Movatterモバイル変換


[0]ホーム

URL:


JPH04150212A - Etching method for crystal substrate - Google Patents

Etching method for crystal substrate

Info

Publication number
JPH04150212A
JPH04150212AJP27128490AJP27128490AJPH04150212AJP H04150212 AJPH04150212 AJP H04150212AJP 27128490 AJP27128490 AJP 27128490AJP 27128490 AJP27128490 AJP 27128490AJP H04150212 AJPH04150212 AJP H04150212A
Authority
JP
Japan
Prior art keywords
crystal
etching
crystal substrate
shape
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27128490A
Other languages
Japanese (ja)
Inventor
Takashi Kasahara
隆 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson CorpfiledCriticalSeiko Epson Corp
Priority to JP27128490ApriorityCriticalpatent/JPH04150212A/en
Publication of JPH04150212ApublicationCriticalpatent/JPH04150212A/en
Pendinglegal-statusCriticalCurrent

Links

Landscapes

Abstract

Translated fromJapanese

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

Translated fromJapanese

【発明の詳細な説明】〔産業上の利用分野〕本発明は水6基板のエツチング加工に関し、特に水晶振
動子のエツチングによる外形加工方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to etching processing of a water 6 substrate, and more particularly to an improvement in a method for processing the external shape of a crystal resonator by etching.

〔従来の技術〕[Conventional technology]

従来の水晶振動子の外形加工方法として、フォトリソグ
ラフィー技術を利用し、エツチングにて水晶振動板を音
叉形状、または矩形状に加工する方法がとられている。
A conventional method for shaping the external shape of a crystal resonator is to use photolithography technology and process a crystal diaphragm into a tuning fork shape or a rectangular shape by etching.

この方法にて加工された水晶振動片では、水晶の結晶座
標軸(x 、 y * z )において異方性を有して
いるため、水晶のエツチング速度が結晶座標軸により相
違を・生じ外形形状の不均一を生じている。例えば、腕
時計の発振源として使用される音叉形水晶片について説
明すると、第4図(α)の外形図、及びそのA−A’断
面である同図(b)に示すような形状でエツチング加工
される。なお、同図の結晶座標(” e Y’#z′)
は、周波数と温度特性との関係でX軸のまわりに00〜
6°回転したものであり、通常z板と呼ばれる水晶基板
が使用されている。また、エツチング液としては酸性フ
ッ化アンモン(N H4H12)溶液やフッ化水素酸(
HlF)溶液が使用されているこのようにエツチング加
工によって得られた水晶は、第4図に示すように2本の
板状の脚部1.2と、その脚部を連結する板状の基部5
とで音叉形水晶振動板4を形成している。ここで各側面
について注目すると、脚部1,2の片側面は鋭く切シ立
った垂直側面5,6で形成され、他の側面は中央部が高
い山形側面7,8で形成されている。また、脚部1,2
をつなぐ叉部には、山形側面と同様に中央部が高い形状
となったとし部9が形成されている。これら側面の不均
一形状は、水晶結晶の異方性によるエツチング速度の相
違によるものであり、水晶基板のエツチング加工におけ
る欠点であった。また、この技術により水晶振動子を作
成した場合にはこの不均一形状により水晶振動子の特性
、特に直列共振抵抗(以下「C工」とい5゜)を太き(
する問題が生じていた。
Since the crystal vibrating piece processed using this method has anisotropy in the crystal coordinate axes (x, y * z), the etching rate of the crystal varies depending on the crystal coordinate axes, resulting in irregularities in the external shape. Uniformity is occurring. For example, to explain a tuning fork-shaped crystal piece used as an oscillation source in a wristwatch, it is etched into a shape as shown in the external view of Fig. 4 (α) and its A-A' cross section in Fig. 4 (b). be done. In addition, the crystal coordinates (" e Y'#z') in the same figure
is around the X axis due to the relationship between frequency and temperature characteristics.
It is rotated by 6 degrees and uses a crystal substrate commonly called a z-plate. In addition, as an etching solution, acidic ammonium fluoride (NH4H12) solution and hydrofluoric acid (
The crystal obtained by etching using HlF) solution has two plate-shaped legs 1.2 and a plate-shaped base connecting the legs, as shown in Fig. 4. 5
and form a tuning fork-shaped crystal diaphragm 4. Now, paying attention to each side, one side of the legs 1, 2 is formed by sharply cut vertical sides 5, 6, and the other side is formed by chevron-shaped sides 7, 8 with a high central portion. In addition, the legs 1 and 2
The prongs connecting the two are formed with a ridged portion 9 having a high central portion similar to the chevron-shaped side surface. These non-uniform shapes on the side surfaces are due to differences in etching speed due to the anisotropy of the quartz crystal, and are a drawback in etching processing of quartz substrates. In addition, when a crystal resonator is created using this technology, the characteristics of the crystal resonator, especially the series resonant resistance (hereinafter referred to as "C process"), are increased (5 degrees) due to this non-uniform shape.
A problem arose.

〔発明が解決しよ5とする課題〕本発明の目的は、従来の水晶エツチング加工の欠点であ
った形状不均一をな(し、このことにより水晶振動子の
C1値を低減することのできる水晶基板のエツチング加
工方法を提供することにある。
[Problems to be Solved by the Invention] The purpose of the present invention is to eliminate shape non-uniformity, which is a drawback of conventional crystal etching processing, and thereby reduce the C1 value of the crystal resonator. An object of the present invention is to provide a method for etching a crystal substrate.

〔屍題を解決するための手段〕[Means to solve the corpse problem]

上記従来の課題を解決するために本発明は、水晶エツチ
ング溶液内の水晶基板にレーザビームを照射しレーザビ
ーム照射部の水晶基板を変質させることによりエツチン
グを促進してエツチング加工をする水晶基板のエツチン
グ加工方法を特徴とする。
In order to solve the above-mentioned conventional problems, the present invention irradiates a quartz crystal substrate in a quartz crystal etching solution with a laser beam to change the quality of the quartz substrate in the laser beam irradiation part, thereby promoting etching of the quartz substrate. It is characterized by an etching process method.

〔実施例〕〔Example〕

次に本発明の実施例について説明する。第1図に本発明
のエツチング装置の構成について図示する。エツチング
液は酸性フッ化アンモン溶液が使用され、液タンク21
のエツチング液はヒータ22で温められポンプ25によ
りエツチング室24に送られ、再び液タンク21へ戻る
ように構成されている。エツチング室24には水晶基板
25を固定するペース26が設けられ、上ブタ26でエ
ツチング室24が密閉される構造となっている。
Next, examples of the present invention will be described. FIG. 1 illustrates the configuration of an etching apparatus according to the present invention. An acidic ammonium fluoride solution is used as the etching solution, and the solution tank 21
The etching liquid is heated by a heater 22, sent to an etching chamber 24 by a pump 25, and returned to the liquid tank 21 again. A paste 26 for fixing a crystal substrate 25 is provided in the etching chamber 24, and the etching chamber 24 is hermetically sealed with an upper lid 26.

エツチング室外部にはレーザ発生装置28が設置され、
本実施例ではlid:YAGレーザ(λ=1.06μr
rL)にて構成されている。レーザ発生装置2Bから発
生したレーザビームはX−Y走査ミラー29を通り反射
ミラー50にて反射され集光レンズ31により集光され
、エツチング室24上部に設けられたマスク27を通し
てエツチング室24内の水晶基板25に照射できる構成
となっている。また、エツチング室24内のレーザ照射
位置はテレビそニタ32により観察が可能でありX−Y
走査ミラー29を動かすことにより、レーザビームを走
査することができるように構成されている。
A laser generator 28 is installed outside the etching chamber.
In this example, lid: YAG laser (λ=1.06 μr
rL). The laser beam generated from the laser generator 2B passes through the X-Y scanning mirror 29, is reflected by the reflection mirror 50, is focused by the condensing lens 31, and passes through the mask 27 provided at the top of the etching chamber 24. The configuration is such that the crystal substrate 25 can be irradiated with the light. Furthermore, the laser irradiation position in the etching chamber 24 can be observed using the television monitor 32, and can be viewed from X-Y.
It is configured so that the laser beam can be scanned by moving the scanning mirror 29.

次に、レーザビーム照射部について第2図において詳細
に説明する。レーザ発生装置から出たレーザビーム33
は、マスク27によりビームカ絞られサファイヤガラス
の上ブタ26を通してエツチング室24内の水晶基板2
5へ照射される。マスク27には音叉形状のパターンが
形成されており、そのパターンをレーザビームが走査あ
るいは一括瞭射することにより水晶基板25に照射する
ことができる。水晶基板25の板厚は200〜80μ扉
程度であり、ボリシング加工により鏡面に仕上げられて
いる。そして、水晶基板250表面にはあらかじめレジ
スト54が塗布され音叉形状のパターンが現像されてい
る。レーザービーム53はレジスト54の現像された部
分に照射されることになる。レーザのパワーはレーザ照
射部の基板温度を上げる程度でも良いが、水晶を変質さ
せる程度のパワーが効果的である。このようにして、レ
ーザビームが照射された部分は水晶基板が薄いため、上
面から下面にかけて変質させられることになる。この水
晶基板25の変質させられた部分は通常の水晶部に較べ
てエツチング速度づ;速く、水晶の異方性の影響を受け
ずに上下面からエツチングされることになる。
Next, the laser beam irradiation section will be explained in detail with reference to FIG. Laser beam 33 emitted from the laser generator
The beam is focused by a mask 27 and passes through a sapphire glass top cover 26 to the crystal substrate 2 in the etching chamber 24.
5 is irradiated. A tuning fork-shaped pattern is formed on the mask 27, and the crystal substrate 25 can be irradiated with a laser beam by scanning the pattern or by projecting it all at once. The thickness of the crystal substrate 25 is approximately 200 to 80 μm, and is finished to a mirror surface by boring. A resist 54 is applied on the surface of the crystal substrate 250 in advance, and a tuning fork-shaped pattern is developed. The laser beam 53 will be irradiated onto the developed portion of the resist 54. The power of the laser may be sufficient to raise the temperature of the substrate at the laser irradiation part, but it is effective to use a power that changes the quality of the crystal. In this manner, since the quartz substrate is thin in the portion irradiated with the laser beam, the quality is altered from the top surface to the bottom surface. This altered portion of the crystal substrate 25 has a faster etching speed than a normal crystal portion, and is etched from the top and bottom surfaces without being affected by the anisotropy of the crystal.

このようにしてエツチング加工された音叉形状の水晶振
動子仮は第3図に示すような形状となる。第5図(α)
は第2図におけるレジストを除去した状態の外形図、同
図Cb)は(α)のB −B’断面図である。2本の板
状の脚部41.42と、その脚部を連結する板状の基部
43とで音叉形水晶振動子板44を形成している。各側
面については第5図Cb)に示すように、脚部41.4
2の両側面は鋭(切シ立った垂直側面45 、46 、
47.48で形成されている。また、脚部41,42を
つなぐ叉部にはヒレ部が形成されず良好な形状が得られ
ている。
The tentative tuning fork-shaped crystal resonator etched in this manner has a shape as shown in FIG. Figure 5 (α)
2 is an external view with the resist removed, and Cb) is a sectional view taken along line B-B' in (α). A tuning fork-shaped crystal resonator plate 44 is formed by two plate-shaped legs 41 and 42 and a plate-shaped base 43 that connects the legs. For each side, as shown in Figure 5Cb), the legs 41.4
Both sides of 2 are sharp (cut vertical sides 45, 46,
It is formed by 47.48. In addition, no fins are formed in the prongs connecting the legs 41 and 42, resulting in a good shape.

本実施例では、主表面が2軸に垂直である2板水晶基板
から音叉形状の振動板にエツチング加工をする場合につ
いて説明したが、他の水晶のカット方法(例えばAT板
)による水晶基板についても応用が可能であり、また形
状についても音叉形状だけでなく矩形状でも円板状でも
応用が可能であることは言うまでもない。
In this example, we have explained the case where a tuning fork-shaped diaphragm is etched from a two-plate crystal substrate whose main surfaces are perpendicular to two axes. Needless to say, it can also be applied to shapes such as not only a tuning fork shape but also a rectangular shape or a disk shape.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明では水晶基板のエツチング加工に
おける従来までの欠点であった水晶結晶の異方性による
外形形状の不均一をなくすとともに、エツチング速度が
速(なることから量産性の優れた水晶基板の外形加工方
法を提供することができる。また、外形形状の不均一が
解消されるため、水晶振動子としての特性であるC1値
を小さ(、バラツキを少なくする効果を有し、品質の向
上を図ることができる。
As described above, the present invention eliminates the non-uniformity of the outer shape due to the anisotropy of the quartz crystal, which was a conventional drawback in the etching process of quartz crystal substrates, and also improves the etching speed (because it becomes faster). It is possible to provide a method for processing the external shape of a crystal substrate.In addition, since the non-uniformity of the external shape is eliminated, the C1 value, which is a characteristic of a crystal resonator, is reduced (it has the effect of reducing variation, and the quality It is possible to improve the

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例におけるエツチング装置の概略
構成図、第2図は本発明による水晶基板のエツチング部
の拡大図、第6図は本発明によりエツチング加工した音
叉形水晶振動板の形状を示し、(α)が平面図、Ch)
が(α)のB−B’断面図、第4図は従来のエツチング
加工方法による音叉形水晶振動板の形状を示し、(α)
が平面図、Cb)が(α)のA−A’断面図である。24・・・・・・・・・エツチング室25・・・・・・・・・水晶基板28・・・・・・・・・レーザ発生装置55・・・・・
・・・・レーザビーム45.46,47.48・・・・・・垂直側面第2図!、−XZ′第4図(O、ン
FIG. 1 is a schematic configuration diagram of an etching apparatus according to an embodiment of the present invention, FIG. 2 is an enlarged view of an etched portion of a crystal substrate according to the present invention, and FIG. 6 is a shape of a tuning fork-shaped crystal diaphragm etched according to the present invention. (α) is the plan view, Ch)
is a BB' cross-sectional view of (α), and Figure 4 shows the shape of a tuning fork-shaped crystal diaphragm made by the conventional etching method.
is a plan view, and Cb) is a sectional view taken along line AA' of (α). 24...Etching chamber 25...Crystal substrate 28...Laser generator 55...
...Laser beams 45.46, 47.48...Vertical side figure 2! , -X Z' Figure 4 (O, N

Claims (1)

Translated fromJapanese
【特許請求の範囲】[Claims](1) 水晶エッチング溶液内の水晶基板にレーザビー
ムを照射しレーザビーム照射部の水晶基板を変質させる
ことによりエッチングを促進してエッチング加工をする
ことを特徴とする水晶基板のエッチング加工方法。
(1) A method for etching a quartz substrate, which comprises irradiating a quartz substrate in a quartz etching solution with a laser beam and altering the quality of the quartz substrate in the laser beam irradiation area to promote etching.
JP27128490A1990-10-091990-10-09 Etching method for crystal substratePendingJPH04150212A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP27128490AJPH04150212A (en)1990-10-091990-10-09 Etching method for crystal substrate

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP27128490AJPH04150212A (en)1990-10-091990-10-09 Etching method for crystal substrate

Publications (1)

Publication NumberPublication Date
JPH04150212Atrue JPH04150212A (en)1992-05-22

Family

ID=17497923

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP27128490APendingJPH04150212A (en)1990-10-091990-10-09 Etching method for crystal substrate

Country Status (1)

CountryLink
JP (1)JPH04150212A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US8541319B2 (en)2010-07-262013-09-24Hamamatsu Photonics K.K.Laser processing method
US8591753B2 (en)2010-07-262013-11-26Hamamatsu Photonics K.K.Laser processing method
US8673167B2 (en)2010-07-262014-03-18Hamamatsu Photonics K.K.Laser processing method
US8685269B2 (en)2010-07-262014-04-01Hamamatsu Photonics K.K.Laser processing method
US8741777B2 (en)2010-07-262014-06-03Hamamatsu Photonics K.K.Substrate processing method
US8802544B2 (en)2010-07-262014-08-12Hamamatsu Photonics K.K.Method for manufacturing chip including a functional device formed on a substrate
US8828260B2 (en)2010-07-262014-09-09Hamamatsu Photonics K.K.Substrate processing method
US8828873B2 (en)2010-07-262014-09-09Hamamatsu Photonics K.K.Method for manufacturing semiconductor device
US8841213B2 (en)2010-07-262014-09-23Hamamatsu Photonics K.K.Method for manufacturing interposer
US8945416B2 (en)2010-07-262015-02-03Hamamatsu Photonics K.K.Laser processing method
US8961806B2 (en)2010-07-262015-02-24Hamamatsu Photonics K.K.Laser processing method
US9108269B2 (en)2010-07-262015-08-18Hamamatsu Photonics K. K.Method for manufacturing light-absorbing substrate and method for manufacturing mold for making same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US8541319B2 (en)2010-07-262013-09-24Hamamatsu Photonics K.K.Laser processing method
US8591753B2 (en)2010-07-262013-11-26Hamamatsu Photonics K.K.Laser processing method
US8673167B2 (en)2010-07-262014-03-18Hamamatsu Photonics K.K.Laser processing method
US8685269B2 (en)2010-07-262014-04-01Hamamatsu Photonics K.K.Laser processing method
US8741777B2 (en)2010-07-262014-06-03Hamamatsu Photonics K.K.Substrate processing method
US8802544B2 (en)2010-07-262014-08-12Hamamatsu Photonics K.K.Method for manufacturing chip including a functional device formed on a substrate
US8828260B2 (en)2010-07-262014-09-09Hamamatsu Photonics K.K.Substrate processing method
US8828873B2 (en)2010-07-262014-09-09Hamamatsu Photonics K.K.Method for manufacturing semiconductor device
US8841213B2 (en)2010-07-262014-09-23Hamamatsu Photonics K.K.Method for manufacturing interposer
US8945416B2 (en)2010-07-262015-02-03Hamamatsu Photonics K.K.Laser processing method
US8961806B2 (en)2010-07-262015-02-24Hamamatsu Photonics K.K.Laser processing method
US9108269B2 (en)2010-07-262015-08-18Hamamatsu Photonics K. K.Method for manufacturing light-absorbing substrate and method for manufacturing mold for making same

Similar Documents

PublicationPublication DateTitle
JPH04150212A (en) Etching method for crystal substrate
TWI404330B (en)Tuning-fork type crystal unit and method of frequency adjustment thereof
US20100156237A1 (en)Tuning-Fork Type Piezoelectric Vibrating Piece and Piezoelectric Device
US20110291524A1 (en)Piezoelectric devices including frequency-adjustment units
US20140251963A1 (en)Laser machining method and laser machining device
JPH09269430A (en)Production of optical waveguide device
GB2152281A (en)Process for producing miniature piezoelectric devices using laser machining and devices obtained by this process
JP6766879B2 (en) Frequency adjustment method for piezoelectric vibration device
US20110241790A1 (en)Tuning-Fork Type Crystal Vibrating Piece Device and Manufacturing the Same
JP2006166275A (en) Quartz device manufacturing method
JP6841678B2 (en) Crystal oscillator
JPH04196610A (en)Frequency adjustment method for piezoelectric vibrator
JP2008078869A (en)Method for manufacturing oscillator
JPH05121803A (en) Semiconductor pumped solid state laser
JP5061956B2 (en) Method for adjusting frequency of piezoelectric vibration device
US20180054181A1 (en)Crystal resonator
JP5848802B2 (en) Optical device, optical device manufacturing method, and exposure apparatus
JP2013138285A (en)Tuning-fork type crystal vibration piece, tuning-fork type crystal oscillator using the same and manufacturing method thereof
JPH0857678A (en) Laser processing equipment
JPS5829648B2 (en) How to adjust the natural frequency of a tuning fork crystal resonator
US20230106055A1 (en)Resonator Component, Resonator Device, And Method Of Manufacturing Resonator Component
JPH0637567A (en) Electrode forming method for thickness type crystal unit
JP2003290942A (en)Method for machining crystal piece
JPH03262311A (en)Frequency adjustment method for piezoelectric vibrator
JPS6294008A (en)Piezoelectric thin film resonator

[8]ページ先頭

©2009-2025 Movatter.jp