【発明の詳細な説明】〔産業上の利用分野)本発明は、半導体製造装置、半導体検査袋W、微小部分
析計、微小部膜厚計等微小な領域において、精密な位置
決め、特に試料面に垂直方向での精密な位置合わせを必
要とされる装置における位置決めに関するものである。Detailed Description of the Invention [Industrial Application Field] The present invention is applicable to precise positioning, especially to the sample surface, in minute areas such as semiconductor manufacturing equipment, semiconductor inspection bags W, minute part analyzers, minute part film thickness meters, etc. The invention relates to positioning in devices that require precise alignment in the vertical direction.
従来、このような分野においては、光学軸方向での位置
決めには、マイクロスイッチ、近接スイッチあるいは光
学顕微鏡のψ点深度を利用した位置決め方法などがある
。Conventionally, in such fields, positioning methods in the optical axis direction include positioning methods that utilize microswitches, proximity switches, or the depth of the ψ point of an optical microscope.
マイクロスイッチを用いる方法とは、あらかしめ所定の
位置にマイクロスインチを設置しておき、試料台がこの
マイクロスイッチを押すまで移動させる方法である。The method using a microswitch is a method in which a microswitch is installed at a predetermined position and the sample stage is moved until the microswitch is pressed.
近接スイッチを用いる方法とは、磁気式あるいは赤外線
近接スイッチによって試料台の位置を測りながら位置決
めを行う方法である。The method using a proximity switch is a method in which positioning is performed while measuring the position of the sample stage using a magnetic or infrared proximity switch.
光学顕微鏡の焦点深度を利用した方法とは、光学顕微鏡
の焦点深度が浅い(焦点が丁度良く合う範囲が狭い)こ
とを利用するもので、あらかしめ試料表面が所定の位置
にきたとき、焦点が合う様に光学顕微鏡を設置しておき
、試料位置決めを行う場合は肉視あるいは光学顕微鏡に
取付けられたテレビカメラとモニタデイスプレィを通し
て試料表面を観察しながら焦点が丁度良く合う位置に試
料台を移動させる方法である。The method using the depth of focus of an optical microscope takes advantage of the fact that the depth of focus of the optical microscope is shallow (the range where the focus is just right is narrow). When positioning the sample, set up the optical microscope so that it is in focus, and move the sample stage to a position where the focus is just right while observing the sample surface visually or through the television camera and monitor display attached to the optical microscope. This is the way to do it.
マイクロスインチ及び近接スイッチを用いた位置決め法
においては、所定の位置へ位置決めされるのは試料台表
面であり、試料表面ではないという問題点がある。つま
り、試料厚みの分だけ位置設定は狂ってしまう。これに
対して、設定自体を試料厚み分だけずらして設定する方
法も可能であるが、試料表面に凹凸がある場合は余りう
まくゆかない。The positioning method using microsinches and proximity switches has a problem in that it is the surface of the sample stage that is positioned to a predetermined position, not the surface of the sample. In other words, the position setting is deviated by the thickness of the sample. On the other hand, it is also possible to set the setting itself by shifting it by the thickness of the sample, but this does not work well if the sample surface is uneven.
光学顕微鏡の焦点深度を利用した方法には、人間が目で
確認しながら行う方法と、テレビカメラで像をとりなが
ら光強度の分散が最も大きくなる点に設定する方法(オ
ートフォーカス)がある。There are two methods that make use of the depth of focus of an optical microscope: a method in which a person visually confirms the depth of focus, and a method in which a television camera is used to take an image and set it at the point where the dispersion of light intensity is greatest (autofocus).
どちらも試料表面の所望の領域において位置決めが可能
である。Both can be positioned in a desired area on the sample surface.
しかしながら、前者においては人の操作と判断が介在す
るため、迅速性に欠ける欠点がある。また個人差の入り
込む可能性は避は得ない、後者においてはこれらの欠点
は無いものの、試料面のコントラストが適当な範囲内に
あることが必要である。つまり、コントラストが余りに
小さい場合などは光強度の分散の最大値を見つけること
が困難になるという問題がある。また、両者共、例えば
コンパクトディスクなどのように表面に光透過型の保護
膜を有している場合などは、保護膜の下の層の表面に位
置決めがなされてしまう。However, the former method involves human operation and judgment, and therefore has the drawback of lacking speed. Furthermore, the possibility of individual differences being introduced is unavoidable.Although the latter does not have these drawbacks, it is necessary that the contrast of the sample surface be within an appropriate range. In other words, when the contrast is too small, it becomes difficult to find the maximum value of the dispersion of light intensity. Furthermore, if both of them have a light-transmissive protective film on the surface, such as a compact disc, the positioning will be done on the surface of the layer below the protective film.
本発明の目的は、これらのような従来技術の欠点をなく
し、迅速に精密な位置決めの可能な手段を提供すること
にある。An object of the present invention is to eliminate these drawbacks of the prior art and to provide a means that allows rapid and precise positioning.
本発明は、試料表面を観察する光学顕微鏡と、その光学
顕微鏡の光学系の途中からレーザービームを入射させる
手段と、試料表面へ当たったレーザービームの光を検出
する光位置検出器と、上記レーザーの光を、上記光位置
検出器上に結像させる集光レンズと、上記光位置検出器
からの信号を増幅する増幅器と、その信号から試料位置
を演算し試料台の移動すべき方向を指示する演算回路と
、前記演算回路からの指示により試料台を移動させる試
料移動機構より成り、常にレーザービームが試料上に作
るスポット光の光位置検出器上への像が所定の位置にく
るように制御することにある。The present invention provides an optical microscope for observing the surface of a sample, a means for introducing a laser beam from the middle of the optical system of the optical microscope, an optical position detector for detecting the light of the laser beam hitting the surface of the sample, and the laser beam described above. a condensing lens that focuses the light onto the optical position detector, an amplifier that amplifies the signal from the optical position detector, and calculates the sample position from the signal and instructs the direction in which the sample stage should be moved. and a sample moving mechanism that moves the sample stage according to instructions from the arithmetic circuit, so that the image of the spot light created by the laser beam on the sample on the optical position detector is always at a predetermined position. It's about controlling.
〔作用]レーザー駆動電源で駆動されたレーザー光源から出たレ
ーザー光は光合成器で光学顕微鏡の光軸方向にそって光
学顕微鏡内に入射され、対物レンズにて試料上に集光さ
れる。レーザー光の試料上に作るスポットは集光レンズ
にて光位置検出器上に結像される。この時、試料が適当
な位置にあったならば、その像は光位置検出器上の適当
な位置に結像することになるが、もし試料がずれた位置
にあった場合、結像位置もずれることになる。この結像
位置を光位置検出器で検出することにより、試料位置を
移動させるべき方向を演算回路で判定し、試料移動機構
によって試料まで移動させる。[Function] Laser light emitted from a laser light source driven by a laser drive power source is input into the optical microscope along the optical axis direction of the optical microscope by a photosynthesizer, and is focused onto a sample by an objective lens. A spot created by the laser beam on the sample is imaged by a condensing lens onto an optical position detector. At this time, if the sample is in the appropriate position, its image will be formed at the appropriate position on the optical position detector, but if the sample is in a shifted position, the image formation position will also be incorrect. It will shift. By detecting this imaging position with an optical position detector, an arithmetic circuit determines the direction in which the sample position should be moved, and the sample moving mechanism moves the sample to the sample.
本発明の一実施例を第1図に示す。接眼レンズ2と対物
レンズ3により光学顕微鏡が構成されている。1は人の
眼あるいはテレビカメラであり、これにより試料12の
表面を観察する。4はレーザー駆動tfA、5がレーザ
ー光源である。レーザー光源としてはどの様なものも使
用が可能であるが、出力、形状等からみて、半導体レー
ザーが過当である。レーザー光はハーフミラ−又はプリ
ズム等の光合成器6により、光学顕微鏡の光軸上に導入
される。An embodiment of the present invention is shown in FIG. An eyepiece lens 2 and an objective lens 3 constitute an optical microscope. Reference numeral 1 denotes a human eye or a television camera, with which the surface of the sample 12 is observed. 4 is a laser drive tfA, and 5 is a laser light source. Although any type of laser light source can be used, a semiconductor laser is suitable in terms of output, shape, etc. Laser light is introduced onto the optical axis of the optical microscope by a light combiner 6 such as a half mirror or prism.
光学1gi微鏡の光軸上に導入されたレーザー光は対物
レンズ3により、試料12上に集光される。この時の集
光されたスポット径は、数10ミクロン程度まで小さく
することができ、試料に凹凸があっても充分所望の位置
に限定して当てることができふ−試料に当たったレーザー光のスポットは集光レンズ7に
て、光位置検出器8上に像を結ぶ、光位置検出器8は一
次元の位置検出器であり、CCDなどが利用可能である
。The laser beam introduced onto the optical axis of the optical 1gi micromirror is focused onto the sample 12 by the objective lens 3. The diameter of the focused spot at this time can be made as small as several tens of microns, and even if the sample has irregularities, it can be sufficiently focused on the desired position. An image of the spot is formed by a condensing lens 7 on an optical position detector 8. The optical position detector 8 is a one-dimensional position detector, and a CCD or the like can be used.
光位置検出器8からの出力は増幅器9で適当な大きさま
で増幅され、演算回路10に入る。The output from the optical position detector 8 is amplified to an appropriate level by an amplifier 9 and then input to an arithmetic circuit 10.
演算回路10では増幅器9からの信号より試料12の位
置を算出し、試料移動機構11の移動すべき方向を指示
する。試料移動機構11は演算回路1oがらの指示によ
り、試料12を移動させ、最終的に所望の位置に来るま
で移動させる。The arithmetic circuit 10 calculates the position of the sample 12 from the signal from the amplifier 9 and instructs the direction in which the sample moving mechanism 11 should move. The sample moving mechanism 11 moves the sample 12 according to instructions from the arithmetic circuit 1o until it finally reaches a desired position.
演算回路10は、ハードロジックで形成することも可能
であるが、マイクロコンピュータで演算制御を行うこと
も可能である。The arithmetic circuit 10 can be formed using hard logic, but it is also possible to perform arithmetic control using a microcomputer.
レーザー駆動電tx4で駆動されたレーザー光源5から
出たレーザー光20は光合成器6で光学顕微鏡の光軸方
向にそって光学顕微鏡内に入射され、対物レンズ3にて
試料12上に集光される。レーザー光の試料上に作るス
ポ7)は集光レンズ7にて光位置検出器8上に結像され
る。この時、試料I2が適当な位置にあったならば、そ
の像は光位置検出器8上の適当な位置13に結像するこ
とになるが、もし試料12゛ や試料12”のようにず
れた位置にあった場合、結像位置13’、13”もずれ
ることになる。A laser beam 20 emitted from a laser light source 5 driven by a laser driving electric current tx4 is input into an optical microscope along the optical axis direction of the optical microscope by a light combiner 6, and is focused onto a sample 12 by an objective lens 3. Ru. The laser beam spot 7) formed on the sample is imaged by the condensing lens 7 onto the optical position detector 8. At this time, if the sample I2 is in the appropriate position, its image will be focused on the appropriate position 13 on the optical position detector 8, but if it is shifted like sample 12'' or sample 12'' In this case, the imaging positions 13' and 13'' will also be shifted.
この結像位置を光位置検出器8で検出することにより、
試料位置を移動させるべき方向を演算回路10で判定し
、試料移動機構によって試料まで移動させる。この装置
を使用する上で、外乱光が影響を与えることが考えられ
るが、そのような場合には、レーザ駆動tfi4を適当
な周波数でチョッピングし、受光側の増幅器9で周期検
波を行うことにより排除することができる。By detecting this imaging position with the optical position detector 8,
The arithmetic circuit 10 determines the direction in which the sample position should be moved, and the sample moving mechanism moves the sample to the sample. When using this device, it is conceivable that disturbance light may have an effect, but in such a case, the laser driving TFI 4 can be chopped at an appropriate frequency and the amplifier 9 on the light receiving side can perform periodic detection. can be excluded.
以上詳細に説明したように、本発明によれば試料の表面
形状に影響されない、正確で迅速な位置決め装置を構成
することが可能である。As described in detail above, according to the present invention, it is possible to construct an accurate and quick positioning device that is not affected by the surface shape of the sample.
第1図は本発明による一実施例である。1・・・人の眼あるいはテレビカメラ2・・ 光学顕微鏡の接眼レンズ3・・・光学顕微鏡の対物レンズ4・ レーザー駆動電源5・・・レーザ光源6・・・光合成器7・・・集光レンズ8・・・光位置センサ9・・・増幅器10・・・演算回路11・・・試料移動機構12・・・所定の位置にある試料12’ 、 12−・・所定の位置からずれた試料13
・・位置にある試料上のレーザービームのスポ7)
の集光レンズによる光位置検出上の結像13’、13−・・各試料が12’ 、 12“位置に
ある場合の各結像以上出願人 セイコー電子工業株式会社代理人 弁理士 林 敬 之 助FIG. 1 shows an embodiment according to the present invention. 1...Human eye or television camera 2...Eyepiece of an optical microscope 3...Objective lens of an optical microscope 4/Laser drive power source 5...Laser light source 6...Photosynthesizer 7...Condensing light Lens 8... Optical position sensor 9... Amplifier 10... Arithmetic circuit 11... Sample moving mechanism 12... Sample 12' at a predetermined position, 12-... Sample displaced from a predetermined position 13
The spot of the laser beam on the sample at the position 7)
Image formation on optical position detection using a condensing lens 13', 13-... image formation when each sample is at 12', 12'' position Applicant: Seiko Electronics Co., Ltd. Representative Patent Attorney Takayuki Hayashi Help
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2220496AJPH04102347A (en) | 1990-08-22 | 1990-08-22 | Positioning apparatus |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2220496AJPH04102347A (en) | 1990-08-22 | 1990-08-22 | Positioning apparatus |
| Publication Number | Publication Date |
|---|---|
| JPH04102347Atrue JPH04102347A (en) | 1992-04-03 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2220496APendingJPH04102347A (en) | 1990-08-22 | 1990-08-22 | Positioning apparatus |
| Country | Link |
|---|---|
| JP (1) | JPH04102347A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2017089894A (en)* | 2016-12-07 | 2017-05-25 | 株式会社日本製鋼所 | Gas flotation workpiece support device |
| US10418262B2 (en) | 2015-02-27 | 2019-09-17 | The Japan Steel Works, Ltd. | Gas floated workpiece supporting apparatus and noncontact workpiece support method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10418262B2 (en) | 2015-02-27 | 2019-09-17 | The Japan Steel Works, Ltd. | Gas floated workpiece supporting apparatus and noncontact workpiece support method |
| JP2017089894A (en)* | 2016-12-07 | 2017-05-25 | 株式会社日本製鋼所 | Gas flotation workpiece support device |
| Publication | Publication Date | Title |
|---|---|---|
| CA1321498C (en) | Objective lens positioning system for confocal tandem scanning reflected light microscope | |
| JPS58182607A (en) | Automatically focusing and measuring apparatus and method | |
| JP2008119716A (en) | Laser processing apparatus and focus maintaining method in laser processing apparatus | |
| JPS58181005A (en) | Automatically focusing and measuring apparatus and method | |
| JP2008122202A (en) | Beam observation device | |
| JP2008119714A (en) | Laser processing equipment | |
| JPS63278692A (en) | Automatic focusing mechanism in laser beam machine | |
| JPH04102347A (en) | Positioning apparatus | |
| JP2001311866A (en) | Autofocus method and apparatus for microscope | |
| JPH11173821A (en) | Optical inspecting device | |
| JPH05332934A (en) | Spectroscope | |
| JP2003029130A (en) | Optical microscope | |
| JP4126828B2 (en) | Optical fiber mounting position adjusting device and adjusting method | |
| JPH10122823A (en) | Positioning method and height measuring device using the method | |
| JP3510359B2 (en) | Optical measuring device | |
| JP2001305420A (en) | Automatic focusing device for microscope | |
| JPH07101251B2 (en) | Microscope autofocus device | |
| JPH0642993B2 (en) | Distance measuring device | |
| JP2007285945A (en) | Infrared microscope | |
| JPH10229060A (en) | Polishing amount measuring device | |
| JP2828145B2 (en) | Optical section microscope apparatus and method for aligning optical means thereof | |
| JPH08122623A (en) | Autofocusing device | |
| JPH10133117A (en) | Microscope with focus detection device | |
| JPH08273580A (en) | Electronic probe micro analyzer with automatic focusing mechanism | |
| JPH1047918A (en) | Displacement measuring device and microscope with automatic focusing function |