【発明の詳細な説明】〔概要〕高密度化によって作動中の発熱量の増大した電子装置の
冷却に関し、従来から行われている経済的な強制空冷方式の下で、高
発熱部品の効率的な冷却を行うことのできる冷却構造を
提供することを目的とし、高発熱部品を搭載した多数の
プリント基板を並列して収容したシェルフを多段に積層
し、最上部に冷却ファンを設置して、冷却風がシェルフ
内の隣接する各プリント基板同士の間を通って上昇・流
通するように構成すると共に、多数のフィンを並列して
具えた放熱具を該フィンが冷却風の流れに平行になるよ
うに前記各高発熱部品の天面に固定した電子装置の冷却
構造において、各フィンの高さが、冷却風の風上から風
下に向かって次第に低くなり、及び/又は冷却風の流れ
の方向に沿った各フィンの長さが、放熱具の中心から離
れた両側に位置するフィンほど次第に短くなっている構
成とする。[Detailed Description of the Invention] [Summary] Regarding the cooling of electronic devices that generate more heat during operation due to higher density, the present invention aims to efficiently cool high heat generating components under the conventional economical forced air cooling method. The purpose of this design is to provide a cooling structure that can perform high-temperature cooling, by stacking shelves in which a large number of printed circuit boards with high heat generation components are housed in parallel, and installing a cooling fan at the top. The cooling air is configured so that it rises and flows between adjacent printed circuit boards in the shelf, and the heat dissipation device includes a large number of fins arranged in parallel so that the fins are parallel to the flow of the cooling air. In the cooling structure for an electronic device fixed to the top surface of each high heat generation component, the height of each fin gradually decreases from upwind to downwind of the cooling air, and/or the height of each fin decreases in the direction of the flow of the cooling air. The length of each fin along the radiator becomes gradually shorter as the fins are located on both sides farther from the center of the heat radiator.
本発明は、高密度化によって作動中の発熱量の増大した
電子装置の冷却に関する。TECHNICAL FIELD The present invention relates to the cooling of electronic devices that generate more heat during operation due to higher density.
近年、電子装置の高性能化、小型化の要求に応えて、半
導体素子など電子部品の集積度や実装密度は飛躍的に増
大し、これに伴って電子装置内の発熱も多くなって来た
。装置の温度上昇は各電子部品の寿命や動作の信顧性に
悪影響を与えるので、その対策が重要な課題となってい
る。In recent years, in response to demands for higher performance and smaller size of electronic devices, the degree of integration and packaging density of electronic components such as semiconductor elements has increased dramatically, and as a result, heat generation within electronic devices has also increased. . Since temperature rises in devices have a negative impact on the lifespan and operational reliability of each electronic component, countermeasures have become an important issue.
従来から電子装置の冷却には強制通風による空冷方式が
採用されている。例えば、第6図に示すように、モジュ
ールを構成する多数のプリント基板11を並列したシェ
ルフ12を、架枠13内に多段に積層して組立てられた
電子装置において、架枠13の最上部に冷却用ファン1
4を設置している。このファン14を作動させると、架
枠の下部から冷たい外気が吸引され、各段に並列された
プリント基板11の間の間隙を通って上昇し、その間に
発熱部品を冷却し、温まった空気はファン14によって
上方に排出されるようになっている。Air cooling methods using forced ventilation have traditionally been used to cool electronic devices. For example, as shown in FIG. 6, in an electronic device assembled by stacking a shelf 12 in which a large number of printed circuit boards 11 constituting a module are stacked in multiple stages within a frame 13, the uppermost part of the frame 13 is Cooling fan 1
4 is installed. When this fan 14 is activated, cold outside air is sucked in from the bottom of the frame and rises through the gaps between the printed circuit boards 11 arranged in parallel at each stage, cooling the heat-generating components and dissipating the warmed air. The air is discharged upward by a fan 14.
特に発熱量の大きいLSI等の部品5については、冷却
効率を高めるために、第7図に示すように、熱伝導率の
高いアルミ等で作られた放熱具16をその上部に取付け
、そのフィン16aの間を空気を流すことによって冷却
効率を高める構成となっている。図において、符号7は
、IC等の比較的発熱量の少ない部品を示す。In order to improve the cooling efficiency of parts 5 such as LSIs that generate a particularly large amount of heat, a heat sink 16 made of aluminum or the like with high thermal conductivity is attached to the top of the parts 5, and the fins are It is configured to increase cooling efficiency by flowing air between the spaces 16a. In the figure, reference numeral 7 indicates a component such as an IC that generates a relatively small amount of heat.
この例における冷却空気の流れを模式的に示すと、第8
図(a)(平面図)及び第8図(b)(側面図)のよう
になる。即ち、気流は放熱具16の上方(側面図参照)
や隣合う放熱具6同士の間(平面図参照)の比較的通風
抵抗の少ない領域に集中して流入し、プリント基板11
の表面に近い領域やフィン16aの間には流れ難い状況
となっている。このため、高発熱部品の増加した最近の
電子装置においては冷却不足となり勝ちである。Schematically showing the flow of cooling air in this example, the 8th
The result is shown in FIG. 8(a) (top view) and FIG. 8(b) (side view). That is, the airflow is directed above the heat sink 16 (see side view).
The flow is concentrated in areas with relatively low ventilation resistance between the heat sinks 6 and adjacent heat sinks 6 (see plan view), and the printed circuit board 11
It is difficult for the liquid to flow in areas near the surface of the fins 16a and between the fins 16a. For this reason, in recent electronic devices with an increased number of high heat generating components, cooling is likely to be insufficient.
勿論、空冷方式よりも一般的に冷却効率の高い水冷方式
を採用すれば、この問題は改善されるが、一部のみに高
発熱部品が偏在していることの多い現在の電子装置に水
冷方式を取り入れることは、スペースの問題もあって余
り得策ではない。Of course, this problem could be alleviated by adopting a water-cooling system, which generally has higher cooling efficiency than an air-cooling system. It is not a good idea to incorporate this, partly because of space issues.
本発明は、このような従来技術における問題点を解決し
、従来から行われている経済的な強制空冷方式の下で、
高発熱部品の効率的な冷却を行うことのできる冷却構造
を提供することを目的とする。The present invention solves the problems in the prior art, and uses the conventionally used economical forced air cooling system.
It is an object of the present invention to provide a cooling structure that can efficiently cool high heat generating components.
[課題を解決するための手段〕この目的は、高発熱部品を搭載した多数のプリント基板
を並列して収容したシェルフを多段に積層し、最上部に
冷却ファンを設置して、冷却風がシェルフ内の隣接する
各プリント基板同士の間を通って上昇・流通するように
構成すると共に、多数のフィンを並列して具えた放熱具
を該フィンが冷却風の流れに平行になるように前記各高
発熱部品の天面に固定した電子装置の冷却構造において
、各フィンの高さが、冷却風の風上から風下に向かって
次第に低くなり、及び/又は冷却風の流れの方向に沿っ
た各フィンの長さが、冷却具の中心から離れた両側に位
置するフィンほど次第に短くなっていることを特徴とす
る電子装置の冷却構造によって達成される。[Means for solving the problem] The purpose of this is to stack shelves containing a large number of printed circuit boards with high heat generation components in parallel, and install a cooling fan at the top so that the cooling air flows through the shelves. The heat dissipating device is configured such that the heat radiating device has a large number of fins arranged in parallel, and the fins are arranged parallel to the flow of the cooling air. In a cooling structure for an electronic device fixed to the top surface of a high heat generating component, the height of each fin gradually decreases from upwind to downwind of the cooling air, and/or This is achieved by a cooling structure for an electronic device characterized in that the length of the fins becomes gradually shorter as the fins are located on both sides farther from the center of the cooling device.
冷却風の流れ方向に対して高さが次第に低くなるフィン
を具えた放熱具の場合には、放熱具の上方を流れる風が
、この傾斜したフィンの上面に沿って下部し、プリント
基板の表面に接近してその領域に配列されている電子部
品を冷却し、又、低い位置から上流側の冷却具のフィン
の間に流入することができる。両側領域に短いフィンを
具えた放熱具の場合には、この短いフィンの間を通過し
て放熱具の外に出た流れが、隣接する中央部のフィンの
間を流れる空気流に対して吸引作用を及ぼし、この領域
の流れを促進させて冷却効率を向上する。これら両方式
を併用すれば、更に効果的である。In the case of a heat sink equipped with fins whose height gradually decreases in the direction of the cooling air flow, the air flowing above the heat sink flows downward along the top surface of the slanted fins, causing the surface of the printed circuit board to flow downward. It can approach the area to cool the electronic components arranged in that area, and can also flow between the fins of the upstream cooling device from a lower position. In the case of a heat sink with short fins on both sides, the flow passing between the short fins and exiting the heat sink is attracted to the air flow flowing between the adjacent central fins. effect, promoting flow in this area and improving cooling efficiency. It is even more effective if both of these methods are used together.
以下、図面に示す好適実施例に基づいて、本発明を更に
詳細に説明する。Hereinafter, the present invention will be explained in more detail based on preferred embodiments shown in the drawings.
〔実施例]第1図(a)、(b)は本発明にかかる放熱具の外観を
示す。これら放熱具6,6°はアルミ等の熱伝導率の高
い材料で作られ、長方形の板状の本体に互いに平行な多
数のフィン6a、6° aを並列したものである。(a
)に示すものは、本体からのフィン6aの高さが前縁か
ら後縁に向かって次第に低くなり、フィン6aの上面が
後方に向かって下降した傾斜面をなしている。又、(b
)に示すものは、フィン6’ aの高さはすべて一定
であるが、フィン6’ aの前縁から後縁に至る長さ
が、幅方向におけるフィンの位置によって異なり、中央
位置のものが最も長く、両側に行くに従って短くなるよ
うに設定されている。[Example] FIGS. 1(a) and 1(b) show the appearance of a heat sink according to the present invention. These heat sinks 6, 6° are made of a material with high thermal conductivity such as aluminum, and have a rectangular plate-like body with a large number of mutually parallel fins 6a, 6°a arranged in parallel. (a
), the height of the fins 6a from the main body gradually decreases from the front edge to the rear edge, and the upper surface of the fins 6a forms an inclined surface that descends toward the rear. Also, (b
), the height of the fins 6'a is all constant, but the length from the front edge to the rear edge of the fin 6'a varies depending on the position of the fin in the width direction, and the one at the center is different from the one at the center. It is set to be the longest and become shorter as it goes to both sides.
これらの放熱具6.6°は、従来の放熱具と同しく、高
発熱部品5の天面に熱伝導性の良好な接着剤を介して固
定され、プリント基板11上に搭載されて電子装置内に
収容された場合に、フィン6a、6’ aが冷却風の
流れに沿うような姿勢で取付けられる。These heat sinks 6.6°, like conventional heat sinks, are fixed to the top surface of the high heat generation component 5 via an adhesive with good thermal conductivity, and mounted on the printed circuit board 11 to connect the electronic device. When housed inside, the fins 6a, 6'a are attached in a posture along the flow of cooling air.
第1図(a)の放熱具6を高発熱部品5に装着したプリ
ント基板11が第2図に示されている。FIG. 2 shows a printed circuit board 11 in which the heat sink 6 of FIG. 1(a) is attached to the high heat generating component 5.
この場合の電子装置内の冷却風の模式的な流れは第3図
(a)、(b)の通りである。即ち、側面図(b)に示
すように、風向に沿って前傾姿勢となっているフィン6
aの上面に沿って冷却風が下降し、プリント基板110
表面に近い位置に配列されている背の低いIC7にも有
効に吹き付けることができると共に、フィン6aの平均
高さの減少に伴って全体としての通風抵抗が減少するこ
とにより、フィン領域における冷却風の風量を相対的に
増加することができる。The schematic flow of cooling air inside the electronic device in this case is as shown in FIGS. 3(a) and 3(b). That is, as shown in the side view (b), the fin 6 is tilted forward along the wind direction.
The cooling air descends along the top surface of the printed circuit board 110
Cooling air can be effectively blown onto the short ICs 7 arranged close to the surface, and the overall ventilation resistance is reduced as the average height of the fins 6a is reduced, so that the cooling air in the fin area can be effectively blown. The air volume can be relatively increased.
又、第1図(b)の放熱具6゛を使用した場合には、第
4図(a)、 (b)に示すように、各フィン6’
aの後縁によって形成される斜面(図(a)参照)に
沿って、放熱具の両側から冷却風が中央に向かって流入
し、各フィン6’ aの間隙を通過する冷却風を積極
的に前方に吸い出して増強する。この結果、放熱具6゛
の領域を流れる風量が増加し、冷却効率が向上する。In addition, when the heat sink 6' shown in Fig. 1(b) is used, each fin 6' is used as shown in Fig. 4(a) and (b).
Cooling air flows toward the center from both sides of the radiator along the slope formed by the trailing edge of the fins 6' (see figure (a)), and the cooling air passing through the gaps of each fin 6'a is actively Suck it forward and strengthen it. As a result, the amount of air flowing through the area of the heat sink 6' increases, and the cooling efficiency improves.
第5図は、前述の放熱具6と6゛の両者をプリント基板
ll上に2列に配列された高発熱部品5の各列にそれぞ
れ装着した別の実施例を示す。これによれば、前記効果
が複合して更に良好な冷却効率の向上が期待できる。FIG. 5 shows another embodiment in which both the heat sinks 6 and 6' described above are mounted on each row of high heat generating components 5 arranged in two rows on a printed circuit board 11. According to this, the above-mentioned effects are combined, and even better improvement in cooling efficiency can be expected.
本発明によれば、高発熱部品に装着される放熱具のフィ
ンの高さに一定方向のテーパーを付けたり、両側のフィ
ンの長さを中央に比して短くしたりして、該放熱具の領
域を流れる空気流の分布の均等化を図ったので、全体と
して冷却風がプリント基板上に隅々まで行き渡り、発熱
部品の効率的な冷却が可能となった。According to the present invention, the height of the fins of the heat sink attached to a high heat generating component is tapered in a certain direction, and the length of the fins on both sides is made shorter than the center. By equalizing the distribution of the airflow flowing through the area, the overall cooling air is distributed to every corner of the printed circuit board, making it possible to efficiently cool the heat-generating components.
第1図(a)、(b)は本発明に使用される放熱具の形
態を示す斜視図、第2図は第1図(a)の放熱具を装着したプリント基板
を示す斜視図、第3図(a)、(b)は第2図のプリント基板における
冷却風の模式的な流れを示す平面図と側面図、第4図(a)、(b)は第1図(b)の放熱具を装着し
たプリント基板における冷却風の模式的な流れを示す平
面図と側面図、第5図は2種類の放熱具を混載したプリント基板を示す
斜視図、第6図は本発明が適用される電子装置の全体構成を示す
斜視図、第7図は従来型の放熱具を装着したプリント基板を示す
斜視図、第8図(a)、(b)は第7図のプリント基板における
冷却風の模式的な流れを示す平面図と側面図である。5・・−高発熱部品6.6“−放熱具5a、5’ a−フィン7・−・IC11−プリント基板12−シェルフFIGS. 1(a) and (b) are perspective views showing the form of a heat sink used in the present invention; FIG. 2 is a perspective view showing a printed circuit board on which the heat sink of FIG. 1(a) is mounted; Figures 3 (a) and (b) are plan and side views showing the schematic flow of cooling air on the printed circuit board in Figure 2, and Figures 4 (a) and (b) are the diagrams in Figure 1 (b). A plan view and a side view showing a schematic flow of cooling air on a printed circuit board equipped with a heat dissipation device; FIG. 5 is a perspective view showing a printed circuit board with two types of heat dissipation devices mounted together; FIG. 6 is a view to which the present invention is applied. Figure 7 is a perspective view showing a printed circuit board equipped with a conventional heat sink; Figures 8 (a) and (b) are cooling diagrams for the printed circuit board in Figure 7. FIG. 2 is a plan view and a side view showing a schematic flow of wind. 5...-High heat generation parts 6.6''-Heat sink 5a, 5' a-Fin 7...IC 11-Printed circuit board 12-Shelf
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP11178990AJPH0412559A (en) | 1990-05-01 | 1990-05-01 | Cooling structure for electronic equipment |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP11178990AJPH0412559A (en) | 1990-05-01 | 1990-05-01 | Cooling structure for electronic equipment |
| Publication Number | Publication Date |
|---|---|
| JPH0412559Atrue JPH0412559A (en) | 1992-01-17 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP11178990APendingJPH0412559A (en) | 1990-05-01 | 1990-05-01 | Cooling structure for electronic equipment |
| Country | Link |
|---|---|
| JP (1) | JPH0412559A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5763950A (en)* | 1993-07-30 | 1998-06-09 | Fujitsu Limited | Semiconductor element cooling apparatus |
| JPH10242357A (en)* | 1997-02-26 | 1998-09-11 | Pfu Ltd | Heat sink device |
| EP1036491A4 (en)* | 1997-11-14 | 2001-05-16 | Panda Project | COOLING SYSTEM FOR A SEMICONDUCTOR CHIP HOLDER |
| JP2006183451A (en)* | 2004-11-30 | 2006-07-13 | Toto Ltd | Feed water control system |
| KR100837638B1 (en)* | 2006-09-14 | 2008-06-12 | 엘지디스플레이 주식회사 | Display |
| JP2021014938A (en)* | 2019-07-10 | 2021-02-12 | 東芝キヤリア株式会社 | Outdoor unit of refrigeration cycle equipment |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5763950A (en)* | 1993-07-30 | 1998-06-09 | Fujitsu Limited | Semiconductor element cooling apparatus |
| JPH10242357A (en)* | 1997-02-26 | 1998-09-11 | Pfu Ltd | Heat sink device |
| EP1036491A4 (en)* | 1997-11-14 | 2001-05-16 | Panda Project | COOLING SYSTEM FOR A SEMICONDUCTOR CHIP HOLDER |
| JP2006183451A (en)* | 2004-11-30 | 2006-07-13 | Toto Ltd | Feed water control system |
| KR100837638B1 (en)* | 2006-09-14 | 2008-06-12 | 엘지디스플레이 주식회사 | Display |
| JP2021014938A (en)* | 2019-07-10 | 2021-02-12 | 東芝キヤリア株式会社 | Outdoor unit of refrigeration cycle equipment |
| Publication | Publication Date | Title |
|---|---|---|
| US7363963B2 (en) | Heat dissipation device | |
| US7787247B2 (en) | Circuit board apparatus with induced air flow for heat dissipation | |
| US5285350A (en) | Heat sink plate for multiple semi-conductors | |
| US6269864B1 (en) | Parallel-plate/pin-fin hybrid copper heat sink for cooling high-powered microprocessors | |
| US6711016B2 (en) | Side exhaust heat dissipation module | |
| US6446708B1 (en) | Heat dissipating device | |
| US7443676B1 (en) | Heat dissipation device | |
| JP2004538657A (en) | Electronic device cooling structure | |
| US20190239393A1 (en) | Wind shroud and server using the same | |
| JP3443112B2 (en) | Cooling device and electronic device equipped with the cooling device | |
| CN102056462A (en) | Electronic device | |
| US20050150637A1 (en) | Heat sink and multi-directional passages thereof | |
| US6719038B2 (en) | Heat removal system | |
| US12262514B2 (en) | Heat sinks with beyond-board fins | |
| JPH0412559A (en) | Cooling structure for electronic equipment | |
| JP2003258463A (en) | Heat exchange structure of housing | |
| JP3840970B2 (en) | heatsink | |
| JPH0715160A (en) | Electronic device cooling mechanism | |
| JPH07221477A (en) | Cooling structure for printed wiring board mounting parts | |
| US20030035267A1 (en) | Heat sink for cooling an electronic component of a computer | |
| US20050189088A1 (en) | Circulation structure of heat dissipation device | |
| JPH09116286A (en) | Electronic equipment cooling system | |
| JP2855833B2 (en) | Package with heat sink | |
| JPH11145349A (en) | Heat sink for forced cooling | |
| JPH01133338A (en) | Heat sink |