【発明の詳細な説明】[Detailed description of the invention] 本発明は、水中で迅速かつ微細な崩壊性を示す
新規な塩素化イソシアヌール酸成形物に関する。 従来より、塩素化イソシアヌール酸は、水中で
加水分解し、塩素を放出する性質を示すために、
これを含む殺菌消毒剤,洗浄剤,漂白剤等として
多用されているが、粉状の形態のものは使用時又
は取扱い時に粉立ち易く、また、計量作業も厄介
である等の理由により一般に好まれず、顆粒剤又
は錠剤の形態のものが望まれている。しかし、塩
素化イソシアヌール酸、特にトリクロロイソシア
ヌール酸は、常温の水に対する飽和溶解度が1.2
%程度と低いために、単に錠剤を水中に投入する
ことによつては、迅速に充分量の有効塩素を水中
全体にわたるように供給することができない。そ
こでこれを解決するため従来、水中に錠剤を投入
した際錠剤の崩壊を生起せしめる成分を予め錠剤
中に含有させておく提案が知られているが、実用
上の問題があり、未だ充分なものが得られていな
い。例えば、炭酸ソーダ,重炭酸ソーダ等の如き
発泡作用を発現せしめる物質を錠剤中に混入して
おく方法では、水中で崩壊粒子が微細とはなら
ず、また、密閉容器中に保存した際にも変質が起
こり易く好ましくない。また、別の例として、ジ
クロロイソシアヌール酸ソーダの無水塩を錠剤中
に含めておく提案(特開昭51−139628号)も知ら
れているが、この錠剤は保存中に変質し易く、す
なわち長期間の保存中に塩素化イソシアヌール酸
の分解が生起し易く、有効塩素含有率の低下の他
に保存容器に損傷をもたらしたり、水中での崩壊
性が低下したりする欠点がある。 本発明者らは、塩素化イソシアヌール酸含有錠
剤の水中崩壊性について種々実験的研究を重ねた
結果,無水硼酸(B2O3)及びカルボキシメチル
セルロースを含有させた顆粒又は錠剤を水中に投
入すると、迅速に、しかも微細に崩壊が起こり、
迅速に塩素が水中全体にわたつて供給されるこ
と、並びに上記顆粒又は錠剤は通常の密閉容器に
保存する保存中に前記の如き変質も起らず極めて
安定に長期間保存できる事実を見出し、本発明を
完成した。 本発明の目的は、水中に投入した際、迅速に微
細粒にまで崩壊する塩素化イソシアヌール酸含有
の加圧成形物を供給することにあり、他の目的は
密閉容器に保存したとき長期間にわたり変質も起
こらず安定に保存し得る塩素化イソシアヌール酸
含有の加圧成形物を提供することにある。かゝる
本発明の水中崩壊性塩素化イソシアヌール酸成形
物は、粉状又は顆粒状の塩素化イソシアヌール酸
を主成分として含有する組成物100重量部と無水
硼酸0.3〜10重量部とカルボキシメチルセルロー
ス0.05〜10重量部との混合物を加圧成形してなる
ことを特徴とする。 本発明に用いられる塩素化イソシアヌール酸
は、トリクロロイソシアヌール酸,ジクロロイソ
シアヌール酸又はこれらの混合物等であり、通
常、含水率1%以下の粉状又は顆粒状の工業製品
として入手し得る。本発明に用いられる塩素化イ
ソシアヌール酸を主成分として含有する組成物と
しては、上記粉状又は顆粒状の塩素化イソシアヌ
ール酸、これを主成分とし他の補助剤、増量剤等
補助成分とからなる粉状又は顆粒状の組成物等で
あり、上記補助剤、増量剤の例としては、発泡剤
としての無水炭酸ナトリウム及び炭酸水素ナトリ
ウム、成形滑剤としてのオルト硼酸、ステアリン
酸ナトリウム、増量剤としての食塩、芒硝等が挙
げられる。上記塩素化イソシアヌール酸を主成分
として含有する組成物は粉状又は顆粒状である必
要があり、これによつて、本発明の成形物が水中
で崩壊するときは、上記組成物の粉状又は顆粒状
の粒子の大きさにまで崩壊が起こる。 従つて上記組成物の粉末又は顆粒の粒子の大き
さは細かい程好ましいが、通常、20〜1400μ程度
で充分である。本発明に用いられる無水硼酸は、
化学式B2O3で示され、通常、70〜3000μ程度の微
粉状の工業製品である。この無水硼酸は、本発明
の成形物において、これが水中に投入され水との
接触が起つた際、成形物を強力に崩壊せしめる作
用を示し、また、水分、空気等を遮断できる通常
の密閉式容器中に本発明の成形物を保存すると
き、成形物の変質を防止し長期間にわたり安定に
成形物を維持せしめる作用をする。しかし、この
無水硼酸を含有しない塩素化イソシアヌール酸含
有成形物は、水分、空気等を遮断できる通常の密
閉式容器、例えば、金属製容器、プラスチツク製
袋等の中に保存しても、塩素化イソシアヌール酸
の分解が徐々に進行し、蓄積した分解ガスによつ
て容器の損傷腐蝕等が起つたり、容器の開封時に
作業者は被害をこうむつたり、更に水中崩壊性も
低下したりするのに対し、驚くべきことに本発明
の塩素化イソシアヌール酸含有成形物では、かゝ
る問題を全く生起せしめない。 本発明に用いられるカルボキシメチルセルロー
スは、化学式Rcell−OCH2COOH(但し、Rcell
はセルロース残基を表わす。)で示され、通常、
重合度50〜1000程度で、置換度0.35〜0.6のカル
ボキシメチルセルロース(以下、CMCと符号
す。)であり、このものは水不溶性を示し、白色
の粒径20〜200μ程度の粉末が好ましい。 本発明の塩素化イソシアヌール酸含有成形物
は、前記塩素化イソシアヌール酸含有組成物とこ
れに対し0.3〜10%量の上記無水硼酸及び0.05〜
10%量の上記CMCとの混合物を加圧成形するこ
とにより得られる。混合は通常の混合機により容
易に行われ、均一な程良好であり、水中に成形物
が投入されたとき均一な崩壊を生起せしめる。も
ちろん、上記混合において、本発明の目的が達成
される限り他の任意の成分を混合してよい。例え
ば、成形滑剤としてステアリン酸ナトリウムを少
量加えると、成形性の良好な混合物が得られる。
上記混合において、無水硼酸の混合比率0.3%以
下では、得られた成形物を水中に投入したとき、
成形物全体にわたる迅速かつ微細粒子状の崩壊が
起りにくゝなり、また密閉容器中での保存に際し
ても充分な安定化効果をもたらさない。無水硼酸
はその混合比率が高い程その効果を発現せしめる
が、10%以上にも高比率に混合することは、その
割には上記効果に差異が現われず、成形物中の塩
素化イソシアヌール酸の含有率が低下し、実用上
好ましくない。CMCについても、上記と同様の
理由によつて、その混合比率としては0.05〜10%
が好ましい。本発明における驚くべき効果は、上
記無水硼酸とCMCの両成分とが相剰的に作用し
て、成形物を水中において著しく短時間に崩壊せ
しめる効果である。例えば、前記塩素化イソシア
ヌール酸含有組成物100重量部に、無水硼酸のみ
を4重量部混合して得られる錠剤は、水中で完全
に崩壊せしめるに要する時間が5分11秒であり、
また、CMCのみを4重量部混合して得られる錠
剤では、水中で完全に崩壊せしめるに要する時間
が2分05秒であるのに対し、無水硼酸2重量部と
CMC2重量部とを混合して得られる本発明の錠剤
は、水中で完全に崩壊するのにわずか20秒しか要
しない。かゝる相剰効果を発現せしめるには、無
水硼酸とCMCとの混合比率として、無水硼酸1
重量部に対しCMC 0.1〜5.0重量部、特に0.3〜3.0
重量部が好ましい。成形物中における無水硼酸及
びCMCの混合比率が低下する程、水中で成形物
全体が崩壊するに要する時間は長びき、無水硼酸
とCMC両者の合計混合比率が塩素化イソシアヌ
ール酸に対し0.3%以下では、得られた成形物は
水中で表面から逐次崩壊し、崩壊粒が水中に剥落
する現像が生起するので、長時間にわたり逐次塩
素化イソシアヌール酸の微粒子を水中に供給した
い用途、例えば、汚水の流水中に少しずつ供給し
たときには、かゝる低混合比率の錠剤を汚流水中
に浸漬する方法により、その目的が達成されるの
で、かゝる低混合比率の成形物も用いることがで
きる。しかし、通常、上記特殊な用途を除いて
は、成形物全体が迅速に崩壊することが望まれ
る。 本発明の塩素化イソシアヌール酸含有成形物
は、上記混合によつて得られる混合物を加圧成形
することにより得られる。成形物の形状は、用途
目的に応じ任意でよく、また、通常の加圧成形法
により成形できるものでよい。例えば、打錠機に
より得られる径1〜5cm、高さ0.5〜5cm程度の
錠剤、コンパクトマシンによつて得られる厚さ1
〜3mm程度の板状物若しくはこれを砕いて得られ
るフレーク状品が挙げられる。加圧成形は、打錠
の場合では、100〜800Kg/cm2程度が好ましい。打
錠圧が50Kg/cm2以下では、成形錠剤を取り扱う際
又は保存輸送中に形状がくずれ易く、また、900
Kg/cm2以上の圧力は不要であり、余計なエネルギ
ー損失を招く。コンパクトマシンによる場合で
は、300〜3000Kg/cm程度の圧力が上記と同様の
理由によつて好ましい。 かくして得られる本発明の塩素化イソシアヌー
ル酸含有成形物は、通常、一旦プラスチツク製容
器、袋等の中に密封され、必要に応じ更に例え
ば、段ボール箱、金属製容器等の中に保存される
が、長期間にわたり、変質が起ることもなく、開
封して水中に投入するときは、速やかにすなわち
通常、2分以内に全体崩壊が起こり微細に崩壊し
た塩素化イソシアヌール酸の粒子は、水の揺動が
あるときは更に分散が起こり溶解と加水分解によ
つて水中全体にわたり塩素の供給が速やかに達成
される。本発明の塩素化イソシアヌール酸含有成
形物は、汚水の浄化、水泳用プール水の殺菌消
毒、食器類等洗浄水の殺菌消毒用等に特に有用で
ある。 以下、参考例、実施例及び比較例を挙げて更に
詳しく説明するが、本発明の技術的範囲はこれに
よつて制限されるものではない。 先ず、水中崩壊性の試験法と保存安定性の試験
法を説明する。試験法A (錠剤の水中崩壊性試験) 内径40mm、高さ55mmのポリ塩化ビニル製円筒の
上部及び下部に、網目8メツシユのステンレス製
金網を底網及び蓋網としてとりつけた容器中に、
1箇30gの試料錠剤を内容し、これを25℃の1
の水が入つた大型ビーカー中に保持具を介して懸
垂し、直ちに30回/分の割合で、水中振巾50mmの
上下運動を起させることにより崩壊粒を網を通し
て容器外に脱落せしめ、全量が網の外へ脱落する
に要する時間を測定する。試験法B (顆粒品の水中崩壊性試験) 上記試験法Aにおける錠剤内容容器の代りに内
径12mm、高さ15mmのポリ塩化ビニル製円筒の上部
及び下部に、網目40メツシユのステンレス製金網
を底網及び蓋網としてとりつけた容器を用い、こ
れに1g量の試料顆粒を内容させ、上記試験法A
と同様にして全量が網の外へ脱落するに要する時
間を測定する。試験法C(成形物の保存安定性試験) 内容積500mlの三つ口ガラス製容器内に顆粒の
場合30g、錠剤では1錠(30g)試料を投入し、
第1口をゴム栓により封口し、第2口および第3
口に弁付ガラス栓を取り付け、閉弁状態とし、35
℃の恒温室で10日間静置保存する。その後、第2
口に乾燥窒素ガスの導管を連結し、第3口に50ml
の0.5%苛性ソーダ−水溶液に通ずる導管を連結
し、上記保存期間の終了後直ちに両弁共に開き、
第2口から乾燥窒素を導入し、第3口よりの排気
を苛性ソーダ水溶液に導き、分解発生ガスを吸収
せしめた。通気を行つた後、苛性ソーダ水溶液に
よう化カリウム0.2gを加え、酢酸酸性条件下で
百分の1規定のチオ硫酸ナトリウム水溶液により
でんぷんを指示薬として滴定し、苛性ソーダ水溶
液に吸収された有効塩素量を求めた。この有効塩
素量をもつてトリクロロイソシアヌール酸から発
生する塩素ガスと塩化窒素ガスとの合量とした。参考例 1 含水率0.3粒径50〜100μのトリクロロイソシア
ヌール酸粉末を、油圧ロール式乾燥造粒機を用い
て、圧縮圧1500Kg/cmで厚み2mmの板状に成形し
た後破砕し、更に10メツシユと32メツシユで篩分
することにより、粒径10〜32メツシユのフレーク
状顆粒を得た。次いで得られた顆粒について、前
記試験法B及びCに従つて、水中崩壊性及び保存
安定性を試験した結果第1表記載の結果を得た。参考例 2 参考例1におけるトリクロロイソシアヌール酸
の代りに、含水率0.7%、粒径50〜100μのジクロ
ロイソシアヌール酸を用いた他は、参考例1と同
様にして顆粒に成形し、更に水中崩壊性及び保存
安定性を試験し第1表記載の結果を得た。参考例 3 参考例1において得られた顆粒と、これに対し
0.2%量の含水率0.6%、粒径20〜70μのステアリ
ン酸ナトリウムとの混合物を、ロータリー式連続
打錠機により打錠圧300Kg/cm2で打錠し、1箇の
重量30g、径35mm、高さ17mmの円板状トリクロロ
イソシアヌール酸錠剤を得た。この錠剤につい
て、前記試験法A及びCに従つて水中崩壊性及び
保存安定性を試験したところ第1表記載の結果を
得た。参考例 4 参考例1において得られる顆粒の代りに参考例
2において得られた顆粒を預いた他は、参考例3
と同様にしてジクロロイソシアヌール酸錠剤を
得、更に水中崩壊性及び保存安定性を試験し第1
表記載の結果を得た。 同表に示す如く、これら参考例1〜4の顆粒及
び錠剤はいれずれも保存安定性が悪く、密閉容器
中でもかなりの量の分解塩素の放出が認められ、
また、水中では崩壊することなく、それら成形物
の表面からわずかに塩素化イソシアヌール酸の溶
解が起るのみである。 The present invention relates to novel chlorinated isocyanuric acid moldings that exhibit rapid and fine disintegration properties in water. Traditionally, chlorinated isocyanuric acid has the property of hydrolyzing in water and releasing chlorine.
It is widely used as a disinfectant, cleaning agent, bleaching agent, etc., but powdered forms are generally preferred because they tend to crumble during use or handling, and the weighing process is also troublesome. Often, granule or tablet forms are desired. However, chlorinated isocyanuric acid, especially trichloroisocyanuric acid, has a saturation solubility in water at room temperature of 1.2.
%, it is not possible to quickly supply a sufficient amount of available chlorine throughout the water by simply putting tablets into water. In order to solve this problem, there has been a known proposal to pre-contain a component in the tablet that causes the tablet to disintegrate when it is placed in water, but there are practical problems and there is still no sufficient solution. is not obtained. For example, if a tablet is mixed with a substance that produces an effervescent effect, such as soda carbonate or bicarbonate, the particles will not disintegrate into fine particles in water and will not deteriorate even when stored in a closed container. This is likely to occur and is not desirable. Another example is a proposal (Japanese Patent Application Laid-Open No. 139628/1983) in which an anhydrous salt of sodium dichloroisocyanurate is included in tablets, but this tablet tends to deteriorate during storage, i.e. Chlorinated isocyanuric acid tends to decompose during long-term storage, which not only reduces the effective chlorine content but also damages storage containers and reduces disintegration in water. As a result of various experimental studies on the disintegration properties of tablets containing chlorinated isocyanuric acid in water, the present inventors have found that when granules or tablets containing boric anhydride (B2 O3 ) and carboxymethyl cellulose are placed in water. , collapse occurs quickly and minutely,
We discovered that chlorine is quickly supplied throughout the water, and that the above-mentioned granules or tablets can be stored extremely stably for a long period of time without the above-mentioned deterioration during storage in a normal closed container. Completed the invention. The purpose of the present invention is to provide a press-molded product containing chlorinated isocyanuric acid that quickly disintegrates into fine particles when placed in water. The object of the present invention is to provide a press-molded product containing chlorinated isocyanuric acid that can be stably stored without deterioration over a long period of time. The water-disintegrating chlorinated isocyanuric acid molded article of the present invention is made of 100 parts by weight of a composition containing powdered or granular chlorinated isocyanuric acid as a main component, 0.3 to 10 parts by weight of boric anhydride, and carboxylic acid. It is characterized by being formed by pressure molding a mixture with 0.05 to 10 parts by weight of methylcellulose. The chlorinated isocyanuric acid used in the present invention is trichloroisocyanuric acid, dichloroisocyanuric acid, or a mixture thereof, and is usually available as a powder or granular industrial product with a water content of 1% or less. The composition containing chlorinated isocyanuric acid as a main component used in the present invention includes the above-mentioned powder or granular chlorinated isocyanuric acid, and other auxiliary agents, fillers, and other auxiliary ingredients. Examples of the above-mentioned auxiliary agents and fillers include anhydrous sodium carbonate and sodium bicarbonate as blowing agents, orthoboric acid and sodium stearate as molding lubricants, and fillers. Examples include common salt, mirabilite, and the like. The composition containing the above-mentioned chlorinated isocyanuric acid as a main component must be in the form of powder or granules. Alternatively, disintegration occurs down to the size of granular particles. Therefore, the particle size of the powder or granules of the above composition is preferably as fine as possible, but a particle size of about 20 to 1400 microns is usually sufficient. The boric anhydride used in the present invention is
It has the chemical formula B2 O3 and is usually a fine powder industrial product with a size of about 70 to 3000 μ. In the molded product of the present invention, this boric acid has the effect of strongly disintegrating the molded product when it is placed in water and comes into contact with water. When the molded product of the present invention is stored in a container, it functions to prevent deterioration of the molded product and maintain the molded product stably for a long period of time. However, molded products containing chlorinated isocyanuric acid that do not contain boric anhydride do not contain chlorinated The decomposition of isocyanuric acid gradually progresses, and the accumulated decomposed gas may cause damage to the container, cause corrosion, etc., and workers may suffer damage when opening the container, and furthermore, the disintegration in water may deteriorate. In contrast, surprisingly, the chlorinated isocyanuric acid-containing molded article of the present invention does not cause such problems at all. Carboxymethyl cellulose used in the present invention has the chemical formula Rcell−OCH2 COOH (however, Rcell
represents cellulose residue. ), usually
It is carboxymethyl cellulose (hereinafter referred to as CMC) with a degree of polymerization of about 50 to 1000 and a degree of substitution of 0.35 to 0.6, which is water-insoluble and is preferably a white powder with a particle size of about 20 to 200 μm. The chlorinated isocyanuric acid-containing molded article of the present invention comprises the chlorinated isocyanuric acid-containing composition, the boric anhydride in an amount of 0.3 to 10%, and 0.05 to 10% of the composition.
Obtained by pressing a mixture with 10% amount of the above CMC. Mixing is easily carried out using a conventional mixer, and the more uniform the better, resulting in uniform disintegration of the molded product when placed in water. Of course, in the above mixing, other arbitrary components may be mixed as long as the purpose of the present invention is achieved. For example, if a small amount of sodium stearate is added as a molding lubricant, a mixture with good moldability can be obtained.
In the above mixing, if the mixing ratio of boric anhydride is 0.3% or less, when the obtained molded product is placed in water,
Rapid and fine-grain disintegration throughout the molded product is less likely to occur, and also does not provide a sufficient stabilizing effect when stored in a closed container. The higher the mixing ratio of boric anhydride, the more effective it is, but when mixed at a high ratio of 10% or more, there is no difference in the above effects, and the chlorinated isocyanuric acid in the molded product is content decreases, which is not preferred in practice. For CMC, for the same reason as above, the mixing ratio is 0.05 to 10%.
is preferred. A surprising effect of the present invention is that both the boric anhydride and CMC components act mutually to cause the molded product to disintegrate in water in an extremely short time. For example, a tablet obtained by mixing only 4 parts by weight of boric anhydride with 100 parts by weight of the chlorinated isocyanuric acid-containing composition takes 5 minutes and 11 seconds to completely disintegrate in water.
Furthermore, a tablet obtained by mixing only 4 parts by weight of CMC requires 2 minutes and 5 seconds to completely disintegrate in water, whereas a tablet obtained by mixing 4 parts by weight of CMC alone takes 2 minutes and 5 seconds to completely disintegrate in water.
The tablets of the invention obtained by mixing with 2 parts by weight of CMC require only 20 seconds to completely disintegrate in water. In order to produce such a mutual effect, the mixing ratio of boric anhydride and CMC should be 1:
CMC 0.1 to 5.0 parts by weight, especially 0.3 to 3.0 parts by weight
Parts by weight are preferred. As the mixing ratio of boric anhydride and CMC in the molded product decreases, the time required for the entire molded product to disintegrate in water becomes longer, and the total mixing ratio of both boric anhydride and CMC is 0.3% to chlorinated isocyanuric acid. In the following, the obtained molded product will gradually disintegrate from the surface in water, and development will occur in which the disintegrated particles will peel off in water. When supplied little by little into flowing sewage, the purpose is achieved by immersing tablets with such a low mixing ratio in the sewage water, so molded products with such a low mixing ratio can also be used. can. However, except for the above-mentioned special uses, it is generally desired that the entire molded product disintegrates quickly. The chlorinated isocyanuric acid-containing molded article of the present invention is obtained by pressure molding the mixture obtained by the above mixing. The shape of the molded product may be arbitrary depending on the purpose of use, and may be one that can be molded by a normal pressure molding method. For example, tablets with a diameter of 1 to 5 cm and a height of 0.5 to 5 cm obtained using a tablet press, and tablets with a thickness of 1 cm obtained using a compact machine.
Examples include plate-like products of about 3 mm or flakes obtained by crushing the same. In the case of tableting, pressure molding is preferably about 100 to 800 kg/cm2 . If the tableting pressure is less than 50 kg/cm2 , the shape of the molded tablet will easily collapse during handling or storage/transportation.
Pressures higher than Kg/cm2 are unnecessary and result in unnecessary energy loss. When using a compact machine, a pressure of about 300 to 3000 kg/cm is preferable for the same reason as above. The thus obtained chlorinated isocyanuric acid-containing molded article of the present invention is usually once sealed in a plastic container, bag, etc., and if necessary, further stored in, for example, a cardboard box, a metal container, etc. However, over a long period of time, no deterioration occurs, and when the package is opened and put into water, the whole disintegrates quickly, usually within 2 minutes, and the particles of chlorinated isocyanuric acid are finely disintegrated. When the water is agitated, further dispersion occurs and chlorine is rapidly supplied throughout the water through dissolution and hydrolysis. The chlorinated isocyanuric acid-containing molded article of the present invention is particularly useful for purifying sewage, sterilizing swimming pool water, sterilizing water for washing dishes, etc. The present invention will be described in more detail below with reference to Reference Examples, Examples, and Comparative Examples, but the technical scope of the present invention is not limited thereby. First, the test method for disintegration in water and the test method for storage stability will be explained. Test method A (Tablet disintegration test in water) In a container, stainless steel wire mesh with 8 meshes was attached as a bottom mesh and a lid mesh to the top and bottom of a polyvinyl chloride cylinder with an inner diameter of 40 mm and a height of 55 mm.
Contains one 30g sample tablet and stores it at 25°C.
suspended in a large beaker containing water via a holder, and immediately moved up and down at a rate of 30 times/min with a width of 50 mm in the water to cause the disintegrated particles to fall out of the container through a net, and then remove the entire amount. Measure the time it takes for the object to fall out of the net. Test method B (Water disintegration test of granules) Instead of the tablet container in test method A above, a stainless steel wire mesh with a mesh size of 40 was placed at the top and bottom of a polyvinyl chloride cylinder with an inner diameter of 12 mm and a height of 15 mm. Using a container attached as a net and a lid net, 1 g of sample granules was contained in the container, and the above test method A was carried out.
In the same way as above, measure the time required for the entire amount to fall out of the net. Test method C (storage stability test for molded products) A sample of 30 g for granules or 1 tablet (30 g) for tablets was placed in a three-necked glass container with an internal volume of 500 ml.
The first port is sealed with a rubber stopper, and the second and third ports are closed.
Attach a glass stopper with a valve to the mouth, close the valve, and
Store for 10 days in a constant temperature room at ℃. Then the second
Connect a dry nitrogen gas conduit to the opening, and add 50ml to the third opening.
Connect the conduit leading to the 0.5% caustic soda aqueous solution, open both valves immediately after the above storage period ends,
Dry nitrogen was introduced from the second port, and exhaust gas from the third port was introduced into the caustic soda aqueous solution to absorb the decomposed gas. After aeration, add 0.2 g of potassium iodide to the caustic soda aqueous solution, and titrate with a 1/10N sodium thiosulfate aqueous solution under acetic acid acidic conditions using starch as an indicator to determine the amount of available chlorine absorbed in the caustic soda aqueous solution. I asked for it. This effective chlorine amount was taken as the total amount of chlorine gas and nitrogen chloride gas generated from trichloroisocyanuric acid. Reference Example 1 Trichloroisocyanuric acid powder with a water content of 0.3 and a particle size of 50 to 100μ was formed into a plate shape of 2 mm thick using a hydraulic roll drying granulator at a compression pressure of 1500 Kg/cm, then crushed, and further By sieving through mesh and 32 mesh, flaky granules with a particle size of 10 to 32 mesh were obtained. The obtained granules were then tested for disintegration in water and storage stability according to Test Methods B and C, and the results shown in Table 1 were obtained. Reference Example 2 In place of trichloroisocyanuric acid in Reference Example 1, dichloroisocyanuric acid with a moisture content of 0.7% and a particle size of 50 to 100 μm was used, but the same procedure as in Reference Example 1 was used to form granules, and the mixture was further immersed in water. The disintegration property and storage stability were tested and the results shown in Table 1 were obtained. Reference Example 3 Granules obtained in Reference Example 1 and
A mixture of 0.2% sodium stearate with a water content of 0.6% and a particle size of 20-70μ is compressed into tablets using a rotary continuous tableting machine at a compression pressure of 300Kg/cm2 , each piece weighing 30g and having a diameter of 35mm. A disc-shaped trichloroisocyanuric acid tablet with a height of 17 mm was obtained. This tablet was tested for disintegration in water and storage stability according to Test Methods A and C, and the results shown in Table 1 were obtained. Reference Example 4 Reference Example 3 except that the granules obtained in Reference Example 2 were used instead of the granules obtained in Reference Example 1.
Dichloroisocyanuric acid tablets were obtained in the same manner as above, and the disintegration in water and storage stability were further tested.
The results listed in the table were obtained. As shown in the table, the granules and tablets of Reference Examples 1 to 4 all had poor storage stability, and a considerable amount of decomposed chlorine was released even in closed containers.
Moreover, the molded products do not disintegrate in water, and only a slight dissolution of chlorinated isocyanuric acid occurs from the surface of the molded products.
【表】実施例 1〜3 参考例1に用いたものと同じトリクロロイソシ
アヌール酸粉末又は参考例2に用いたものと同じ
ジクロロイソシアヌール酸粉末と粒径70〜120μ
の無水硼酸粉末と含水率4.5%、粒径30〜60μの
CMC粉末とを第2表記載の比率で混合した後、
参考例1と同様にして顆粒に成形し、更に水中崩
壊性と保存安定性を試験したところ、第2表記載
の結果を得た。比較例 1〜6 B2O3とCMCのいずれか一成分を除いた他は実
施例1〜3と同様にして顆粒に成形し、更に水中
崩壊性と保存安定性を試験したところ、第2表記
載の結果を得た。[Table] Examples 1 to 3 The same trichloroisocyanuric acid powder used in Reference Example 1 or the same dichloroisocyanuric acid powder used in Reference Example 2 with a particle size of 70 to 120μ
Boric anhydride powder with moisture content 4.5%, particle size 30~60μ
After mixing with CMC powder at the ratio listed in Table 2,
The product was molded into granules in the same manner as in Reference Example 1, and further tested for disintegration in water and storage stability, and the results shown in Table 2 were obtained. Comparative Examples 1 to 6 Granules were formed in the same manner as in Examples 1 to 3 except for excluding one of B2 O3 and CMC, and further tested for disintegration in water and storage stability. The results listed in the table were obtained.
【表】 ロイソシアヌール酸を表わ
す。
第2表から明らかな如く、本発明の塩素化イソ
シアヌール酸含有成形物は、格段に優れた保存安
定性と共に水中での迅速な崩壊性を示した。実施例 4〜5 上記実施例に用いたものと同じトリクロロイソ
シアヌール酸粉末又はジクロロイソシアヌール酸
粉末と無水硼酸、CMC及び含水率0.6%、粒径20
〜70μのステアリン酸ナトリウムを第3表記載の
比率で混合した後、参考例3又は4と同様の打錠
法により、錠剤を後、更に水中崩壊性及び保存安
定性をら試験したところ、第3表所載の結果を得
た。[Table] Represents leuisocyanuric acid.
As is clear from Table 2, the chlorinated isocyanuric acid-containing molded articles of the present invention exhibited extremely excellent storage stability and rapid disintegration in water. Examples 4 to 5 The same trichloroisocyanuric acid powder or dichloroisocyanuric acid powder as used in the above examples, boric anhydride, CMC, water content 0.6%, particle size 20
After mixing ~70 μ of sodium stearate in the ratio shown in Table 3, tablets were made using the same tableting method as in Reference Example 3 or 4, and further tested for disintegration in water and storage stability. The results listed in Table 3 were obtained.
【表】比較例 7〜8 B3O3とCMCのいずれか一成分を除いた他は実
施例4〜5と同様にして錠剤に成形し、更に水中
崩壊性及び保存安定性を試験したところ第3表所
載の結果を得た。第3表から明らかな如く、本発
明の錠剤は格段の保存安定性を示すと共に、水中
での迅速崩壊性も極めて優れることを示した。[Table] Comparative Examples 7 to 8 Tablets were formed in the same manner as in Examples 4 to 5, except that one of B3 O3 and CMC was removed, and the tablets were further tested for disintegration in water and storage stability. The results listed in Table 3 were obtained. As is clear from Table 3, the tablets of the present invention exhibited outstanding storage stability and also exhibited extremely excellent rapid disintegration properties in water.