crystal layer. In the present invention, the concentration of TEG,
By selecting the supply time, growth temperature, etc., the above T
Since the thickness of the GaAs crystal layer grown each cycle of alternate supply of EG and AsH can be controlled to several atomic layers or less, a uniform GaAs crystal layer having a desired layer thickness can be obtained.
以下本発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.
第1図は本発明の実施に用いた化学気相成長装置の概要
構成図であって9反応管lの内部には。FIG. 1 is a schematic configuration diagram of a chemical vapor deposition apparatus used for carrying out the present invention, and the interior of nine reaction tubes 1 is shown.
(100)面を表出するGaAs結晶から成る基板結晶
2が設置されている。反応管l内部はロークリポンプ4
2で排気される。ターボ分子ポンプ3とロークリポンプ
4Iは、基板結晶2を反応管1内部に送入量するための
ロードロック機構を排気するために設けられている。符
号6は基板結晶2を加熱するためのヒータである。反応
管1の一端には、マニホールド7が接続されており、そ
の各々の分岐部には、流路切り換えバルブS、、 S2
. S、が接続されている。流路切り換えバルブSIT
S2+ Sitを通じて。A substrate crystal 2 made of a GaAs crystal with a (100) plane exposed is installed. The inside of the reaction tube is the Rokuri pump 4.
Exhausted at 2. The turbo molecular pump 3 and the low-pressure pump 4I are provided to evacuate a load lock mechanism for feeding the substrate crystal 2 into the reaction tube 1. Reference numeral 6 denotes a heater for heating the substrate crystal 2. A manifold 7 is connected to one end of the reaction tube 1, and a flow path switching valve S, S2 is provided at each branch part of the manifold 7.
.. S is connected. Flow path switching valve SIT
Through S2+ Sit.
水素(H2)、TEGおよびASH3が供給される。な
お。Hydrogen (H2), TEG and ASH3 are supplied. In addition.
流路切り換えバルブS2とS3にH2を直接流すための
径路が設けられている。これらの径路を含め、流路切り
換えバルブSll S2. Saの入力側の径路すべて
には、マスフローコントローラMl、 M2. M31
M4゜M5がそれぞれ設けられている。A path is provided for direct flow of H2 to the flow path switching valves S2 and S3. Including these paths, the flow path switching valve Sll S2. Mass flow controllers Ml, M2 . M31
M4 and M5 are provided respectively.
上記構成において、 TEGが充填されたボンベ8を2
0°Cに保持しておき、この中にバブルさせたH2をキ
ャリヤガスとして反応管1にTEGを供給する。In the above configuration, the cylinder 8 filled with TEG is
The temperature is maintained at 0°C, and TEG is supplied to the reaction tube 1 using bubbled H2 as a carrier gas.
一方、ボンベ9からH2で10%に希釈されたAsH3
を。On the other hand, AsH3 diluted to 10% with H2 from cylinder 9
of.
マスフローコントローラM5により一定流量480cc
毎分に制御して反応管1に供給する。TEGの供給量は
、 TBGボンベ8に流すH2の流量をマスフローコン
トローラM3により制御して変える。なお2反応管1に
流入するガスの総流量を2000cc毎分に一定に保つ
。このために、マスフローコントローラM2とM3の流
量の和が一定になるように制御する。Constant flow rate 480cc by mass flow controller M5
It is controlled and supplied to the reaction tube 1 every minute. The amount of TEG supplied is changed by controlling the flow rate of H2 flowing into the TBG cylinder 8 using a mass flow controller M3. Note that the total flow rate of gas flowing into the two reaction tubes 1 is kept constant at 2000 cc/min. For this purpose, the sum of the flow rates of the mass flow controllers M2 and M3 is controlled to be constant.
同様に、 AsHsの流量を変える場合には、マスフロ
ーコントローラM4とM5の流量の和が一定になるよう
に制御する。Similarly, when changing the flow rate of AsHs, control is performed so that the sum of the flow rates of mass flow controllers M4 and M5 is constant.
上記の化学気相成長装置において9反応管1内にTBG
とASH3とを交互に供給して基板結晶2上にGaAs
層を成長させたときの成長速度とTBGの濃度との、関
係を第2図に示す。同図における横軸は。In the above chemical vapor deposition apparatus, TBG is placed in 9 reaction tubes 1.
and ASH3 are alternately supplied to deposit GaAs on the substrate crystal 2.
FIG. 2 shows the relationship between the growth rate of the layer and the TBG concentration. The horizontal axis in the figure is.
H2キャリヤガスを含む全ガス中におけるTEGのモル
分率で表した濃度、縦軸は、 TBGとASH3の交互
供給1サイクル当たりに成長する平均原子層数で表して
成長速度である。なお、上記成長時における基板結晶2
温度を450℃9反応管l中の全ガス圧を15Torr
に一定に保つように制御を行った。また。The concentration expressed as a mole fraction of TEG in the total gas including the H2 carrier gas, and the vertical axis is the growth rate expressed as the average number of atomic layers grown per cycle of alternating supply of TBG and ASH3. Note that the substrate crystal 2 during the above growth
The temperature was set to 450°C, and the total gas pressure in the 9 reaction tubes was set to 15 Torr.
Control was performed to keep it constant. Also.
TUGおよびAsH3の供給時間は、それぞれ、0.5
秒および5秒とし、これらの切り換えの間に+H2によ
る0、3秒のパージ期間を設けた。The supply time of TUG and AsH3 is 0.5, respectively.
seconds and 5 seconds, with a +H2 purge period of 0.3 seconds between these switches.
図示のように、TEGの濃度が低い範囲においては。As shown in the figure, in the range where the TEG concentration is low.
成長速度がTBG濃度にほぼ比例して増加し、 TBG
濃度がさらに高い範囲では、成長速度がTBG濃度に比
例しなくなり、 TBG濃度がモル分率で20 X 1
0−4を越えると、成長速度がほぼ一定になる。これは
。The growth rate increases approximately in proportion to the TBG concentration, and TBG
In the higher concentration range, the growth rate is no longer proportional to the TBG concentration, and the TBG concentration is 20 × 1 molar fraction.
When the value exceeds 0-4, the growth rate becomes almost constant. this is.
第4図に示した。 TEGとASH3を同時に供給する
通常のMOCVD法の場合と類似しており、交互供給の
場合にも、 TBGの濃度範囲により、成長機構には供
給律速の状態と反応律速の状態とが存在することを示す
もの考えられる。It is shown in Figure 4. This is similar to the usual MOCVD method in which TEG and ASH3 are supplied simultaneously, and even in the case of alternating supply, depending on the TBG concentration range, there is a supply rate-limiting state and a reaction rate-limiting state in the growth mechanism. It is possible that this indicates that
第3図は、一部を5i02膜で被覆されたGaAsから
成る基板結晶2表面に、上記と同様にTEGとASH3
を交互に供給してGaAs層を成長させたのち、この3
i02膜をIP (弗酸)により除去して生じた段差を
表面膜差計を用いて測定した結果を示す。同図(alは
本発明の方法により成長させた試料、同図(b)は。FIG. 3 shows TEG and ASH3 in the same manner as above on the surface of a substrate crystal 2 made of GaAs partially covered with a 5i02 film.
After growing the GaAs layer by alternately supplying these three
The results of measuring the difference in level caused by removing the i02 film with IP (hydrofluoric acid) using a surface film difference meter are shown. The figure (al is a sample grown by the method of the present invention, the figure (b) is a sample grown by the method of the present invention.
比較のために1通常のMOCVD法により成長させた試
料の場合である。For comparison, this is the case of a sample grown by the usual MOCVD method.
同図(a)に示すように2本発明の方法により成長させ
たGaAs層には、前記SiO□膜によりマスクされて
いた領域との境界部から600μm以上までの範囲にわ
たる表面が平坦である。これに対し、同図(b)に示す
9通常のMOCVD法により成長させたGaAs層では
、前記SiO2膜によりマスクされていた領域との境界
部近傍にリッジが生じており、境界部から離れるにつれ
て表面が低(なり、平坦面に近づく。この平坦面からの
前記リッジの高さは15000A(1,5μm)に達し
、リッジの裾は境界部からおよそ1500μmの範囲に
わたっている。As shown in FIG. 2A, the GaAs layer grown by the method of the present invention has a flat surface over a range of 600 μm or more from the boundary with the region masked by the SiO□ film. On the other hand, in the GaAs layer grown by the normal MOCVD method shown in FIG. The surface becomes low (and approaches a flat surface). The height of the ridge from this flat surface reaches 15000 A (1.5 μm), and the foot of the ridge extends approximately 1500 μm from the boundary.
上記本発明の方法と従来のMOCVD法の結果の違いは
9次のように説明される。すなわち9通常のMOCVD
法のように、 TBG濃度が低い場合には、結晶成長サ
イトへの成長物質の供給に対して、 SiO□膜マスク
表面に吸着しているTBG分子やその分解で生じた中間
体あるいはGa原子のマイグレーションによる寄与が大
きい。したがって、 SiO□膜マスクとの境界部にお
ける供給速度が相対的に高(なり。The difference between the results of the method of the present invention and the conventional MOCVD method can be explained as follows. i.e. 9 normal MOCVD
When the TBG concentration is low, as in the case of the method, in contrast to the supply of growth material to the crystal growth site, TBG molecules adsorbed on the SiO□ film mask surface, intermediates generated by its decomposition, or Ga atoms are The contribution from migration is large. Therefore, the supply rate at the boundary with the SiO□ film mask is relatively high.
リッジが生じる。これに対して、 TBG濃度が高くな
ると、気相から成長サイトへの直接の供給あるいは成長
サイトのごく近傍の吸着物質のマイグレーションによる
供給が支配的となり、 SiO□膜マスク上のマイグレ
ーションによる供給は、境界部にリッジを生じるほどは
寄与しなくなる。A ridge occurs. On the other hand, when the TBG concentration increases, direct supply from the gas phase to the growth site or supply by migration of adsorbed substances in the vicinity of the growth site becomes dominant, and supply by migration on the SiO□ film mask becomes It does not contribute enough to cause a ridge at the boundary.
本発明の方法においても、前記供給律速の範囲のTBG
濃度では、 SiO2膜でマスクされていた領域との境
界近傍にリッジが生じることが認められている。上記の
ように反応律速の範囲の濃度のTEGを供給することに
より、リッジの発生が防止され。Also in the method of the present invention, TBG within the supply rate-limiting range
It has been observed that a ridge occurs near the boundary with the region masked by the SiO2 film. By supplying TEG at a concentration within the reaction rate-determining range as described above, the generation of ridges is prevented.
基板全面に均一なGaAs層を成長させる二とができる
。この結果は、 GaAs等の基板上にSiO□等の絶
縁膜をマスクとして選択成長を行う場合に対して有用で
あり、このような選択成長層を有する基板とフォトリソ
グラフ工程との整合性が向上可能であることを意味して
いる。It is possible to grow a uniform GaAs layer over the entire surface of the substrate. This result is useful when performing selective growth on a substrate such as GaAs using an insulating film such as SiO□ as a mask, and improves the compatibility between a substrate having such a selectively grown layer and the photolithography process. It means it's possible.
上記本発明の方法において1反応律速の範囲の濃度のT
BGの供給時間を変えることによって、 TEGとAs
Haの交互供給の1サイクル当たりの成長速度を制御す
ることができる。そして、交互供給のサイクル数によっ
て、所望の成長厚さを得ることができる。TBGの供給
時間が過大になると、1サイクル当たりのGa供給が多
くなりすぎて、成長結晶層表面のモフォロジー等を悪化
させることになる。In the above method of the present invention, T at a concentration within the rate-limiting range of one reaction.
By changing the supply time of BG, TEG and As
The growth rate per cycle of alternate supply of Ha can be controlled. A desired growth thickness can be obtained by changing the number of alternate supply cycles. If the TBG supply time becomes too long, the Ga supply per cycle becomes too large, which deteriorates the morphology of the surface of the grown crystal layer.
TEGの供給時間の上限は、基板温度ASH3の濃度お
よび供給時間等によって決定される。なお、第2図に示
す傾向は、供給ガスの全圧が変化してもほとんど変わら
ない。The upper limit of the TEG supply time is determined by the concentration of the substrate temperature ASH3, the supply time, etc. Note that the tendency shown in FIG. 2 hardly changes even if the total pressure of the supplied gas changes.
上記本発明の方法により、直径2インチのGaAsウェ
ハ表面内における層厚のバラツキが±1%以下である均
一なGaAs層を、ウェハを自転あるいは公転させるこ
となく形成できた。従来のMOCVD法によれば、同一
寸法のGaAsウエノ1上における均一性は、ウェハを
自転および公転させても±3%程度であった。By the above method of the present invention, a uniform GaAs layer with a variation in layer thickness within the surface of a 2-inch diameter GaAs wafer of ±1% or less could be formed without rotating or revolving the wafer. According to the conventional MOCVD method, the uniformity on the GaAs wafer 1 of the same size was about ±3% even when the wafer was rotated and revolved.
上記実施例においては、 GaAs基板上にGaAs層
を成長させる場合を示したが9本発明は、その他の二元
化合物半導体層、あるいは、三元以上の化合物事導体の
混晶層の成長に対しても有効である。In the above embodiment, a case where a GaAs layer is grown on a GaAs substrate is shown; however, the present invention is applicable to the growth of other binary compound semiconductor layers or mixed crystal layers of ternary or higher compound conductors. It is also effective.
また、半導体成長層にドープされる不純物の原料ガスに
ついても、他の原料ガスと交替で供給すれば、大面積に
均一なドーピングが可能である。さらに1本発明は、
5iC12H2を原料ガスとするSi層の成長に対して
も適用できる。この場合には、5iCI2H2とH2と
を交互に供給する。H2は、成長したSi層表面に吸着
しているC1原子ををI(CIとして離脱させる反応に
与かっており、これによりSi層の成長が進行する。し
たがって5本発明における原料ガスとみなされる。Moreover, if the raw material gas for impurities to be doped into the semiconductor growth layer is supplied alternately with other raw material gases, uniform doping over a large area is possible. Furthermore, one aspect of the present invention is
It can also be applied to the growth of a Si layer using 5iC12H2 as a source gas. In this case, 5iCI2H2 and H2 are supplied alternately. H2 participates in a reaction in which C1 atoms adsorbed on the surface of the grown Si layer are released as I (CI), thereby promoting the growth of the Si layer. Therefore, it is regarded as a raw material gas in the present invention.
本発明によれば、■原子層オーダの層厚制御を可能とす
るために従来のMOCVD法において必要とされていた
基板の自転あるいは公転機構を用いることなく、また、
一部をSiO□膜等によりマスクされた表面にリッジそ
の他の不均一性を生じることなく、大面積の基板に高均
一性の半導体結晶層あるいは非結晶層を通常のMOCV
D装置を用いて成長可能となる。その結果、高度な層厚
制御を必要とする半導体装置や多重量子井戸構造のよう
なlないし数原子層の異種半導体層を多層化して成る半
導体装置の開発ならびに実用化を促進する効果がある。According to the present invention, (1) In order to enable layer thickness control on the order of atomic layers, there is no need to use the rotation or revolution mechanism of the substrate, which is required in the conventional MOCVD method;
A highly uniform semiconductor crystal layer or an amorphous layer is deposited on a large-area substrate using normal MOCV without producing ridges or other non-uniformity on the surface partially masked with a SiO□ film, etc.
Growth is possible using D equipment. As a result, the present invention has the effect of promoting the development and practical use of semiconductor devices that require advanced layer thickness control and semiconductor devices that have multiple layers of different semiconductor layers of 1 to several atomic layers, such as multi-quantum well structures.
第1図は本発明の実施に用いた化学気相成長装置の概要
構成図。第2図は本発明の方法における成長速度と原料ガス濃度
との関係を示すグラフ。第3図は本発明の方法による成長層の均−性向上例を示
すグラフ。第4図は従来のMOCVD法における成長速度と原料ガ
ス濃度との関係を示すグラフである。図において。1は反応管、 2は基板結晶。3はターボ分子ポンプ。41と4□はロークリポンプ。5はロードロック機構、 6はヒータ。7はマニホールド、 8と9はボンベ。MlとM2とM3とM4とM5はマスフローコントロー
ラS1とS2とS3は流路切り換えバルブである。−忌訴稽塞ミ壜梁5[有]ト[F]n寸0へ一〇ぐ胃(Iγ溜”I −0(stbは/鼾榊 l隋V)■ζ8−FIG. 1 is a schematic diagram of a chemical vapor deposition apparatus used in carrying out the present invention. FIG. 2 is a graph showing the relationship between growth rate and raw material gas concentration in the method of the present invention. FIG. 3 is a graph showing an example of improving the uniformity of a grown layer by the method of the present invention. FIG. 4 is a graph showing the relationship between growth rate and raw material gas concentration in the conventional MOCVD method. In fig. 1 is a reaction tube, 2 is a substrate crystal. 3 is a turbo molecular pump. 41 and 4□ are low cryopumps. 5 is a load lock mechanism, 6 is a heater. 7 is the manifold, 8 and 9 are the cylinders. Ml, M2, M3, M4, and M5 are mass flow controllers, and S1, S2, and S3 are flow path switching valves. - 5 [Yes] To [F] n dimension 0 to 10 stomach (Iγ tame "I -0 (stb is/Snoring Sakaki l Sui V) ■ ζ8-
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP28646990AJPH04162418A (en) | 1990-10-24 | 1990-10-24 | Chemical vapor growth method |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP28646990AJPH04162418A (en) | 1990-10-24 | 1990-10-24 | Chemical vapor growth method |
| Publication Number | Publication Date |
|---|---|
| JPH04162418Atrue JPH04162418A (en) | 1992-06-05 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP28646990APendingJPH04162418A (en) | 1990-10-24 | 1990-10-24 | Chemical vapor growth method |
| Country | Link |
|---|---|
| JP (1) | JPH04162418A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6833161B2 (en)* | 2002-02-26 | 2004-12-21 | Applied Materials, Inc. | Cyclical deposition of tungsten nitride for metal oxide gate electrode |
| US6855368B1 (en) | 2000-06-28 | 2005-02-15 | Applied Materials, Inc. | Method and system for controlling the presence of fluorine in refractory metal layers |
| US6878206B2 (en) | 2001-07-16 | 2005-04-12 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
| US6911391B2 (en) | 2002-01-26 | 2005-06-28 | Applied Materials, Inc. | Integration of titanium and titanium nitride layers |
| US6916398B2 (en) | 2001-10-26 | 2005-07-12 | Applied Materials, Inc. | Gas delivery apparatus and method for atomic layer deposition |
| US6936906B2 (en) | 2001-09-26 | 2005-08-30 | Applied Materials, Inc. | Integration of barrier layer and seed layer |
| US6951804B2 (en) | 2001-02-02 | 2005-10-04 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
| US6998579B2 (en) | 2000-12-29 | 2006-02-14 | Applied Materials, Inc. | Chamber for uniform substrate heating |
| US7022948B2 (en) | 2000-12-29 | 2006-04-04 | Applied Materials, Inc. | Chamber for uniform substrate heating |
| US7049226B2 (en) | 2001-09-26 | 2006-05-23 | Applied Materials, Inc. | Integration of ALD tantalum nitride for copper metallization |
| US7085616B2 (en) | 2001-07-27 | 2006-08-01 | Applied Materials, Inc. | Atomic layer deposition apparatus |
| US7101795B1 (en) | 2000-06-28 | 2006-09-05 | Applied Materials, Inc. | Method and apparatus for depositing refractory metal layers employing sequential deposition techniques to form a nucleation layer |
| US7201803B2 (en) | 2001-03-07 | 2007-04-10 | Applied Materials, Inc. | Valve control system for atomic layer deposition chamber |
| US7208413B2 (en) | 2000-06-27 | 2007-04-24 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
| US7211144B2 (en) | 2001-07-13 | 2007-05-01 | Applied Materials, Inc. | Pulsed nucleation deposition of tungsten layers |
| US7262133B2 (en) | 2003-01-07 | 2007-08-28 | Applied Materials, Inc. | Enhancement of copper line reliability using thin ALD tan film to cap the copper line |
| US7405158B2 (en) | 2000-06-28 | 2008-07-29 | Applied Materials, Inc. | Methods for depositing tungsten layers employing atomic layer deposition techniques |
| US7439191B2 (en) | 2002-04-05 | 2008-10-21 | Applied Materials, Inc. | Deposition of silicon layers for active matrix liquid crystal display (AMLCD) applications |
| US7595263B2 (en) | 2003-06-18 | 2009-09-29 | Applied Materials, Inc. | Atomic layer deposition of barrier materials |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7501343B2 (en) | 2000-06-27 | 2009-03-10 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
| US7501344B2 (en) | 2000-06-27 | 2009-03-10 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
| US7208413B2 (en) | 2000-06-27 | 2007-04-24 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
| US7101795B1 (en) | 2000-06-28 | 2006-09-05 | Applied Materials, Inc. | Method and apparatus for depositing refractory metal layers employing sequential deposition techniques to form a nucleation layer |
| US6855368B1 (en) | 2000-06-28 | 2005-02-15 | Applied Materials, Inc. | Method and system for controlling the presence of fluorine in refractory metal layers |
| US7465666B2 (en) | 2000-06-28 | 2008-12-16 | Applied Materials, Inc. | Method for forming tungsten materials during vapor deposition processes |
| US7405158B2 (en) | 2000-06-28 | 2008-07-29 | Applied Materials, Inc. | Methods for depositing tungsten layers employing atomic layer deposition techniques |
| US7235486B2 (en) | 2000-06-28 | 2007-06-26 | Applied Materials, Inc. | Method for forming tungsten materials during vapor deposition processes |
| US7115494B2 (en) | 2000-06-28 | 2006-10-03 | Applied Materials, Inc. | Method and system for controlling the presence of fluorine in refractory metal layers |
| US7033922B2 (en) | 2000-06-28 | 2006-04-25 | Applied Materials. Inc. | Method and system for controlling the presence of fluorine in refractory metal layers |
| US7022948B2 (en) | 2000-12-29 | 2006-04-04 | Applied Materials, Inc. | Chamber for uniform substrate heating |
| US6998579B2 (en) | 2000-12-29 | 2006-02-14 | Applied Materials, Inc. | Chamber for uniform substrate heating |
| US6951804B2 (en) | 2001-02-02 | 2005-10-04 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
| US7094680B2 (en) | 2001-02-02 | 2006-08-22 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
| US7781326B2 (en) | 2001-02-02 | 2010-08-24 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
| US7201803B2 (en) | 2001-03-07 | 2007-04-10 | Applied Materials, Inc. | Valve control system for atomic layer deposition chamber |
| US7211144B2 (en) | 2001-07-13 | 2007-05-01 | Applied Materials, Inc. | Pulsed nucleation deposition of tungsten layers |
| US10280509B2 (en) | 2001-07-16 | 2019-05-07 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
| US6878206B2 (en) | 2001-07-16 | 2005-04-12 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
| US7085616B2 (en) | 2001-07-27 | 2006-08-01 | Applied Materials, Inc. | Atomic layer deposition apparatus |
| US6936906B2 (en) | 2001-09-26 | 2005-08-30 | Applied Materials, Inc. | Integration of barrier layer and seed layer |
| US7352048B2 (en) | 2001-09-26 | 2008-04-01 | Applied Materials, Inc. | Integration of barrier layer and seed layer |
| US7049226B2 (en) | 2001-09-26 | 2006-05-23 | Applied Materials, Inc. | Integration of ALD tantalum nitride for copper metallization |
| US7494908B2 (en) | 2001-09-26 | 2009-02-24 | Applied Materials, Inc. | Apparatus for integration of barrier layer and seed layer |
| US6916398B2 (en) | 2001-10-26 | 2005-07-12 | Applied Materials, Inc. | Gas delivery apparatus and method for atomic layer deposition |
| US6911391B2 (en) | 2002-01-26 | 2005-06-28 | Applied Materials, Inc. | Integration of titanium and titanium nitride layers |
| US7094685B2 (en) | 2002-01-26 | 2006-08-22 | Applied Materials, Inc. | Integration of titanium and titanium nitride layers |
| US7732325B2 (en) | 2002-01-26 | 2010-06-08 | Applied Materials, Inc. | Plasma-enhanced cyclic layer deposition process for barrier layers |
| US7473638B2 (en) | 2002-01-26 | 2009-01-06 | Applied Materials, Inc. | Plasma-enhanced cyclic layer deposition process for barrier layers |
| US7429516B2 (en) | 2002-02-26 | 2008-09-30 | Applied Materials, Inc. | Tungsten nitride atomic layer deposition processes |
| US7115499B2 (en) | 2002-02-26 | 2006-10-03 | Applied Materials, Inc. | Cyclical deposition of tungsten nitride for metal oxide gate electrode |
| US6833161B2 (en)* | 2002-02-26 | 2004-12-21 | Applied Materials, Inc. | Cyclical deposition of tungsten nitride for metal oxide gate electrode |
| US7439191B2 (en) | 2002-04-05 | 2008-10-21 | Applied Materials, Inc. | Deposition of silicon layers for active matrix liquid crystal display (AMLCD) applications |
| US7262133B2 (en) | 2003-01-07 | 2007-08-28 | Applied Materials, Inc. | Enhancement of copper line reliability using thin ALD tan film to cap the copper line |
| US7595263B2 (en) | 2003-06-18 | 2009-09-29 | Applied Materials, Inc. | Atomic layer deposition of barrier materials |
| Publication | Publication Date | Title |
|---|---|---|
| TWI857154B (en) | Methods for selective deposition of doped semiconductor material | |
| JPH04162418A (en) | Chemical vapor growth method | |
| US5270247A (en) | Atomic layer epitaxy of compound semiconductor | |
| CN108615672B (en) | Preparation method of semiconductor crystalline film and semiconductor crystalline film | |
| JPH0547665A (en) | Vapor growth method | |
| JP2789861B2 (en) | Organometallic molecular beam epitaxial growth method | |
| JP2577550B2 (en) | Impurity doping of III-V compound semiconductor single crystal thin films | |
| US4798743A (en) | Vapor deposition method for the GaAs thin film | |
| JP2736655B2 (en) | Compound semiconductor crystal growth method | |
| JP3141628B2 (en) | Compound semiconductor device and method of manufacturing the same | |
| JP2847198B2 (en) | Compound semiconductor vapor phase growth method | |
| JP3052269B2 (en) | Vapor phase growth apparatus and growth method thereof | |
| JP2793239B2 (en) | Method for manufacturing compound semiconductor thin film | |
| JP3112796B2 (en) | Chemical vapor deposition method | |
| JPH0620042B2 (en) | Method for doping group III compound semiconductor crystal | |
| JPH03280419A (en) | Growth method of compound semiconductor thin film | |
| JPH03232221A (en) | Vapor growth method for compound semiconductor | |
| JPH04279023A (en) | Method of selectively growing 3-5 compound semiconductor | |
| JPS63174315A (en) | Method for doping iii-v compound semiconductor crystal | |
| JPH03112127A (en) | Method of forming silicon carbide | |
| JPS63181314A (en) | Doping of iii-v compound semiconductor crystal | |
| JPH04118921A (en) | Compound semiconductor crystal growth method | |
| JPH04259212A (en) | Crystal growth method of compound semiconductor | |
| JPH0222814A (en) | Method for manufacturing compound semiconductor layer | |
| JPH03133123A (en) | Organic metal vapor phase growth method |