【発明の詳細な説明】〔産業上の利用分野〕本発明はSiの結晶成長方法に関する。[Detailed description of the invention][Industrial application field]The present invention relates to a method for growing Si crystals.
従来、Siのエピタキシャル成長は無機系ガスを使用し
た化学的気相成長法(CVD法)が主流である。CVD
法では成長時のガス圧が高く、気相中でガスが化学反応
する。そのためSiの微粒子が気相中で形成され、それ
がSi基板上に堆積する。エピタキシャル成長は、微粒
子が基板上に積もる時、基板温度によりSi原子が再配
列することにより行なわれていた。Conventionally, chemical vapor deposition (CVD) using an inorganic gas has been the mainstream for epitaxial growth of Si. CVD
In this method, the gas pressure during growth is high, and the gases undergo chemical reactions in the gas phase. Therefore, Si fine particles are formed in the gas phase and deposited on the Si substrate. Epitaxial growth was performed by rearranging Si atoms depending on the substrate temperature when fine particles were deposited on the substrate.
また、固体ソースのSiを用いた分子線エピタキシャル
成長法(MBE法〉では、Siの融点か高いために、電
子銃(Eガン〉によりSiソースを溶融してSi原子の
ビームをとばしている。この方法では、Eガンのパワー
を制御することにより、成長レートを制御すれば原子層
で制御できるエピタキシャル成長は可能である。In addition, in the molecular beam epitaxial growth method (MBE method) using Si as a solid source, since the melting point of Si is high, the Si source is melted with an electron gun (E gun) to emit a beam of Si atoms. In this method, if the growth rate is controlled by controlling the power of the E-gun, epitaxial growth that can be controlled on an atomic layer basis is possible.
従来のCVD法ではガス圧が高く、気相中でSi微粒子
が形成される。成長は、その微粒子というSi原子のか
たまりが基板に積もることにより行なわれるため、エピ
タキシャル成長を原子層で制御することは不可能であり
、薄膜の精密な膜厚制御を行なえないためデバイスの特
性がばらつくという問題点があった。In the conventional CVD method, the gas pressure is high, and Si fine particles are formed in the gas phase. Growth takes place when clusters of Si atoms, called fine particles, accumulate on the substrate, so it is impossible to control epitaxial growth using atomic layers, and because it is not possible to precisely control the thickness of thin films, device characteristics vary. There was a problem.
また、MBE法では膜厚制御性のよいSiのエピタキシ
ャル成長を行うことができるが、Eガンにより溶融した
Siが突沸して、欠陥の多い結晶となる。さらに、この
方法は蒸着法であるため、Si基板上のみに成長させる
選択成長は不可能であり、デバイスを作製する際、工程
数が多くなったり、セルファラインのプロセスが行えな
いなどの問題点があった。Further, although the MBE method allows epitaxial growth of Si with good film thickness controllability, the Si melted by the E gun bumps, resulting in crystals with many defects. Furthermore, since this method is an evaporation method, it is impossible to selectively grow only on the Si substrate, resulting in problems such as an increase in the number of steps when manufacturing devices and the inability to perform the self-line process. was there.
本発明のSiの結晶成長方法は、半導体基板上に有機S
i系ガスを用いてSiを原子層エピタキシャル成長させ
るものである。The method for growing Si crystals of the present invention is to grow organic Si on a semiconductor substrate.
This method uses i-based gas to grow Si by atomic layer epitaxial growth.
本発明の作用を図1を用いて説明する。The operation of the present invention will be explained using FIG.
Si原子2の結合手にアルキル基の一種である1例えば
エチル基3がついているSiの有機化合物ガスは、熱に
より分解し、その一部のエチル基3がSi原子2からき
れると、そのダングリングボンド4をもったガスの分子
が図1〈a〉に示すように、Si基板1に近づく。そし
て図1(b)に示すように、基板の表面に付いていたエ
チル基3がはなれて、Si基板1の最表面にダングリン
グボンド4をもった分子のSi原子2Aが結合する。An organic compound gas of Si in which a type of alkyl group 1, for example, an ethyl group 3 is attached to the bond of the Si atom 2, is decomposed by heat, and when some of the ethyl groups 3 are separated from the Si atom 2, the dangling Gas molecules with ring bonds 4 approach the Si substrate 1 as shown in FIG. 1(a). Then, as shown in FIG. 1(b), the ethyl group 3 attached to the surface of the substrate is separated, and the Si atoms 2A of the molecule having the dangling bond 4 are bonded to the outermost surface of the Si substrate 1.
アルキル基どうしは化学結合しにくい性質があるので、
通常のCVDのように気相中で反応してSi微粒子とな
ることはなく、Si原子は逐次堆積していく。また、S
i基板基板上上、基板のSi原子2と結合していない真
空側、すなわちSi第一層の最表面側にはエチル基3か
まだついており、このエチル基はダングリングボンド4
と一部のエチル基3を持ったSi化合物が近づくと、基
板から脱離してエチル基を持ったSi原子2Aが最表面
に結合する。ダングリングボンドを持ったSi化合物は
基板表面でマイグレートしてSi表面のキンクで安定に
基板のSi原子2と結合するため、表面に段差を作るこ
となく、原子層で制御できるエピタキシャル成長が行え
る。表面がSi以外の材料上では、ダングリングボンド
を持つr、)Si化合物は安定にその表面上に結合でき
ないので、選択成長が可能である。Since alkyl groups have a property that it is difficult for them to chemically bond with each other,
Unlike normal CVD, Si atoms do not react in the gas phase to become Si fine particles, but instead are deposited one after another. Also, S
On the i-substrate substrate, on the vacuum side that is not bonded to the Si atoms 2 of the substrate, that is, on the outermost surface side of the first Si layer, there is an ethyl group 3 attached, and this ethyl group forms a dangling bond 4.
When a Si compound having some ethyl groups 3 approaches, it detaches from the substrate and the Si atoms 2A having ethyl groups bond to the outermost surface. The Si compound with dangling bonds migrates on the substrate surface and stably bonds to the Si atoms 2 of the substrate through kinks on the Si surface, so epitaxial growth that can be controlled in atomic layers can be performed without creating a step on the surface. On a material whose surface is other than Si, selective growth is possible because a Si compound having a dangling bond cannot be stably bonded to the surface.
次に本発明の一実施例を説明する。Next, one embodiment of the present invention will be described.
用いたSi基板は面方位(100)で、〈110〉方向
に4°オフしている。はじめに、Si基板をNH40H
: H202: H20=2 : 4 :10のブラン
ソン洗浄を20分間行い、表面に清浄なSiO2膜をつ
ける。その後、超高真空装置にいれ、基板を400℃に
設定し、クラッキングしたH2ガスを20分照射して酸
化膜を除去し、Si表面の清浄化を行なった。Si (
100)の清浄表面が2X1の超構造を示すことから、
反射電子線回折(RHEED)を用いて2X1の超構造
を確認することによって、清浄なSi表面が得られたと
した。The Si substrate used has a plane orientation (100) and is offset by 4° in the <110> direction. First, the Si substrate was heated with NH40H.
:H202:H20=2:4:10 Branson cleaning is performed for 20 minutes to attach a clean SiO2 film to the surface. Thereafter, the substrate was placed in an ultra-high vacuum apparatus, the temperature of the substrate was set at 400° C., and cracked H2 gas was irradiated for 20 minutes to remove the oxide film and clean the Si surface. Si (
Since the clean surface of 100) shows a 2X1 superstructure,
It was assumed that a clean Si surface was obtained by confirming the 2X1 superstructure using reflection electron diffraction (RHEED).
Siのエピタキシャル成長に用いるガスは、テトラエチ
ルシラン(Si (C2H5)4 )と水素(H2)で
、混合比はSi (C2Hs )4 :H21:9であ
る。Si (C2H5)4は常圧で液体で、沸点は15
3℃と高い。しかし、チャンバー内は成長時においても
、I X 10−5To r rと真空度が高いこと、
ボンベを含め配管系を約100’Cに加熱することによ
り、ガス量を確保した。成長方法はガスソースMBE法
であり、ベース・プレッシャーが1X10−10Tor
rの超高真空装置を使用している。成長時、H2ガスの
み、カスセルに付いているECRのガスクラッキング装
置によりクラッキングをおこなった。成長時の全圧力は
1X10−5Torrである。Siの成長は基板温度6
00℃で行なった。その結果100原子層以上のSiを
制御性良くエピタキシャル成長させることができた。The gases used for the epitaxial growth of Si are tetraethylsilane (Si (C2H5)4) and hydrogen (H2), and the mixing ratio is Si (C2Hs)4:H21:9. Si (C2H5)4 is a liquid at normal pressure and has a boiling point of 15
The temperature is as high as 3℃. However, even during growth, the vacuum inside the chamber is as high as 10-5 Torr.
The amount of gas was secured by heating the piping system, including the cylinder, to about 100'C. The growth method is gas source MBE method, and the base pressure is 1X10-10 Torr.
We use ultra-high vacuum equipment. During growth, cracking was performed using only H2 gas using an ECR gas cracking device attached to the cassette. The total pressure during growth is 1×10 −5 Torr. Growth of Si occurs at a substrate temperature of 6
The test was carried out at 00°C. As a result, it was possible to epitaxially grow more than 100 atomic layers of Si with good controllability.
本実施例を用いれば、極薄膜化したMOSFETのチャ
ネル部の形成や、バイポーラの薄膜ベースの形成にも応
用できる。If this embodiment is used, it can be applied to the formation of an extremely thin MOSFET channel portion and the formation of a bipolar thin film base.
尚、上記実施例においてはSi基板上にSiの原子層を
エピタキシャル成長した場合について説明したが、Ge
基板上にも同様にエピタキシャル成長を行うことができ
る。Incidentally, in the above embodiment, a case was explained in which an atomic layer of Si was epitaxially grown on a Si substrate.
Epitaxial growth can be similarly performed on the substrate.
〔発明の効果〕以上説明したように本発明は、有機Si系ガスを用いて
Siを原子層エピタキシャル成長させることにより、デ
バイスの微細化を進める上で精密な寸法制御が必要とさ
れるデバイスプロセスに利用でき、膜厚のばらつきによ
るデバイス特性のばらつきを低減させることができると
いう効果がある。[Effects of the Invention] As explained above, the present invention enables atomic layer epitaxial growth of Si using an organic Si-based gas, thereby making it suitable for device processes that require precise dimensional control to advance device miniaturization. This has the effect of reducing variations in device characteristics due to variations in film thickness.
第1図(a)、(b)は本発明の詳細な説明するための
Si原子とエチル基の結合を示す図である。1・・・Si基板、2・・・Si原子、2A・・・St
基板上に成長した第1層のSi原子、3・・・エチル基
、4・・・ダングリングボンド、5・・・炭素、6・・
・水素。FIGS. 1(a) and 1(b) are diagrams showing the bond between a Si atom and an ethyl group for explaining the present invention in detail. 1...Si substrate, 2...Si atom, 2A...St
Si atoms in the first layer grown on the substrate, 3... Ethyl group, 4... Dangling bond, 5... Carbon, 6...
·hydrogen.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP8871190AJPH03286522A (en) | 1990-04-03 | 1990-04-03 | Growth method of si crystal |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP8871190AJPH03286522A (en) | 1990-04-03 | 1990-04-03 | Growth method of si crystal |
| Publication Number | Publication Date |
|---|---|
| JPH03286522Atrue JPH03286522A (en) | 1991-12-17 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP8871190APendingJPH03286522A (en) | 1990-04-03 | 1990-04-03 | Growth method of si crystal |
| Country | Link |
|---|---|
| JP (1) | JPH03286522A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6825134B2 (en) | 2002-03-26 | 2004-11-30 | Applied Materials, Inc. | Deposition of film layers by alternately pulsing a precursor and high frequency power in a continuous gas flow |
| US6833161B2 (en)* | 2002-02-26 | 2004-12-21 | Applied Materials, Inc. | Cyclical deposition of tungsten nitride for metal oxide gate electrode |
| US6855368B1 (en) | 2000-06-28 | 2005-02-15 | Applied Materials, Inc. | Method and system for controlling the presence of fluorine in refractory metal layers |
| US6878206B2 (en) | 2001-07-16 | 2005-04-12 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
| US6911391B2 (en) | 2002-01-26 | 2005-06-28 | Applied Materials, Inc. | Integration of titanium and titanium nitride layers |
| US6916398B2 (en) | 2001-10-26 | 2005-07-12 | Applied Materials, Inc. | Gas delivery apparatus and method for atomic layer deposition |
| US6936906B2 (en) | 2001-09-26 | 2005-08-30 | Applied Materials, Inc. | Integration of barrier layer and seed layer |
| US6951804B2 (en) | 2001-02-02 | 2005-10-04 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
| US6998579B2 (en) | 2000-12-29 | 2006-02-14 | Applied Materials, Inc. | Chamber for uniform substrate heating |
| US7022948B2 (en) | 2000-12-29 | 2006-04-04 | Applied Materials, Inc. | Chamber for uniform substrate heating |
| US7049226B2 (en) | 2001-09-26 | 2006-05-23 | Applied Materials, Inc. | Integration of ALD tantalum nitride for copper metallization |
| US7078302B2 (en) | 2004-02-23 | 2006-07-18 | Applied Materials, Inc. | Gate electrode dopant activation method for semiconductor manufacturing including a laser anneal |
| US7085616B2 (en) | 2001-07-27 | 2006-08-01 | Applied Materials, Inc. | Atomic layer deposition apparatus |
| US7101795B1 (en) | 2000-06-28 | 2006-09-05 | Applied Materials, Inc. | Method and apparatus for depositing refractory metal layers employing sequential deposition techniques to form a nucleation layer |
| US7132338B2 (en) | 2003-10-10 | 2006-11-07 | Applied Materials, Inc. | Methods to fabricate MOSFET devices using selective deposition process |
| US7166528B2 (en) | 2003-10-10 | 2007-01-23 | Applied Materials, Inc. | Methods of selective deposition of heavily doped epitaxial SiGe |
| US7201803B2 (en) | 2001-03-07 | 2007-04-10 | Applied Materials, Inc. | Valve control system for atomic layer deposition chamber |
| US7208413B2 (en) | 2000-06-27 | 2007-04-24 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
| US7211144B2 (en) | 2001-07-13 | 2007-05-01 | Applied Materials, Inc. | Pulsed nucleation deposition of tungsten layers |
| US7235492B2 (en) | 2005-01-31 | 2007-06-26 | Applied Materials, Inc. | Low temperature etchant for treatment of silicon-containing surfaces |
| US7262133B2 (en) | 2003-01-07 | 2007-08-28 | Applied Materials, Inc. | Enhancement of copper line reliability using thin ALD tan film to cap the copper line |
| US7312128B2 (en) | 2004-12-01 | 2007-12-25 | Applied Materials, Inc. | Selective epitaxy process with alternating gas supply |
| US7405158B2 (en) | 2000-06-28 | 2008-07-29 | Applied Materials, Inc. | Methods for depositing tungsten layers employing atomic layer deposition techniques |
| US7439191B2 (en) | 2002-04-05 | 2008-10-21 | Applied Materials, Inc. | Deposition of silicon layers for active matrix liquid crystal display (AMLCD) applications |
| US7560352B2 (en) | 2004-12-01 | 2009-07-14 | Applied Materials, Inc. | Selective deposition |
| US7588980B2 (en) | 2006-07-31 | 2009-09-15 | Applied Materials, Inc. | Methods of controlling morphology during epitaxial layer formation |
| US7595263B2 (en) | 2003-06-18 | 2009-09-29 | Applied Materials, Inc. | Atomic layer deposition of barrier materials |
| US8387557B2 (en) | 2005-06-21 | 2013-03-05 | Applied Materials | Method for forming silicon-containing materials during a photoexcitation deposition process |
| US8501594B2 (en) | 2003-10-10 | 2013-08-06 | Applied Materials, Inc. | Methods for forming silicon germanium layers |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7208413B2 (en) | 2000-06-27 | 2007-04-24 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
| US7501344B2 (en) | 2000-06-27 | 2009-03-10 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
| US7501343B2 (en) | 2000-06-27 | 2009-03-10 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
| US7033922B2 (en) | 2000-06-28 | 2006-04-25 | Applied Materials. Inc. | Method and system for controlling the presence of fluorine in refractory metal layers |
| US6855368B1 (en) | 2000-06-28 | 2005-02-15 | Applied Materials, Inc. | Method and system for controlling the presence of fluorine in refractory metal layers |
| US7465666B2 (en) | 2000-06-28 | 2008-12-16 | Applied Materials, Inc. | Method for forming tungsten materials during vapor deposition processes |
| US7405158B2 (en) | 2000-06-28 | 2008-07-29 | Applied Materials, Inc. | Methods for depositing tungsten layers employing atomic layer deposition techniques |
| US7235486B2 (en) | 2000-06-28 | 2007-06-26 | Applied Materials, Inc. | Method for forming tungsten materials during vapor deposition processes |
| US7101795B1 (en) | 2000-06-28 | 2006-09-05 | Applied Materials, Inc. | Method and apparatus for depositing refractory metal layers employing sequential deposition techniques to form a nucleation layer |
| US7115494B2 (en) | 2000-06-28 | 2006-10-03 | Applied Materials, Inc. | Method and system for controlling the presence of fluorine in refractory metal layers |
| US7022948B2 (en) | 2000-12-29 | 2006-04-04 | Applied Materials, Inc. | Chamber for uniform substrate heating |
| US6998579B2 (en) | 2000-12-29 | 2006-02-14 | Applied Materials, Inc. | Chamber for uniform substrate heating |
| US7781326B2 (en) | 2001-02-02 | 2010-08-24 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
| US6951804B2 (en) | 2001-02-02 | 2005-10-04 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
| US7094680B2 (en) | 2001-02-02 | 2006-08-22 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
| US7201803B2 (en) | 2001-03-07 | 2007-04-10 | Applied Materials, Inc. | Valve control system for atomic layer deposition chamber |
| US7211144B2 (en) | 2001-07-13 | 2007-05-01 | Applied Materials, Inc. | Pulsed nucleation deposition of tungsten layers |
| US6878206B2 (en) | 2001-07-16 | 2005-04-12 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
| US10280509B2 (en) | 2001-07-16 | 2019-05-07 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
| US7085616B2 (en) | 2001-07-27 | 2006-08-01 | Applied Materials, Inc. | Atomic layer deposition apparatus |
| US7494908B2 (en) | 2001-09-26 | 2009-02-24 | Applied Materials, Inc. | Apparatus for integration of barrier layer and seed layer |
| US7049226B2 (en) | 2001-09-26 | 2006-05-23 | Applied Materials, Inc. | Integration of ALD tantalum nitride for copper metallization |
| US7352048B2 (en) | 2001-09-26 | 2008-04-01 | Applied Materials, Inc. | Integration of barrier layer and seed layer |
| US6936906B2 (en) | 2001-09-26 | 2005-08-30 | Applied Materials, Inc. | Integration of barrier layer and seed layer |
| US6916398B2 (en) | 2001-10-26 | 2005-07-12 | Applied Materials, Inc. | Gas delivery apparatus and method for atomic layer deposition |
| US7094685B2 (en) | 2002-01-26 | 2006-08-22 | Applied Materials, Inc. | Integration of titanium and titanium nitride layers |
| US7732325B2 (en) | 2002-01-26 | 2010-06-08 | Applied Materials, Inc. | Plasma-enhanced cyclic layer deposition process for barrier layers |
| US6911391B2 (en) | 2002-01-26 | 2005-06-28 | Applied Materials, Inc. | Integration of titanium and titanium nitride layers |
| US7473638B2 (en) | 2002-01-26 | 2009-01-06 | Applied Materials, Inc. | Plasma-enhanced cyclic layer deposition process for barrier layers |
| US6833161B2 (en)* | 2002-02-26 | 2004-12-21 | Applied Materials, Inc. | Cyclical deposition of tungsten nitride for metal oxide gate electrode |
| US7115499B2 (en) | 2002-02-26 | 2006-10-03 | Applied Materials, Inc. | Cyclical deposition of tungsten nitride for metal oxide gate electrode |
| US7429516B2 (en) | 2002-02-26 | 2008-09-30 | Applied Materials, Inc. | Tungsten nitride atomic layer deposition processes |
| US6825134B2 (en) | 2002-03-26 | 2004-11-30 | Applied Materials, Inc. | Deposition of film layers by alternately pulsing a precursor and high frequency power in a continuous gas flow |
| US7439191B2 (en) | 2002-04-05 | 2008-10-21 | Applied Materials, Inc. | Deposition of silicon layers for active matrix liquid crystal display (AMLCD) applications |
| US7262133B2 (en) | 2003-01-07 | 2007-08-28 | Applied Materials, Inc. | Enhancement of copper line reliability using thin ALD tan film to cap the copper line |
| US7595263B2 (en) | 2003-06-18 | 2009-09-29 | Applied Materials, Inc. | Atomic layer deposition of barrier materials |
| US7439142B2 (en) | 2003-10-10 | 2008-10-21 | Applied Materials, Inc. | Methods to fabricate MOSFET devices using a selective deposition process |
| US7166528B2 (en) | 2003-10-10 | 2007-01-23 | Applied Materials, Inc. | Methods of selective deposition of heavily doped epitaxial SiGe |
| US8501594B2 (en) | 2003-10-10 | 2013-08-06 | Applied Materials, Inc. | Methods for forming silicon germanium layers |
| US7517775B2 (en) | 2003-10-10 | 2009-04-14 | Applied Materials, Inc. | Methods of selective deposition of heavily doped epitaxial SiGe |
| US7132338B2 (en) | 2003-10-10 | 2006-11-07 | Applied Materials, Inc. | Methods to fabricate MOSFET devices using selective deposition process |
| US7078302B2 (en) | 2004-02-23 | 2006-07-18 | Applied Materials, Inc. | Gate electrode dopant activation method for semiconductor manufacturing including a laser anneal |
| US7611976B2 (en) | 2004-02-23 | 2009-11-03 | Applied Materials, Inc. | Gate electrode dopant activation method for semiconductor manufacturing |
| US7572715B2 (en) | 2004-12-01 | 2009-08-11 | Applied Materials, Inc. | Selective epitaxy process with alternating gas supply |
| US7560352B2 (en) | 2004-12-01 | 2009-07-14 | Applied Materials, Inc. | Selective deposition |
| US7521365B2 (en) | 2004-12-01 | 2009-04-21 | Applied Materials, Inc. | Selective epitaxy process with alternating gas supply |
| US7312128B2 (en) | 2004-12-01 | 2007-12-25 | Applied Materials, Inc. | Selective epitaxy process with alternating gas supply |
| US7235492B2 (en) | 2005-01-31 | 2007-06-26 | Applied Materials, Inc. | Low temperature etchant for treatment of silicon-containing surfaces |
| US8387557B2 (en) | 2005-06-21 | 2013-03-05 | Applied Materials | Method for forming silicon-containing materials during a photoexcitation deposition process |
| US7588980B2 (en) | 2006-07-31 | 2009-09-15 | Applied Materials, Inc. | Methods of controlling morphology during epitaxial layer formation |
| Publication | Publication Date | Title |
|---|---|---|
| JPH03286522A (en) | Growth method of si crystal | |
| JP3181171B2 (en) | Vapor phase growth apparatus and vapor phase growth method | |
| US5760426A (en) | Heteroepitaxial semiconductor device including silicon substrate, GaAs layer and GaN layer #13 | |
| JP3137767B2 (en) | Method for manufacturing semiconductor device | |
| JPH07118450B2 (en) | Method for growing a compound semiconductor layer on a single-component semiconductor substrate and such semiconductor structure | |
| JPH01290221A (en) | Semiconductor vapor phase growth method | |
| JPS6345371A (en) | Formation of deposited film | |
| JPH01290222A (en) | Semiconductor vapor phase growth method | |
| EP0241204B1 (en) | Method for forming crystalline deposited film | |
| US20050268848A1 (en) | Atomic layer deposition apparatus and process | |
| EP0377954B1 (en) | Method of producing hetero structure | |
| JPH01134912A (en) | Manufacture of semiconductor thin film | |
| CN112420861B (en) | Two-dimensional material heterojunction structure, preparation method and application thereof, and photoelectric device | |
| JP3112796B2 (en) | Chemical vapor deposition method | |
| JP3983341B2 (en) | Silicon carbide and method for producing silicon carbide | |
| CN103548114A (en) | Method for manufacturing III/V Si template | |
| JPH0427116A (en) | How to form semiconductor heterojunctions | |
| JPS58209117A (en) | Manufacture of compound semiconductor film | |
| JP2025122719A (en) | Method for preparing a substrate for crystal growth | |
| JPS6143413A (en) | Method for forming compound semiconductor single crystal thin film | |
| JPH01214017A (en) | Method and apparatus for molecular beam epitaxial growth | |
| JPS62189721A (en) | Semiconductor film forming method and apparatus therefor | |
| JPH0788276B2 (en) | Vapor phase epitaxial growth method | |
| JPH03201425A (en) | Semiconductor device | |
| JPS62219614A (en) | Method for growth of compound semiconductor |