Movatterモバイル変換


[0]ホーム

URL:


JPH0370124B2 - - Google Patents

Info

Publication number
JPH0370124B2
JPH0370124B2JP61035291AJP3529186AJPH0370124B2JP H0370124 B2JPH0370124 B2JP H0370124B2JP 61035291 AJP61035291 AJP 61035291AJP 3529186 AJP3529186 AJP 3529186AJP H0370124 B2JPH0370124 B2JP H0370124B2
Authority
JP
Japan
Prior art keywords
fluidized bed
air
heat transfer
combustion
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61035291A
Other languages
Japanese (ja)
Other versions
JPS62196522A (en
Inventor
Osamu Matsuda
Tsutomu Higo
Takeshi Naito
Hajime Kawaguchi
Shigeru Kosugi
Naoki Inumaru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara CorpfiledCriticalEbara Corp
Priority to JP3529186ApriorityCriticalpatent/JPS62196522A/en
Publication of JPS62196522ApublicationCriticalpatent/JPS62196522A/en
Publication of JPH0370124B2publicationCriticalpatent/JPH0370124B2/ja
Grantedlegal-statusCriticalCurrent

Links

Landscapes

Description

Translated fromJapanese

【発明の詳細な説明】〔産業上の利用分野〕 本発明は、都市ごみ・下水汚泥・し尿汚泥や油
残留残渣・各種可燃加工くず・含油汚泥・タンク
スラツジ・廃活性炭をはじめとする産業廃棄物、
泥炭・洗炭スラツジ・選炭残渣までも含む石炭等
の液状、泥状物や固形物を燃料とし、流動床によ
り燃焼又は焼却すると共にその熱回収を行うため
の装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to industrial wastes such as municipal waste, sewage sludge, human waste sludge, oil residue, various combustible processing wastes, oil-containing sludge, tank sludge, and waste activated carbon. ,
The present invention relates to a device for burning or incinerating liquid and solid materials such as coal, including peat, coal washing sludge, and coal washing residue, in a fluidized bed and recovering the heat.

〔従来の技術〕[Conventional technology]

従来、流動床を利用して熱を回収する技術は、
高い熱伝導率が得られ、巾広い燃料を使用するこ
とができ、装置をコンパクトにすることができる
ところから多用されるようになつてきた。
Conventionally, the technology to recover heat using a fluidized bed is
It has become widely used because it has high thermal conductivity, can use a wide range of fuels, and can make equipment compact.

ところで、従来の流動床においては、流動化の
ための空気等の酸素を含有する吹込気体は流動床
全体にわたつて単位面積当たりの吹込み風量をほ
ぼ均一とし、また燃料もスプレツダや噴流等によ
つて流動床全面に均一に分散させる形式をとり、
流動床内に設けた熱回収のための伝熱面も流動床
全面に配備していた。
By the way, in conventional fluidized beds, the blown gas containing oxygen such as air for fluidization has a nearly uniform blowing air volume per unit area over the entire fluidized bed, and the fuel is also blown into the spreader or jet stream. Therefore, a method is adopted in which it is uniformly dispersed over the entire surface of the fluidized bed.
Heat transfer surfaces for heat recovery were also provided throughout the fluidized bed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従つて、従来技術においては、固形燃料として
は、粒径を細かくして石灰石やケイ砂などの流動
媒体と呼ばれる1〜3mm前後の粒状固体と同程度
か、それよりもやや大きな程度に破砕しなくて
は、底部からの吹込気体では流動できずに沈降し
てそのまま底部に溜まり、流動不良やクリンカ生
成を引き起こしていた。また、液状や泥状物の供
給も分散させる必要があり、それでも投入量を少
量に抑えなくては底に溜まつて流動不良から、燃
焼の停止を引き起こす恐れがあつた。
Therefore, in the conventional technology, solid fuel is produced by crushing particles of approximately 1 to 3 mm in size, which are called fluidized media such as limestone or silica sand, or to a slightly larger size. Otherwise, the gas blown from the bottom would not be able to flow and would settle and remain at the bottom, causing poor flow and clinker formation. In addition, it is necessary to disperse the supply of liquid and muddy substances, and even then, unless the amount of input is kept small, there is a risk that they will accumulate at the bottom and cause poor flow, causing combustion to stop.

また、流動媒体や燃料固形分・燃焼残渣などの
粒状固体の流動床内での動きは、吹込気体の上昇
に伴う上下方向の運動のみ激しくて左右方向はほ
とんどなく、燃料の供給が不均一になると、過剰
なところではクリンカが生成し、少ないところで
は温度低下による燃焼不良を引き起こしていた。
このために、炉床面積が大きくなると、分散しか
つ均一化した燃料の投入を意図して供給機構が複
雑となり、しかもそれでも十分とは言えなかつ
た。
In addition, the movement of particulate solids such as the fluidized medium, fuel solids, and combustion residue within the fluidized bed is intense only in the vertical direction as the blown gas rises, and there is almost no movement in the horizontal direction, resulting in uneven fuel supply. When this happens, clinker is produced in areas where there is an excess amount, and where there is less clinker, a drop in temperature causes poor combustion.
For this reason, as the area of the hearth becomes larger, the supply mechanism becomes more complex in order to feed the fuel in a distributed and uniform manner, and even this is not sufficient.

さらに、燃焼部と熱回収部が同じ場所であるた
めに、燃焼負荷を下げると流動床の温度が低下し
て良好な燃焼に必要な温度が維持することができ
なかつた。たとえ燃焼できなくなる温度まで低下
しなくても、流動床温度が低くなると流動床内で
の燃焼量が低下し、流動床の上方の燃焼空間であ
るフリーボード部では燃料が燃焼しきれずに燃焼
域から排出され、飛灰中の未燃物が増加してしま
う。逆に燃焼負荷を高めると、横方向での混合が
少ないことから、供給の不均一の結果により、部
分的に流動床温度が加熱されてクリンカを生成し
たり、流動床内では燃焼できない量が増加して未
燃物が排ガスに同伴することになる。また、投入
燃料の分散と沈降防止のために、吹込気体を一定
量以上吹き込んで激しい流動状態としないと運転
が困難なこともあり、その場合必要以上に流動を
激しくして伝熱面の摩耗を激増させてしまう結果
につながることも多かつた。
Furthermore, since the combustion section and the heat recovery section are located in the same location, lowering the combustion load lowers the temperature of the fluidized bed, making it impossible to maintain the temperature necessary for good combustion. Even if the temperature does not drop to the point where combustion is no longer possible, when the temperature of the fluidized bed decreases, the amount of combustion within the fluidized bed decreases, and in the freeboard section, which is the combustion space above the fluidized bed, the fuel is not completely combusted and the combustion area The amount of unburnt materials in the fly ash increases. Conversely, when the combustion load is increased, the lateral mixing is less, and as a result of non-uniform feeding, the temperature of the fluidized bed is partially heated and clinker is formed, or the amount that cannot be combusted in the fluidized bed is increased. As a result, unburned substances will be entrained in the exhaust gas. In addition, in order to disperse the input fuel and prevent it from settling, it may be difficult to operate unless a certain amount of blown gas is blown in to create a violent fluid state. This often resulted in a dramatic increase in

従つて、燃焼負荷変動には限界があり、それで
も後燃焼室や排ガス中から高温サイクロン等で未
燃焼物を捕集し再び流動床へ戻してやるとか、別
途捕集灰などのための燃焼炉を設けるなどの工夫
が一般的に必要であり、かつクリンカトラブルや
伝熱面の激しい摩耗を避けることは困難であつ
た。
Therefore, there is a limit to fluctuations in combustion load, and even then, it is necessary to collect unburned materials from the after-combustion chamber or exhaust gas using a high-temperature cyclone and return them to the fluidized bed, or to install a separate combustion furnace for collected ash. Generally, it is necessary to take measures such as providing a heat transfer surface, and it is difficult to avoid clinker trouble and severe wear on the heat transfer surface.

その上、前述したように燃料を細かく破砕せね
ばならないなど、問題が多く、従来の技術では、
折角の流動床熱回収の利点である床内脱硫、完全
燃焼、小さな伝熱面で大きな熱交換、応答性の高
い燃焼量制御等を実用化することは困難であつ
た。
In addition, as mentioned above, there are many problems such as the need to crush the fuel into small pieces, and with conventional technology,
It has been difficult to put into practical use the advantages of fluidized bed heat recovery, such as in-bed desulfurization, complete combustion, large heat exchange with a small heat transfer surface, and highly responsive combustion amount control.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、前記従来の問題点を解決し、先に本
出願人が提案した特開昭57−124608号公報の流動
床熱反応炉を使用したものであつて、燃料も微破
砕する必要なく、燃料投入が容易で、クリンカー
トラブルや流動不良を起こすことなく、かなりの
部分負荷が可能であり、伝熱面の摩耗、スケーリ
ング、腐食等を軽減させ、効率良く熱回収を行う
ことができる流動床からの熱回収装置を提供する
ことを目的とするものである。
The present invention solves the above-mentioned conventional problems and uses the fluidized bed thermal reactor disclosed in Japanese Patent Application Laid-Open No. 124608/1983, which was previously proposed by the applicant, and does not require fine crushing of the fuel. , a fluid flow system that allows easy fuel injection, allows considerable partial loading without causing clinker trouble or flow failure, reduces wear, scaling, corrosion, etc. on heat transfer surfaces, and allows efficient heat recovery. The purpose is to provide a heat recovery device from the floor.

そして、本発明の特徴とする手段は、炉内底部
に酸素を含有する吹込気体の吹込面を備え、該吹
込面を両側縁部が中央部より低くほぼ対称な山形
断面に形成し、前記両側縁部における吹込気体の
流量を前記中央部における吹込気体の流量よりも
相対的に大とする風量調節機構を設け、さらに前
記両側縁部の上方に吹込気体の上向流を前記中央
部に向けて反射転向せしめる反射壁を備え、さら
に前記吹き込み面の中央部の上部に形成される流
動床内に炉内に投入される固体燃料又は粗大不燃
物の最大径よりも広い間隔を保つて伝熱管を配備
したことを特徴とする流動床からの熱回収装置で
ある。
The feature of the present invention is to provide a blowing surface for blowing gas containing oxygen at the bottom of the furnace, and to form the blowing surface into a substantially symmetrical chevron-shaped cross section with both side edges lower than the central portion. An air volume adjustment mechanism is provided to make the flow rate of the blown gas at the edge relatively larger than the flow rate of the blown gas at the center, and further, an upward flow of the blown gas is directed above the both side edges toward the center. The heat exchanger tubes are provided with a reflecting wall for reflecting and turning the blowing surface, and are arranged in a fluidized bed formed at the upper part of the center of the blowing surface, with an interval wider than the maximum diameter of the solid fuel or coarse non-combustible material to be introduced into the furnace. This is a heat recovery device from a fluidized bed, which is characterized by being equipped with.

〔実施例〕〔Example〕

以下に本発明の実施例を図面を参照しながら説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図示例においては、炉1内底部には酸素を
含有する吹込気体、例えば空気2を分散させて吹
き込むための吹込面3が備えられ、この吹込面3
は両側縁部が中央部より低くほぼ対称な山形断面
状(屋根状)に傾斜し、その最低部である両側縁
部付近には不燃物取出口4が設けられ、垂直シユ
ート5を介して不燃物排出装置6に接続され、こ
の不燃物排出装置6はさらに分級装置7に連なつ
ている。空気2は、吹込面3の下側に形成された
風箱8,9,10から吹込面3を経て上方に分散
噴出するようになつており、両側縁部の風箱8,
10からの空気2の単位面積当たりの流量は粒状
固体(流動媒体及び燃料固形分、燃料残渣等)を
十分に流動させて流動床を形成するのに十分な量
とするが、中央部の風箱9からの空気2の流量は
前者よりも小さく選ばれ、これら風箱8,9,1
0への空気2は流量調節弁11等の風量調節機構
によつて調節されるようになつている。
In the first illustrated example, the inner bottom of the furnace 1 is provided with a blowing surface 3 for distributing and blowing oxygen-containing blowing gas, for example, air 2.
The side edges are lower than the center and slope in an almost symmetrical chevron-shaped cross-section (roof-like), and a noncombustible material outlet 4 is provided near the lowest part of both side edges. It is connected to a material discharge device 6, and this incombustible material discharge device 6 is further connected to a classification device 7. The air 2 is dispersed and ejected upward through the blowing surface 3 from wind boxes 8, 9, and 10 formed on the lower side of the blowing surface 3.
The flow rate per unit area of the air 2 from 10 is sufficient to sufficiently fluidize the granular solids (fluidized medium, fuel solids, fuel residue, etc.) to form a fluidized bed, but The flow rate of air 2 from box 9 is chosen smaller than the former, and these air boxes 8, 9, 1
The air 2 flowing into the air 0 is regulated by an air volume regulating mechanism such as a flow rate regulating valve 11.

また、両側縁部の風箱8,10の上方には、吹
き込まれる空気2の上向き流を部分的にさえぎ
り、空気2を炉1内中央に向けて反射転向せしめ
る反射壁12が設けられており、流動化用ガスを
兼ねた空気2とは別に、形成される流動床よりも
高い位置の炉1の側壁側又は燃焼域に接したボイ
ラ15壁には二次燃焼空気13の吹込口14,1
4′を設け、排ガス流路に排ガスボイラ15を一
体構造として設けて炉1やその上部空間の燃焼域
からの排ガスから直接熱回収するようにしてあ
る。
Further, above the wind boxes 8 and 10 on both side edges, reflective walls 12 are provided that partially block the upward flow of the air 2 blown in and reflect the air 2 toward the center of the furnace 1. In addition to the air 2 that also serves as fluidizing gas, there is an inlet 14 for secondary combustion air 13 on the side wall of the furnace 1 at a higher position than the fluidized bed to be formed or on the wall of the boiler 15 in contact with the combustion zone. 1
4' is provided, and an exhaust gas boiler 15 is integrally provided in the exhaust gas passage to recover heat directly from the exhaust gas from the combustion area of the furnace 1 and its upper space.

さらに、風箱9の上方に形成される流動床の高
さ中間付近には、伝熱管群16を水平に又は僅か
に傾斜させてごばん目状に配備するが、この伝熱
管群16の左右の水平方向間隔は、少なくとも炉
1に投入される固体燃料又は粗大不燃物の最大径
よりも十分広くし、伝熱管群16で粒状固体の動
きを阻止することのないようにしなければなら
ず、また伝熱管群16が流動床の上層及び下層部
分における粒状固体の移動を阻止したり、抵抗と
ならないように、伝熱管群16の上下に十分広い
通路をとる必要がある。またこの伝熱管群16に
は、排ガスボイラ15と共有の気水ドラム17の
水面下より循環ポンプ18にて缶水を抜き出し、
伝熱管群16を通して再び気水ドラム17に戻す
強制循環を行うようになつている。19は排ガス
ボイラ15の下ヘツダを示す。
Further, near the middle of the height of the fluidized bed formed above the wind box 9, heat transfer tube groups 16 are arranged horizontally or slightly inclined in a grid pattern. The horizontal spacing must be at least sufficiently wider than the maximum diameter of the solid fuel or coarse non-combustible material to be fed into the furnace 1, so that the movement of the granular solids is not obstructed by the heat transfer tube group 16, Further, it is necessary to provide sufficiently wide passages above and below the heat transfer tube group 16 so that the heat transfer tube group 16 does not block the movement of granular solids in the upper and lower layers of the fluidized bed or create resistance. In addition, canned water is extracted from below the water surface of an air-water drum 17 shared with the exhaust gas boiler 15 by a circulation pump 18 to this heat transfer tube group 16.
Forced circulation is performed through the heat transfer tube group 16 and back to the air/water drum 17. Reference numeral 19 indicates a lower header of the exhaust gas boiler 15.

そして、吹込面3の上方には、炉1内に形成さ
れる流動床の上表面近くに燃料を投入するため
に、ホツパ20及び供給装置21に連なる燃料投
入口22を設けるが、第1図示例では吹込面3中
央の高い部分の真上付近に設けてある。
A fuel inlet 22 connected to a hopper 20 and a supply device 21 is provided above the blowing surface 3 in order to inject fuel near the upper surface of the fluidized bed formed in the furnace 1. In the example shown, it is provided near the center of the high part of the blowing surface 3, right above it.

しかして、その作用を説明すれば、吹込面3の
中央の高い部分の風箱9には、吹込面3上の粒状
固体が流動化はするが、激しい流動状態に至らな
い程度となるように、流動開始速度Gmfの1〜
3倍程度の流量の空気2を送り、その左右の風箱
8,10には中央の2倍以上の単位面積当たりの
流量となるように空気2を送る。ここで、必要な
蒸気量に応じ、ホツパ20及び供給装置21を経
て燃料投入口22から燃料を炉1内に投入し、ま
たそれに応じて流動床内の空燃比が適切に保持さ
れるように、中央の風箱9からの風量がGmfに
近い場合は左右の風箱8,10からの吹込風量の
みを調節するが、中央の風箱9からの風量が
Gmfに対しかなり多めの場合には空気2を分岐
する手前にて全体の流動空気量を加減する。
To explain its operation, the granular solids on the blowing surface 3 are fluidized in the wind box 9 at the high central part of the blowing surface 3, but not to the extent that it becomes a violent fluid state. , 1~ of flow starting speed Gmf
Air 2 is sent at a flow rate that is about three times as large, and the air 2 is sent to the left and right wind boxes 8 and 10 so that the flow rate per unit area is more than twice that of the center. Here, fuel is fed into the furnace 1 from the fuel inlet 22 via the hopper 20 and the supply device 21 according to the required amount of steam, and the air-fuel ratio in the fluidized bed is maintained appropriately accordingly. If the air volume from the central wind box 9 is close to Gmf, only the air volume from the left and right wind boxes 8 and 10 is adjusted;
If the amount is considerably larger than Gmf, adjust the total amount of flowing air before branching air 2.

このようにして、吹き込まれた空気2により、
中央風箱9の上では全体に吹上げ速度が小さいこ
とから粒状固体は下降流を示し、左右風箱8,1
0上では吹上げ速度が大きいことから粒状固体は
上昇流となり、かつ反射壁12の作用で吹き上げ
る空気2が反射壁12に沿つて加速され、吹き飛
ばす形で大きく粒状固体を中央側へ移動させる。
すなわち、第1図矢印にて示すような旋回移動し
ながら全体が良く混合される。
In this way, the blown air 2 causes
Above the central wind box 9, the granular solids show a downward flow because the blowing velocity is small overall, and the granular solids show a downward flow above the left and right wind boxes 8, 1
Since the blowing speed is high above 0, the granular solid becomes an upward flow, and the air 2 blown up by the action of the reflecting wall 12 is accelerated along the reflecting wall 12, and the granular solid is blown away and moved toward the center side.
That is, the entire mixture is thoroughly mixed while rotating as shown by the arrow in FIG.

従つて、不燃物を多く含む低品位の石炭、泥
炭、洗炭スラツジ、選炭残渣、あるいは汚泥や都
市ごみ等の各種生産、処理過程で生ずる可燃性廃
棄物その他の液状、泥状又は固形の燃料が燃料投
入口22から流動床表面に投入されると、左右か
ら移動したり飛ばされてふりそそぐ流動媒体の旋
回流の流れによつて流動床内に埋められながら吹
込面3の高い側の中央に寄せられ、さらに埋めら
れるような形で流動媒体と共に沈みながら熱と若
干の燃焼空気を供給されてばらばらになり、部分
的に燃焼しながら旋回流に沿つて流動床内を分散
しつつ移動してゆき、吹込空気量の多い部分に至
つて大きな空気過剰率と激しい流動によつて完全
燃焼することになる。
Therefore, combustible wastes and other liquid, muddy, or solid fuels generated in various production and treatment processes such as low-grade coal, peat, coal washing sludge, coal cleaning residue, sludge, and municipal waste that contain a large amount of incombustibles. When fuel is injected into the surface of the fluidized bed from the fuel inlet 22, it is buried in the fluidized bed by the swirling flow of the fluidized medium that moves or is blown from the left and right, and reaches the center of the high side of the blowing surface 3. As it sinks together with the fluidized medium, it is supplied with heat and a small amount of combustion air, and is broken up into pieces, partially combusting as it moves along the swirling flow while being dispersed within the fluidized bed. Then, in the areas where the amount of blown air is large, complete combustion occurs due to the large excess air ratio and intense flow.

従つて、比較的大きな径の塊状燃料であつて
も、また燃料が部分的にまとめて投入されても何
ら支障なく燃焼させることができる。
Therefore, even if the fuel is a lump of relatively large diameter, or if the fuel is partially injected all at once, it can be combusted without any problem.

また、燃料の灰分のうち微細な焼却灰は吹き上
げられ、燃焼排ガスと共に流動床の上から飛び去
り、それ以外は旋回流に吹き寄せられて左右の不
燃物取出口4に至るが、流動媒体に近い径又は流
動媒体に近い通風抵抗を持つ焼却残渣は流動媒体
と同化してしまう。従つて、不燃物排出装置6に
より流動媒体と共に残留する不燃物を抜き出し、
分級装置7によつて流動媒体と同等の径以下のも
のは再び炉1内に戻し、蓄積すると流動状態を悪
くする大きい径の不燃物を系外に排出する。
In addition, among the ash of the fuel, fine incineration ash is blown up and flies off the top of the fluidized bed together with the combustion exhaust gas, and the rest is blown away by the swirling flow and reaches the left and right noncombustible material extraction ports 4, but it is close to the fluidized medium. Incineration residue that has a diameter or ventilation resistance close to that of the fluidized medium will be assimilated with the fluidized medium. Therefore, the noncombustible materials remaining together with the fluid medium are extracted by the noncombustible material discharging device 6,
By means of the classification device 7, those having a diameter equal to or smaller than that of the fluidized medium are returned to the furnace 1, and non-combustible materials having a large diameter that deteriorate the fluidization condition when accumulated are discharged out of the system.

さらに、伝熱管群16においては、内部缶水が
強制循環であること、外部は流動床によつて境界
層を形成することなくかつ流動床との接触伝熱も
あり、粒状固体が良く撹拌されることから、大き
な伝熱量を期待することができ、排ガスとの伝熱
量がたかだか数十Kcal/m2h℃なのに対して200
〜300Kcal/m2h℃以上の値となる。自然循環の
場合には若干傾斜させ上面に蒸気が溜まるのを防
ぐことが好ましいが、気水ドラム17までは高さ
を十分とれるので、伝熱量に見合つた循環量を与
えることは十分可能である。
Furthermore, in the heat transfer tube group 16, the internal can water is forcedly circulated, and the external fluidized bed prevents the formation of a boundary layer and there is contact heat transfer with the fluidized bed, so that the granular solids are well stirred. Therefore, a large amount of heat transfer can be expected, and while the amount of heat transfer with the exhaust gas is at most several tens of Kcal/m2 h℃,
It becomes a value of ~300Kcal/m2 h°C or more. In the case of natural circulation, it is preferable to tilt it slightly to prevent steam from accumulating on the top surface, but since there is sufficient height up to the air/water drum 17, it is possible to provide a circulation amount commensurate with the amount of heat transfer. .

流動床は燃焼を維持するため、500〜600℃以
上、望ましくは700〜800℃とするが、900〜1000
℃以上では流動媒体たる砂や燃焼残渣が溶けはじ
めるために流動床を冷却しなければならないが、
流動床への水注入や吹込風量増加等を行うことな
く、すべて熱回収の形で冷却が行われ、しかもそ
のための伝熱面積が僅かですむという利点があ
る。
In order to maintain combustion, the temperature of the fluidized bed should be 500 to 600℃ or higher, preferably 700 to 800℃, but 900 to 1000℃
At temperatures above ℃, the fluidized bed, such as sand and combustion residue, begins to melt, so the fluidized bed must be cooled.
Cooling is performed entirely by heat recovery without injecting water into the fluidized bed or increasing the amount of air blown into the bed, and the advantage is that the heat transfer area required for this purpose is small.

加えて、流動床内に巻き込む形で燃焼が行われ
ることから、流動床層高を高くすることで、流動
床内で燃える割合を高めて部分負荷時の流動床へ
の燃焼熱入熱量減少を抑えることが可能となる。
このこと及び前述した風量調節と流動状態調節の
原理から本方式によれば部分負荷運転が容易であ
り、50%以上の部分負荷も空気比を変えず、従つ
て熱回収効率を下げることなしに可能である。
In addition, since combustion takes place in a fluidized bed, increasing the height of the fluidized bed increases the rate of combustion within the fluidized bed and reduces the amount of combustion heat input into the fluidized bed during partial load. It is possible to suppress it.
Based on this and the principles of air volume adjustment and flow condition adjustment described above, partial load operation is easy with this system, and partial loads of 50% or more do not change the air ratio, therefore, without reducing heat recovery efficiency. It is possible.

また、伝熱管群16の部分での流動状態の強弱
の変化も前述した風量調節の原理から常に弱い状
態とすることができる。即ち、吹込まれる空気2
の少ない中央の風箱9上の流動床は弱い流動状態
の下降流となるため、伝熱管群16の粒状固体に
よる摩耗が少なく、さらに風箱9上では両側から
の旋回流による下降流が干渉し合いながら伝熱管
群16中を通り抜けるので、粒状固体が伝熱管群
16中にとどこおることはなく、伝熱効率も高ま
る。しかも伝熱管群16中の間隔が広く不燃物等
の通過を防げることなく、クリンカトラブル、ス
ケーリング等を起こし難いので粒状固体の伝熱管
群16中でのとどこおりがさらに起こり難く、ま
た空気量も少ないために伝熱管群16の腐食も少
なくなる。
In addition, the change in the strength of the flow state in the heat transfer tube group 16 can always be made weak based on the principle of air volume adjustment described above. That is, the blown air 2
The fluidized bed on the central wind box 9 has a weak downward flow, so there is less wear due to the granular solids in the heat transfer tube group 16, and furthermore, on the wind box 9, the downward flow due to the swirling flow from both sides interferes. Since they pass through the heat exchanger tube group 16 while touching each other, the granular solids do not end up in the heat exchanger tube group 16, and the heat transfer efficiency is also increased. Moreover, the spacing in the heat transfer tube group 16 is wide and does not prevent incombustible materials from passing through, making it difficult to cause clinker trouble, scaling, etc. Therefore, it is even more difficult for granular solids to sag in the heat transfer tube group 16, and the amount of air is small. Therefore, corrosion of the heat exchanger tube group 16 is also reduced.

流動床内の伝熱管群16への缶水の流し方は、
第1図示例のように必ずしもする必要はなく、例
えば発生蒸気の過熱器や気水ドラム17への供給
缶水を加熱するエコノマイザ的使用法、排ガスボ
イラ15とは全く独立した気水ヘツダを持たせる
方法、熱媒ボイラや温水発生器として使用する方
法など、多様に対応できることは言うまでもな
い。しかし、流動床内の伝熱管群16では発生す
る排ガスからの熱回収はできないので、第1図示
例のように排ガスボイラ15と組み合わせたり、
その他空気予熱器、エコノマイザなどの排ガスか
らの熱回収装置と組み合わせて使用し、燃料から
の熱回収量をあげることが好ましい。
How to flow canned water to the heat transfer tube group 16 in the fluidized bed is as follows.
It is not necessary to use it as in the example shown in the first diagram, but for example, it can be used as an economizer to heat the water supplied to the steam drum 17, or the steam header can be completely independent from the exhaust gas boiler 15. Needless to say, it can be used in a variety of ways, such as as a heat exchanger, as a heating medium boiler, or as a hot water generator. However, since the heat transfer tube group 16 in the fluidized bed cannot recover heat from the generated exhaust gas, it may be combined with the exhaust gas boiler 15 as shown in the first example,
It is preferable to use it in combination with other heat recovery devices from exhaust gas, such as an air preheater or an economizer, to increase the amount of heat recovery from the fuel.

以上のような実施例において、伝熱管群16の
摩耗と伝熱量を測定したところ、次のような良好
な結果を得ることができた。
In the above examples, when the wear and heat transfer amount of the heat transfer tube group 16 were measured, the following favorable results were obtained.

伝熱管減肉 ほとんど認められずスケーリング 異色スケールの薄層が形成された
が、経時による生長は認められず伝熱量 200〜300Kcal/m2h℃温度条件 缶水温度、入口10℃前後 出口50℃前
後流動床温度 780〜840℃伝熱管材質 STB40A炉床熱負荷 150〜250×104kcal/m2h℃ さらにまた、処理量が大きく熱負荷が増大した
り、また燃料の発熱量が高く、伝熱面積をさらに
必要とするような大形又は高負荷たらしめる必要
がある場合には、第2図に示すように、山形の吹
込面3を炉1の中心線に対してほぼ対称に並設
し、各風箱9上の流動床部に伝熱管群16を配備
し、炉1中央底部にも不燃物取出口4を設け、さ
らに各吹込面3,3の炉中心側の側縁部の上方に
も粒状固体の旋回移動流を誘導するために反射壁
12を設け、燃料投入口22を各吹込面3の上方
に分割して開口した例である。
Heat exchanger tube thinning: Hardly observed, scaling A thin layer with unusual scale was formed, but no growth was observed over time. Heat transfer amount: 200 to 300 Kcal/m2 h℃ Temperature conditions: Canned water temperature, inlet: around 10℃, outlet: 50℃ Fluidized bed temperature before and after: 780-840℃ Heat exchanger tube material: STB40A Hearth heat load: 150-250×104 kcal/m2 h℃ Furthermore, the heat load increases due to the large throughput, and the calorific value of the fuel is high. If it is necessary to create a large size or high load that requires more heat transfer area, the chevron-shaped blowing surface 3 should be arranged approximately symmetrically with respect to the center line of the furnace 1, as shown in FIG. A group of heat transfer tubes 16 is provided in the fluidized bed section above each wind box 9, a noncombustible material outlet 4 is also provided at the center bottom of the furnace 1, and a side edge of each blowing surface 3, 3 on the furnace center side is provided. In this example, a reflecting wall 12 is provided above to guide the swirling flow of granular solids, and the fuel inlet 22 is divided and opened above each blowing surface 3.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、燃料を数
mm以下に微破砕する必要は全くなく、燃焼速度が
爆発的でなければ無破砕や100mm程度までの粗破
砕でもクリンカトラブルや流動不良を起こすこと
なく運転することができ、かなりの部分負荷が可
能であつて、大きな不燃物が混入しているもので
あつても運転を停止することなく炉外へ取り出す
ことができる。
As explained above, according to the present invention, the fuel can be
There is no need for fine crushing to less than 1 mm, and as long as the combustion rate is not explosive, operation can be performed without crushing or coarsely crushing up to 100 mm without causing clinker trouble or poor flow, and a considerable partial load is possible. Even if large incombustibles are mixed in, it can be taken out of the furnace without stopping the operation.

また、部分的に激しい流動部もあることから、
ドロマイトやライムストーンなどの脱硫剤などを
砕いて活性化させることも容易であり、固形燃料
を一旦流動床内に巻き込んでから燃焼させること
により、爆発的な燃焼を抑えて二段燃焼などの
NOx対策を行うことができるなど、公害防止の
観点からも優れた性能を持つている。
In addition, there are some areas with strong flow, so
It is also easy to crush and activate desulfurization agents such as dolomite and limestone, and by first involving the solid fuel in a fluidized bed and then combusting it, explosive combustion can be suppressed and it can be used for two-stage combustion, etc.
It also has excellent performance from a pollution prevention perspective, such as by being able to take measures againstNOx .

さらに加えて、伝熱管の摩耗や腐食等も大幅に
軽減させ、しかもスケーリングによる伝熱低下も
防ぐことができ、効率の良い熱回収を行い、かつ
従来の流動床の約2倍の高負荷運転までが可能と
なる等多くの極めて有益なる効果を有するもので
ある。
In addition, wear and corrosion of heat transfer tubes can be significantly reduced, heat transfer reduction due to scaling can be prevented, efficient heat recovery can be achieved, and high-load operation is approximately twice that of conventional fluidized beds. It has many extremely beneficial effects, such as making it possible to

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図はその一
例を示す全体の縦断面図、第2図はそれぞれ他の
例を示す炉の部分の縦断面図である。 1……炉、2……空気、3……吹込面、4……
不燃物取出口、5……垂直シユート、6……不燃
物排出装置、7……分級装置、8,9,10……
風箱、11……流量調節弁、12……反射壁、1
3……二次燃焼空気、14,14′……吹込口、
15……排ガスボイラ、16……伝熱管群、17
……気水ドラム、18……循環ポンプ、19……
下ヘツダ、20……ホツパ、21……供給装置、
22……燃料投入口。
The drawings show embodiments of the present invention, and FIG. 1 is a longitudinal cross-sectional view of the entire structure showing one example, and FIG. 2 is a longitudinal cross-sectional view of a portion of a furnace showing other examples. 1...Furnace, 2...Air, 3...Blowing surface, 4...
Noncombustible material outlet, 5... Vertical chute, 6... Noncombustible material discharge device, 7... Classification device, 8, 9, 10...
Wind box, 11...Flow control valve, 12...Reflection wall, 1
3... Secondary combustion air, 14, 14'... Inlet,
15... Exhaust gas boiler, 16... Heat exchanger tube group, 17
... Air and water drum, 18 ... Circulation pump, 19 ...
Lower header, 20...hopper, 21...supply device,
22...Fuel input port.

Claims (1)

Translated fromJapanese
【特許請求の範囲】[Claims]1 炉内底部に酸素を含有する吹込気体の吹込面
を備え、該吹込面を両側縁部が中央部より低くほ
ぼ対称な山形断面に形成し、前記両側縁部におけ
る吹込気体の流量を前記中央部における吹込気体
の流量よりも相対的に大とする風量調節機構を設
け、さらに前記両側縁部の上方に吹込気体の上向
流を前記中央部に向けて反射転向せしめる反射壁
を備え、さらに前記吹き込み面の中央部の上部に
形成される流動床内に炉内に投入される固体燃料
又は粗大不燃物の最大径よりも広い間隔を保つて
伝熱管を配備したことを特徴とする流動床からの
熱回収装置。
1. A blowing surface for blowing gas containing oxygen is provided at the bottom of the furnace, the blowing surface is formed into a substantially symmetrical chevron-shaped cross section with both side edges lower than the center, and the flow rate of the blowing gas at the both side edges is lower than the center. an air volume adjustment mechanism that makes the flow rate of the blown gas relatively larger than the flow rate of the blown gas in the central part; A fluidized bed, characterized in that heat transfer tubes are arranged in the fluidized bed formed above the central part of the blowing surface at intervals wider than the maximum diameter of the solid fuel or coarse non-combustible material to be introduced into the furnace. Heat recovery equipment from.
JP3529186A1986-02-211986-02-21Heat recovery method from fluidized bed and its equipmentGrantedJPS62196522A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP3529186AJPS62196522A (en)1986-02-211986-02-21Heat recovery method from fluidized bed and its equipment

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP3529186AJPS62196522A (en)1986-02-211986-02-21Heat recovery method from fluidized bed and its equipment

Publications (2)

Publication NumberPublication Date
JPS62196522A JPS62196522A (en)1987-08-29
JPH0370124B2true JPH0370124B2 (en)1991-11-06

Family

ID=12437668

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP3529186AGrantedJPS62196522A (en)1986-02-211986-02-21Heat recovery method from fluidized bed and its equipment

Country Status (1)

CountryLink
JP (1)JPS62196522A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6855368B1 (en)2000-06-282005-02-15Applied Materials, Inc.Method and system for controlling the presence of fluorine in refractory metal layers
US6878206B2 (en)2001-07-162005-04-12Applied Materials, Inc.Lid assembly for a processing system to facilitate sequential deposition techniques
US6911391B2 (en)2002-01-262005-06-28Applied Materials, Inc.Integration of titanium and titanium nitride layers
US6916398B2 (en)2001-10-262005-07-12Applied Materials, Inc.Gas delivery apparatus and method for atomic layer deposition
US6936906B2 (en)2001-09-262005-08-30Applied Materials, Inc.Integration of barrier layer and seed layer
US6951804B2 (en)2001-02-022005-10-04Applied Materials, Inc.Formation of a tantalum-nitride layer
US6998579B2 (en)2000-12-292006-02-14Applied Materials, Inc.Chamber for uniform substrate heating
US7022948B2 (en)2000-12-292006-04-04Applied Materials, Inc.Chamber for uniform substrate heating
US7049226B2 (en)2001-09-262006-05-23Applied Materials, Inc.Integration of ALD tantalum nitride for copper metallization
US7085616B2 (en)2001-07-272006-08-01Applied Materials, Inc.Atomic layer deposition apparatus
US7101795B1 (en)2000-06-282006-09-05Applied Materials, Inc.Method and apparatus for depositing refractory metal layers employing sequential deposition techniques to form a nucleation layer
US7115499B2 (en)2002-02-262006-10-03Applied Materials, Inc.Cyclical deposition of tungsten nitride for metal oxide gate electrode
US7201803B2 (en)2001-03-072007-04-10Applied Materials, Inc.Valve control system for atomic layer deposition chamber
US7208413B2 (en)2000-06-272007-04-24Applied Materials, Inc.Formation of boride barrier layers using chemisorption techniques
US7211144B2 (en)2001-07-132007-05-01Applied Materials, Inc.Pulsed nucleation deposition of tungsten layers
US7262133B2 (en)2003-01-072007-08-28Applied Materials, Inc.Enhancement of copper line reliability using thin ALD tan film to cap the copper line
US7405158B2 (en)2000-06-282008-07-29Applied Materials, Inc.Methods for depositing tungsten layers employing atomic layer deposition techniques
US7439191B2 (en)2002-04-052008-10-21Applied Materials, Inc.Deposition of silicon layers for active matrix liquid crystal display (AMLCD) applications
US7595263B2 (en)2003-06-182009-09-29Applied Materials, Inc.Atomic layer deposition of barrier materials

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2664942B2 (en)*1988-08-051997-10-22三菱重工業株式会社 Fluidized bed boiler
JP6271365B2 (en)*2014-07-302018-01-31株式会社Ihi環境エンジニアリング Burner for powder combustion
JP6718296B2 (en)*2016-04-262020-07-08三菱重工業株式会社 Fluidized bed combustion furnace

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
GB1448196A (en)*1972-10-201976-09-02Sprocket Properties LtdFluidised bed incinerators
GB1577717A (en)*1976-03-121980-10-29Mitchell D AThermal reactors incorporating fluidised beds
LU80130A1 (en)*1977-08-191979-03-07Flameless Furnaces Ltd IMPROVEMENTS RELATING TO THE LOADING OF MATERIALS IN FLUIDIZED BEDS
JPS57124608A (en)*1981-01-271982-08-03Ebara CorpFluidized bed type heat-reactive furnace

Cited By (31)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US7501344B2 (en)2000-06-272009-03-10Applied Materials, Inc.Formation of boride barrier layers using chemisorption techniques
US7208413B2 (en)2000-06-272007-04-24Applied Materials, Inc.Formation of boride barrier layers using chemisorption techniques
US7501343B2 (en)2000-06-272009-03-10Applied Materials, Inc.Formation of boride barrier layers using chemisorption techniques
US7033922B2 (en)2000-06-282006-04-25Applied Materials. Inc.Method and system for controlling the presence of fluorine in refractory metal layers
US6855368B1 (en)2000-06-282005-02-15Applied Materials, Inc.Method and system for controlling the presence of fluorine in refractory metal layers
US7115494B2 (en)2000-06-282006-10-03Applied Materials, Inc.Method and system for controlling the presence of fluorine in refractory metal layers
US7235486B2 (en)2000-06-282007-06-26Applied Materials, Inc.Method for forming tungsten materials during vapor deposition processes
US7465666B2 (en)2000-06-282008-12-16Applied Materials, Inc.Method for forming tungsten materials during vapor deposition processes
US7101795B1 (en)2000-06-282006-09-05Applied Materials, Inc.Method and apparatus for depositing refractory metal layers employing sequential deposition techniques to form a nucleation layer
US7405158B2 (en)2000-06-282008-07-29Applied Materials, Inc.Methods for depositing tungsten layers employing atomic layer deposition techniques
US7022948B2 (en)2000-12-292006-04-04Applied Materials, Inc.Chamber for uniform substrate heating
US6998579B2 (en)2000-12-292006-02-14Applied Materials, Inc.Chamber for uniform substrate heating
US7094680B2 (en)2001-02-022006-08-22Applied Materials, Inc.Formation of a tantalum-nitride layer
US6951804B2 (en)2001-02-022005-10-04Applied Materials, Inc.Formation of a tantalum-nitride layer
US7201803B2 (en)2001-03-072007-04-10Applied Materials, Inc.Valve control system for atomic layer deposition chamber
US7211144B2 (en)2001-07-132007-05-01Applied Materials, Inc.Pulsed nucleation deposition of tungsten layers
US6878206B2 (en)2001-07-162005-04-12Applied Materials, Inc.Lid assembly for a processing system to facilitate sequential deposition techniques
US7085616B2 (en)2001-07-272006-08-01Applied Materials, Inc.Atomic layer deposition apparatus
US7352048B2 (en)2001-09-262008-04-01Applied Materials, Inc.Integration of barrier layer and seed layer
US7049226B2 (en)2001-09-262006-05-23Applied Materials, Inc.Integration of ALD tantalum nitride for copper metallization
US6936906B2 (en)2001-09-262005-08-30Applied Materials, Inc.Integration of barrier layer and seed layer
US7494908B2 (en)2001-09-262009-02-24Applied Materials, Inc.Apparatus for integration of barrier layer and seed layer
US6916398B2 (en)2001-10-262005-07-12Applied Materials, Inc.Gas delivery apparatus and method for atomic layer deposition
US7094685B2 (en)2002-01-262006-08-22Applied Materials, Inc.Integration of titanium and titanium nitride layers
US7473638B2 (en)2002-01-262009-01-06Applied Materials, Inc.Plasma-enhanced cyclic layer deposition process for barrier layers
US6911391B2 (en)2002-01-262005-06-28Applied Materials, Inc.Integration of titanium and titanium nitride layers
US7115499B2 (en)2002-02-262006-10-03Applied Materials, Inc.Cyclical deposition of tungsten nitride for metal oxide gate electrode
US7429516B2 (en)2002-02-262008-09-30Applied Materials, Inc.Tungsten nitride atomic layer deposition processes
US7439191B2 (en)2002-04-052008-10-21Applied Materials, Inc.Deposition of silicon layers for active matrix liquid crystal display (AMLCD) applications
US7262133B2 (en)2003-01-072007-08-28Applied Materials, Inc.Enhancement of copper line reliability using thin ALD tan film to cap the copper line
US7595263B2 (en)2003-06-182009-09-29Applied Materials, Inc.Atomic layer deposition of barrier materials

Also Published As

Publication numberPublication date
JPS62196522A (en)1987-08-29

Similar Documents

PublicationPublication DateTitle
JPH0370124B2 (en)
US5156099A (en)Composite recycling type fluidized bed boiler
US4279207A (en)Fluid bed combustion
US4823712A (en)Multifuel bubbling bed fluidized bed combustor system
US4823740A (en)Thermal reactor
US4303023A (en)Fluidized bed fuel burning
WO1999023431A1 (en)Fluidized bed gasification combustion furnace
US5138982A (en)Internal circulating fluidized bed type boiler and method of controlling the same
EP0431163B1 (en)Composite circulation fluidized bed boiler
KR100568897B1 (en) Thermal and Conductive Heat Transfer Systems
CA1316413C (en)Internal circulating fluidized bed type boiler and method of controlling the same
JP2009019870A (en)Fluidized bed gasification combustion furnace
CA1174905A (en)Fluidized bed fuel burning
ShangAn overview of fluidized-bed combustion boilers
JP2972631B2 (en) Fluidized bed boiler and heat exchange method thereof
JPS63187001A (en)Fluidized-bed heat recovery device
JPH1114029A (en)Circulating fluidized bed combustion equipment and method of operation
JP3763656B2 (en) Circulating fluidized bed combustor
JP2528711B2 (en) Double bed fluidized bed boiler
CN1204391A (en)Method and apparatus for controlling temp. of bed of bubbling bed boiler
JP2989783B2 (en) Heat recovery device from fluidized bed
JP2758167B2 (en) Fluidized bed boiler
JPS62272089A (en)Method and apparatus for retrieving heat from fluidized bed
HUP9903894A2 (en)Method and apparatus for controlling the temperature of the bed of a bubbling bed boiler
Kerr et al.Fluidised bed combustion: Improved system design leading to reduced pollutant emissions

[8]ページ先頭

©2009-2025 Movatter.jp