Movatterモバイル変換


[0]ホーム

URL:


JPH0389632A - Low noise receiver - Google Patents

Low noise receiver

Info

Publication number
JPH0389632A
JPH0389632AJP22642289AJP22642289AJPH0389632AJP H0389632 AJPH0389632 AJP H0389632AJP 22642289 AJP22642289 AJP 22642289AJP 22642289 AJP22642289 AJP 22642289AJP H0389632 AJPH0389632 AJP H0389632A
Authority
JP
Japan
Prior art keywords
waveguide
gap
noise
low
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22642289A
Other languages
Japanese (ja)
Inventor
Kiyoharu Kiyono
清春 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric CorpfiledCriticalMitsubishi Electric Corp
Priority to JP22642289ApriorityCriticalpatent/JPH0389632A/en
Publication of JPH0389632ApublicationCriticalpatent/JPH0389632A/en
Pendinglegal-statusCriticalCurrent

Links

Landscapes

Abstract

Translated fromJapanese

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

Translated fromJapanese

【発明の詳細な説明】〔産業上の利用分野〕この発明は衛星等からの微弱な信号を受信するために低
雑音増幅器、ミキサなどの半導体装置を極低温まで冷却
して雑音指数の改善を図る低雑音受信装置に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] This invention improves the noise figure by cooling semiconductor devices such as low-noise amplifiers and mixers to extremely low temperatures in order to receive weak signals from satellites, etc. The present invention relates to a low-noise receiving device.

〔従来の技術〕[Conventional technology]

ダイオードやHEMT等の半導体素子は冷却するほど雑
音特性の改善が図れることから、衛星等からの極微弱な
信号を受信する低雑音受信装置においては低雑音増幅器
、ミキサなどの半導体装置を液体ヘリウム温度まで冷却
して使用する場合がある。
The noise characteristics of semiconductor elements such as diodes and HEMTs can be improved as they are cooled, so in low-noise receivers that receive extremely weak signals from satellites, etc., semiconductor devices such as low-noise amplifiers and mixers are heated to liquid helium temperatures. It may be used after being cooled to a certain temperature.

第5図は例えばテレビジョン学会技術報告RE86−3
2.p30に示された従来の低雑音受信装置の構成図で
あり、半導体装置としてHEMT増幅器を用いている0
図において、1はHEMT増幅器、2はHEMT増幅器
1の入力VSWRを改善するためのサーキュレータ、3
は同軸線路、4は同軸・導波管変換器、5は同軸・導波
管変換器4の一端に設けられたフランジ、6は断熱導波
管、7は断熱導波管6の両端に設けられたフランジ〜8
は導波管、9は導波管8内に設けられた気密窓、10は
同軸ケーブル、11はHEMTI及びサーキュレータ2
を冷却するための冷却板、12は外壁、13は冷却板1
1.外壁12等からなる冷凍機、14は入力端子、15
は出力端子である。実際の冷凍機13は外壁12.冷却
板11の他にさらに圧縮機、コールドヘッド等を備えて
いるが、図中ではこれらを省略している。
Figure 5 shows, for example, the Television Society Technical Report RE86-3.
2. This is a configuration diagram of a conventional low-noise receiving device shown on p. 30, which uses a HEMT amplifier as a semiconductor device.
In the figure, 1 is a HEMT amplifier, 2 is a circulator for improving the input VSWR of HEMT amplifier 1, and 3 is a circulator for improving the input VSWR of HEMT amplifier 1.
is a coaxial line, 4 is a coaxial/waveguide converter, 5 is a flange provided at one end of the coaxial/waveguide converter 4, 6 is an adiabatic waveguide, and 7 is provided at both ends of the adiabatic waveguide 6. flange ~8
is a waveguide, 9 is an airtight window provided in the waveguide 8, 10 is a coaxial cable, 11 is a HEMTI and a circulator 2
12 is the outer wall, 13 is the cooling plate 1 for cooling the
1. A refrigerator consisting of an outer wall 12, etc., 14 is an input terminal, 15
is the output terminal. The actual refrigerator 13 has an outer wall 12. In addition to the cooling plate 11, it is further provided with a compressor, a cold head, etc., but these are omitted in the figure.

この低雑音受信装置ではHEMT増幅器lの入力端子に
はサーキュレータ2.同軸ケーブル3゜同軸・導波管変
換器4.断熱導波管6及び導波管8が、またHEMT増
幅器lの出力端子には同軸ケーブル10がそれぞれ接続
されており、これらは冷凍機13内に収納された構成と
なっている。
In this low-noise receiver, a circulator 2. Coaxial cable 3° coaxial/waveguide converter 4. A coaxial cable 10 is connected to the adiabatic waveguide 6 and the waveguide 8, and to the output terminal of the HEMT amplifier l, and these are housed in a refrigerator 13.

導波管8と断熱導波管6との接続はフランジ7を外壁1
2にネジ等で固定することにより行われ、断熱導波管6
と同軸・導波管変換器4との接続はフランジ5と7とを
ネジ等で密着することにより行われている。
The connection between the waveguide 8 and the adiabatic waveguide 6 is to connect the flange 7 to the outer wall 1.
This is done by fixing the insulated waveguide 6 with screws etc.
The connection between the coaxial waveguide converter 4 and the coaxial waveguide converter 4 is made by closely fitting the flanges 5 and 7 with screws or the like.

外壁12及び気密窓9は冷凍機13の内部を真空に保つ
ことにより、空気を介しての熱流入を防ぐためのもので
ある。また、断熱導波管6はHEMT増幅器1の入力側
の回路損失を低減し、かつ熱伝導による外部からの熱流
入を小さくするために用いている。この断熱導波管6は
一般に熱伝導率の小さなステンレスやキュプロニッケル
等で形成され、断熱導波管6の金属の厚さ及び長さは使
用する冷凍機13の能力に応じて選ばれている。
The outer wall 12 and the airtight window 9 are for keeping the inside of the refrigerator 13 in a vacuum to prevent heat from flowing in through the air. Further, the adiabatic waveguide 6 is used to reduce circuit loss on the input side of the HEMT amplifier 1 and to reduce heat inflow from the outside due to thermal conduction. This adiabatic waveguide 6 is generally made of stainless steel, cupronickel, etc., which have low thermal conductivity, and the thickness and length of the metal of the adiabatic waveguide 6 are selected according to the capacity of the refrigerator 13 used. .

例えば、冷凍能力の小さな冷凍機13を用いた場合、長
い断熱導波管6が用いられる。
For example, when a refrigerator 13 with a small refrigerating capacity is used, a long adiabatic waveguide 6 is used.

このように空気を介しての熱流入及び伝導による熱流入
をできる限り小さくすることにより、HEMT増幅器1
を極低温まで冷却することができる。
In this way, by minimizing the heat inflow through the air and the heat inflow by conduction, the HEMT amplifier 1
can be cooled to extremely low temperatures.

−iにある物体から発生する熱雑音は温度に比例するた
め、この低雑音受信装置のようにHEMT増幅器1を極
低温まで冷却することにより、HEMT増幅器1から発
生する熱雑音を非常に少なくすることができる。従って
、アンテナで受信した微弱な信号は入力端子14.導波
管8.断熱導波管6.同軸・導波管変換器4.同軸ケー
ブル3及びサーキュレータ2を通ってHEMT増幅器1
へ供給される。そこで、増幅された信号は同軸ケーブル
10を通って出力端子15へ供給され、さらに出力端子
15に接続された信号処理回路(図示せず)へと供給さ
れる。
Thermal noise generated from an object located at -i is proportional to temperature, so by cooling the HEMT amplifier 1 to an extremely low temperature as in this low-noise receiver, the thermal noise generated from the HEMT amplifier 1 can be greatly reduced. be able to. Therefore, the weak signal received by the antenna is transmitted to the input terminal 14. Waveguide8. Adiabatic waveguide 6. Coaxial/waveguide converter 4. HEMT amplifier 1 through coaxial cable 3 and circulator 2
supplied to The amplified signal is then supplied to the output terminal 15 through the coaxial cable 10, and further supplied to a signal processing circuit (not shown) connected to the output terminal 15.

以上のように、HEMT増幅器lを極低温まで冷却する
ことにより、HEMT増幅器lで発生する熱雑音を低減
でき、非常に微弱な信号を受信することができる。
As described above, by cooling the HEMT amplifier l to an extremely low temperature, the thermal noise generated in the HEMT amplifier l can be reduced, and a very weak signal can be received.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の低雑音受信装置では使用する冷凍機13の能力に
応じて断熱導波管6の長さを選ぶ必要があり、冷凍能力
の小さな冷凍機13を使用するには断熱導波管6の長さ
を長くする必要がある。この場合、断熱導波管6の損失
が増えるため、低雑音受信装置の雑音指数が増大すると
いう問題点があった。
In conventional low-noise receiving devices, it is necessary to select the length of the adiabatic waveguide 6 according to the capacity of the refrigerator 13 used. It is necessary to lengthen the length. In this case, since the loss of the adiabatic waveguide 6 increases, there is a problem that the noise figure of the low-noise receiver increases.

一方、冷凍能力の大きな冷凍機13を使用すれば、断熱
導波管6の長さを短くできるため、低雑音受信装置の雑
音指数が増大することはない、しかし、この場合、非常
に高価な冷凍機13が必要になってしまうという問題点
があった。
On the other hand, if a refrigerator 13 with a large cooling capacity is used, the length of the adiabatic waveguide 6 can be shortened, so the noise figure of the low-noise receiver will not increase. There was a problem in that the refrigerator 13 was required.

この発明は上記のような問題点を解消するためになされ
たもので、冷凍能力の小さな冷凍機を用いて構成した雑
音指数の良好な低雑音受信装置を得ることを目的とする
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to obtain a low-noise receiving device with a good noise figure, which is constructed using a refrigerator with a small cooling capacity.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る低雑音受信装置は、半導体装置の所定の
端子と冷凍機の外壁に設けた入力端子あるいは出力端子
とを電気的に接続する導波管の一部に電界に平行にすき
間を設け、かつすき間を設けた側の導波管端面にチョー
クフランジを設けたものである。
The low noise receiving device according to the present invention includes a gap parallel to the electric field in a part of the waveguide that electrically connects a predetermined terminal of the semiconductor device and an input terminal or an output terminal provided on the outer wall of the refrigerator. , and a choke flange is provided on the end face of the waveguide on the side where the gap is provided.

〔作用〕[Effect]

この発明における低雑音受信装置は、導波管の一部に設
けたすき間により導波管からの伝導による熱流入を遮断
するとともに、チョークフランジによりすき間の電気的
な影響を小さくしている。
In the low-noise receiving device according to the present invention, a gap provided in a part of the waveguide blocks heat inflow due to conduction from the waveguide, and a choke flange reduces the electrical influence of the gap.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の第1の実施例による低雑音受信装置の
構成を示しており、図において、第5図と同一符号は同
一部分を示し、16は入力端子14側の断熱導波管6端
面に設けたチョークフランジ、17は導波管8と断熱導
波管6との間に電界に対して平行に設けたすき間である
FIG. 1 shows the configuration of a low-noise receiver according to a first embodiment of the present invention. In the figure, the same reference numerals as in FIG. A choke flange 17 provided on the end face of FIG. 6 is a gap provided between the waveguide 8 and the heat-insulating waveguide 6 in parallel to the electric field.

また、第2図(a)はチョークフランジ16近傍の詳細
な構造図、第2図(b)はその等価回路図である。
Further, FIG. 2(a) is a detailed structural diagram of the vicinity of the choke flange 16, and FIG. 2(b) is its equivalent circuit diagram.

第2図(a)において、すき間17のAB間及びBD間
はラジアル線路であり、チョークフランジ16に設けら
れた溝は導波管と見なすことができる。
In FIG. 2(a), the space between AB and BD of the gap 17 is a radial line, and the groove provided in the choke flange 16 can be regarded as a waveguide.

従って、第2図(a)は第2図い)のようにラジアル線
路AB間にリアクタンスjxと先端短絡の導波管BC間
が接続された回路が導波管8と断熱導波管6との間に直
列に接続された等価回路で表わすことができる。ここで
、リアクタンスjxはラジアル線路BD間によるもので
ある。ラジアル線路AB間及び導波管BC間を1/4波
長に選び、リアクタンスjxが小さくなるようにすき間
17の間隔、BD間の長さを適当に選ぶことにより、点
AAから点BB側を見たインピーダンスはほぼ零となる
。このため、導波管8からきたマイクロ波帯の受信信号
はすき間17に影響されることなく断熱導波管6へ伝搬
する。
Therefore, as shown in FIG. 2(a), a circuit in which reactance jx is connected between the radial line AB and the waveguide BC with a short-circuited tip is connected between the waveguide 8 and the adiabatic waveguide 6. It can be represented by an equivalent circuit connected in series between Here, the reactance jx is due to the distance between the radial lines BD. By selecting 1/4 wavelength between the radial lines AB and between the waveguides BC, and appropriately selecting the interval of the gap 17 and the length between BD so that the reactance jx is small, it is possible to The impedance becomes almost zero. Therefore, the microwave band reception signal coming from the waveguide 8 propagates to the adiabatic waveguide 6 without being affected by the gap 17.

従って、第1図に示すように導波管8と断熱導波管6と
間にすき間17を設け、断熱導波管6のすき間17側の
端面にチョークフランジ16を設けることにより、導波
管8側から断熱導波管6への伝導による熱流入を遮断で
きるとともに、電気的にはすき間17の影響を小さくす
ることができる。このようにすき間17により熱流入を
遮断できるため、冷凍能力の小さな冷凍機13を用いて
も極低温までHEMT増幅器1を冷却することができる
。また、断熱導波管6の長さも十分短くできるため、回
路の低損失化が図れ、雑音指数の優れた低雑音受信装置
を得ることができる。
Therefore, as shown in FIG. 1, a gap 17 is provided between the waveguide 8 and the adiabatic waveguide 6, and a choke flange 16 is provided on the end face of the adiabatic waveguide 6 on the gap 17 side. It is possible to block heat inflow from the heat insulating waveguide 6 from the heat insulating waveguide 6 by conduction, and electrically, the influence of the gap 17 can be reduced. Since heat inflow can be blocked by the gap 17 in this way, the HEMT amplifier 1 can be cooled to an extremely low temperature even if the refrigerator 13 with a small cooling capacity is used. Furthermore, since the length of the adiabatic waveguide 6 can be sufficiently shortened, the loss of the circuit can be reduced, and a low-noise receiving device with an excellent noise figure can be obtained.

さらには、断熱導波管6の代わりに熱伝導率はやや大き
いが、電気抵抗の非常に小さな金属材料で形成した導波
管を用いることもでき、より雑音指数の改善を図ること
もできる。
Furthermore, instead of the adiabatic waveguide 6, a waveguide made of a metal material having a somewhat high thermal conductivity but a very low electrical resistance can be used, and the noise figure can be further improved.

以上のように、この発明の低雑音受信装置では冷凍機1
3の外壁12に設けられた導波管8と断熱導波管6との
間にすき間17を設け、かつすき間17側の断熱導波管
6端面にチョークフランジ16を設けることにより、電
気的にはすき間17の影響を小さ(できるとともに伝導
による熱流入を遮断できる。従って、冷凍能力の小さな
冷凍機13の使用が可能になり、低雑音受信装置の低価
格化が図れるとともに非常に短い断熱導波管6を用いる
ことができるために、雑音指数の優れた低雑音受信装置
を得ることもできる。
As described above, in the low noise receiving device of the present invention, the refrigerator 1
By providing a gap 17 between the waveguide 8 provided on the outer wall 12 of 3 and the adiabatic waveguide 6, and by providing a choke flange 16 on the end face of the adiabatic waveguide 6 on the side of the gap 17, electrical This makes it possible to reduce the influence of the gap 17 (as well as to block heat inflow due to conduction. Therefore, it is possible to use a refrigerator 13 with a small refrigerating capacity, and it is possible to reduce the cost of the low-noise receiver and to use a very short adiabatic conductor. Since the wave tube 6 can be used, a low-noise receiving device with an excellent noise figure can also be obtained.

なお、上記実施例ではすき間17を導波管8と断熱導波
管6との間に設けた場合について述べたが、これは本発
明の第2の実施例である第3図に示すようにすき間17
を断熱導波管6と同軸・導波管変換器4との間に設け、
そのすき間17の一部に熱伝導の非常に小さな誘電体ス
ペーサ18を設けたものであっても良い、この場合、誘
電体スペーサ18の厚さを適当に選ぶことにより、電界
に対して平行に設けたすき間17の間隔を容易に設定で
きる。
In the above embodiment, the case where the gap 17 was provided between the waveguide 8 and the adiabatic waveguide 6 was described, but this is the second embodiment of the present invention, as shown in FIG. Gap 17
is provided between the adiabatic waveguide 6 and the coaxial/waveguide converter 4,
A dielectric spacer 18 with very low thermal conductivity may be provided in a part of the gap 17. In this case, by appropriately selecting the thickness of the dielectric spacer 18, The interval of the provided gap 17 can be easily set.

また、さらには本発明の第3の実施例として第4図に示
すように、断熱導波管6を用いずに同軸・導波管変換器
4と導波管8とを直接接続し、両者間にすき間17を設
けるとともに、そのすき間17全体に誘電体スペーサ1
8を設けても良い、このような構成では、上記第2の実
施例と同様にすき間170間隔が容易に設定可能となる
とともに、誘電体スペーサ18に気密窓9の機能を持た
せることができるため、気密窓9が不要となり、装置の
簡略化を図ることができる。
Further, as a third embodiment of the present invention, as shown in FIG. 4, the coaxial/waveguide converter 4 and the waveguide 8 are directly connected without using the adiabatic waveguide 6, A gap 17 is provided between them, and a dielectric spacer 1 is provided throughout the gap 17.
In such a configuration, the gap 170 can be easily set as in the second embodiment, and the dielectric spacer 18 can have the function of the airtight window 9. Therefore, the airtight window 9 is not required, and the device can be simplified.

さらに、上記実施例ではHEMT増幅器lの入力端子側
に導波管8.断熱導波管6を用いた場合について述べた
が、これはHEMT増幅器1の出力端子側に設けても良
く、また、半導体装置としてHEMT増幅器1の代わり
にミキサ、FET増幅器等を用いても良い。
Furthermore, in the above embodiment, a waveguide 8. is provided on the input terminal side of the HEMT amplifier l. Although the case where the adiabatic waveguide 6 is used has been described, it may be provided on the output terminal side of the HEMT amplifier 1, or a mixer, FET amplifier, etc. may be used instead of the HEMT amplifier 1 as a semiconductor device. .

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、導波管の一部に電界
に平行にすき間を設けて、導波管を物理的に分割し、そ
の分割された導波管のすき間左設けた側の端面にチョー
クフランジを設けることにより、電気的にはすき間の影
響を小さくすることができ、しかも熱的には導波管を介
しての伝導による熱流入を遮断できる効果がある。従っ
て、冷凍能力の小さな冷凍機を用いても極低温まで半導
体装置を冷却することができ、低雑音受信装置を安価に
できるとともに非常に短い導波管の使用が可能となるた
め、雑音指数の良好な低雑音受信装置を得ることができ
る効果がある。
As described above, according to the present invention, a gap is provided in a part of the waveguide in parallel to the electric field, the waveguide is physically divided, and the gap on the left side of the divided waveguide is By providing a choke flange on the end face of the waveguide, the influence of the gap can be electrically reduced, and thermally, the inflow of heat due to conduction through the waveguide can be blocked. Therefore, even if a refrigerator with a small cooling capacity is used, semiconductor devices can be cooled down to extremely low temperatures, making low-noise receivers inexpensive and allowing the use of very short waveguides, which reduces the noise figure. This has the effect of making it possible to obtain a good low-noise receiving device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1の実施例による低雑音受信装置
の構成図、第2図(a)、 (b)はそれぞれ第1図の
すき間近傍の詳細な構造及び等価回路を示す図、第3図
及び第4図はこの発明の第2及び第3の実施例を示す低
雑音受信装置の構成図、第5図は従来の低雑音受信装置
の構成図である。図中、1はHEMT増幅器、2はサーキュレータ、3は
同軸ケーブル、4は同軸・導波管交換器、5はフランジ
、6は断熱導波管、7はフランジ、8は導波管、9は気
密窓、10は同軸ケーブル、11は冷却板、12は外壁
、13は冷凍機、14は入力端子、15は出力端子、1
6はチョークフランジ、17はすき間、18は誘電体ス
ペーサである。なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a block diagram of a low-noise receiver according to a first embodiment of the present invention, and FIGS. 2(a) and 2(b) are diagrams showing the detailed structure and equivalent circuit near the gap in FIG. 1, respectively. FIGS. 3 and 4 are block diagrams of low-noise receivers showing second and third embodiments of the present invention, and FIG. 5 is a block diagram of a conventional low-noise receiver. In the figure, 1 is a HEMT amplifier, 2 is a circulator, 3 is a coaxial cable, 4 is a coaxial/waveguide exchanger, 5 is a flange, 6 is an insulated waveguide, 7 is a flange, 8 is a waveguide, and 9 is a Airtight window, 10 is a coaxial cable, 11 is a cooling plate, 12 is an outer wall, 13 is a refrigerator, 14 is an input terminal, 15 is an output terminal, 1
6 is a choke flange, 17 is a gap, and 18 is a dielectric spacer. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

Translated fromJapanese
【特許請求の範囲】[Claims](1)外壁で覆われた冷凍機内に半導体装置を装着し、
これらの半導体装置を極低温まで冷却する低雑音受信装
置において、上記半導体装置の所定の端子と上記冷凍機の外壁に設け
た入力端子あるいは出力端子とを電気的に接続する導波
管と、上記導波管を電界に対して平行に所定のすき間を設けて
物理的に分割し、該分割された少なくとも一方の導波管
の、すき間を設けた側の端面に設けたチョークフランジ
とを備えたことを特徴とする低雑音受信装置。
(1) A semiconductor device is installed inside a refrigerator covered with an outer wall,
A low-noise receiving device that cools these semiconductor devices to an extremely low temperature includes a waveguide that electrically connects a predetermined terminal of the semiconductor device and an input terminal or an output terminal provided on the outer wall of the refrigerator; The waveguide is physically divided by providing a predetermined gap parallel to the electric field, and a choke flange is provided on the end face of at least one of the divided waveguides on the side where the gap is provided. A low noise receiving device characterized by:
JP22642289A1989-08-311989-08-31Low noise receiverPendingJPH0389632A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP22642289AJPH0389632A (en)1989-08-311989-08-31Low noise receiver

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP22642289AJPH0389632A (en)1989-08-311989-08-31Low noise receiver

Publications (1)

Publication NumberPublication Date
JPH0389632Atrue JPH0389632A (en)1991-04-15

Family

ID=16844877

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP22642289APendingJPH0389632A (en)1989-08-311989-08-31Low noise receiver

Country Status (1)

CountryLink
JP (1)JPH0389632A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2010268122A (en)*2009-05-132010-11-25Mitsubishi Electric Corp Waveguide connection structure
WO2012060154A1 (en)*2010-11-022012-05-10日立マクセル株式会社Radio frequency device module and method for sealing radio frequency device from outside air
JP2013239768A (en)*2012-05-112013-11-28Toshiba CorpArray antenna device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2010268122A (en)*2009-05-132010-11-25Mitsubishi Electric Corp Waveguide connection structure
WO2012060154A1 (en)*2010-11-022012-05-10日立マクセル株式会社Radio frequency device module and method for sealing radio frequency device from outside air
JP2013239768A (en)*2012-05-112013-11-28Toshiba CorpArray antenna device
US9088325B2 (en)2012-05-112015-07-21Kabushiki Kaisha ToshibaArray antenna apparatus

Similar Documents

PublicationPublication DateTitle
US5983646A (en)Cooling apparatus for a high-frequency receiver
US5604925A (en)Super low noise multicoupler
US5120705A (en)Superconducting transmission line cable connector providing capacative and thermal isolation
US6207901B1 (en)Low loss thermal block RF cable and method for forming RF cable
US8803639B2 (en)Vacuum insulating chamber including waveguides separated by an air gap and including two planar reflectors for controlling radiation power from the air gap
JP3398300B2 (en) Electronic equipment
CN102832890A (en)Radio frequency low-temperature low-noise amplifier system of thermoelectric refrigeration
IE55875B1 (en)Microwave thermographic apparatus
US6698224B2 (en)Electronic apparatus having at least two electronic parts operating at different temperatures
JPH0389632A (en)Low noise receiver
US5305000A (en)Low loss electromagnetic energy probe
JP2004508732A (en) Cryogenic equipment
Moorey et al.A 77-117 GHz cryogenically cooled receiver for radioastronomy
CN218848318U (en) A W-band power-resistant low-temperature receiving front-end device
US3212028A (en)Gyromagnetic isolator with low reluctance material within single ridge and fluid coolant adjacent waveguide
US6392510B2 (en)Radio frequency thermal isolator
Trambarulo et al.Conversion loss and noise temperature of mixers from noise measurements
CN115267692B (en)W-band power-resistant low-temperature receiving front-end device
US20030179051A1 (en)Low-temperature high-frequency amplifying apparatus and wireless apparatus
Engargiola et al.Simple 1 mm receivers with a fixed tuned double sideband SIS mixer and a wideband InP MMIC amplifier
NorrisLow-noise cryogenic transmission line
JP3011217B1 (en) Mounting structure of superconducting filter and low noise amplifier
US20050128025A1 (en)Ultralow temperature low noise amplification apparatus
CN118801909A (en) Dual-polarization cryogenic compact receiving front-end device capable of fast phase adjustment
JPS6261409A (en)Low noise amplifier

[8]ページ先頭

©2009-2025 Movatter.jp