Movatterモバイル変換


[0]ホーム

URL:


JPH03286522A - Growth method of si crystal - Google Patents

Growth method of si crystal

Info

Publication number
JPH03286522A
JPH03286522AJP8871190AJP8871190AJPH03286522AJP H03286522 AJPH03286522 AJP H03286522AJP 8871190 AJP8871190 AJP 8871190AJP 8871190 AJP8871190 AJP 8871190AJP H03286522 AJPH03286522 AJP H03286522A
Authority
JP
Japan
Prior art keywords
substrate
atoms
ethyl groups
bonded
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8871190A
Other languages
Japanese (ja)
Inventor
Kuniko Miyagawa
宮川 邦子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC CorpfiledCriticalNEC Corp
Priority to JP8871190ApriorityCriticalpatent/JPH03286522A/en
Publication of JPH03286522ApublicationCriticalpatent/JPH03286522A/en
Pendinglegal-statusCriticalCurrent

Links

Abstract

PURPOSE:To reduce an irregularity in a device characteristic due to an irregularity in a film thickness by a method wherein an atomic-layer epitaxial growth operation of Si is executed on a semiconductor substrate by using an organic Si-based gas. CONSTITUTION:When an organic compound gas of Si where bonding hands of Si atoms 2 are provided with, e.g. ethyl groups 3 is decomposed and the ethyl groups in one part are cut from the Si atoms 2, gas molecules provided with dangling bonds 4 are approached to an Si substrate 1, the ethyl groups 3 on the surface are separated and Si atoms 2A of molecules provided with the dangling bonds 4 are bonded to the outermost surface of the Si substrate 1. The outermost surface side of a first Si layer which has not been bonded to the Si atoms 2 in the substrate is still provided with the ethyl groups 3. When Si compounds provided with one part of the ethyl groups 3 are approached to the dangling bonds 4, they are disconnected from the substrate and the Si atoms 2A provided with the ethyl groups are bonded to the outermost surface. Since the Si compounds provided with the dangling bonds are bonded stably to the Si atoms 2 in the substrate, an epitaxial growth operation which can control an atomic layer can be executed without forming the difference in level on the surface.

Description

Translated fromJapanese

【発明の詳細な説明】〔産業上の利用分野〕本発明はSiの結晶成長方法に関する。[Detailed description of the invention][Industrial application field]The present invention relates to a method for growing Si crystals.

〔従来の技術〕[Conventional technology]

従来、Siのエピタキシャル成長は無機系ガスを使用し
た化学的気相成長法(CVD法)が主流である。CVD
法では成長時のガス圧が高く、気相中でガスが化学反応
する。そのためSiの微粒子が気相中で形成され、それ
がSi基板上に堆積する。エピタキシャル成長は、微粒
子が基板上に積もる時、基板温度によりSi原子が再配
列することにより行なわれていた。
Conventionally, chemical vapor deposition (CVD) using an inorganic gas has been the mainstream for epitaxial growth of Si. CVD
In this method, the gas pressure during growth is high, and the gases undergo chemical reactions in the gas phase. Therefore, Si fine particles are formed in the gas phase and deposited on the Si substrate. Epitaxial growth was performed by rearranging Si atoms depending on the substrate temperature when fine particles were deposited on the substrate.

また、固体ソースのSiを用いた分子線エピタキシャル
成長法(MBE法〉では、Siの融点か高いために、電
子銃(Eガン〉によりSiソースを溶融してSi原子の
ビームをとばしている。この方法では、Eガンのパワー
を制御することにより、成長レートを制御すれば原子層
で制御できるエピタキシャル成長は可能である。
In addition, in the molecular beam epitaxial growth method (MBE method) using Si as a solid source, since the melting point of Si is high, the Si source is melted with an electron gun (E gun) to emit a beam of Si atoms. In this method, if the growth rate is controlled by controlling the power of the E-gun, epitaxial growth that can be controlled on an atomic layer basis is possible.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のCVD法ではガス圧が高く、気相中でSi微粒子
が形成される。成長は、その微粒子というSi原子のか
たまりが基板に積もることにより行なわれるため、エピ
タキシャル成長を原子層で制御することは不可能であり
、薄膜の精密な膜厚制御を行なえないためデバイスの特
性がばらつくという問題点があった。
In the conventional CVD method, the gas pressure is high, and Si fine particles are formed in the gas phase. Growth takes place when clusters of Si atoms, called fine particles, accumulate on the substrate, so it is impossible to control epitaxial growth using atomic layers, and because it is not possible to precisely control the thickness of thin films, device characteristics vary. There was a problem.

また、MBE法では膜厚制御性のよいSiのエピタキシ
ャル成長を行うことができるが、Eガンにより溶融した
Siが突沸して、欠陥の多い結晶となる。さらに、この
方法は蒸着法であるため、Si基板上のみに成長させる
選択成長は不可能であり、デバイスを作製する際、工程
数が多くなったり、セルファラインのプロセスが行えな
いなどの問題点があった。
Further, although the MBE method allows epitaxial growth of Si with good film thickness controllability, the Si melted by the E gun bumps, resulting in crystals with many defects. Furthermore, since this method is an evaporation method, it is impossible to selectively grow only on the Si substrate, resulting in problems such as an increase in the number of steps when manufacturing devices and the inability to perform the self-line process. was there.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のSiの結晶成長方法は、半導体基板上に有機S
i系ガスを用いてSiを原子層エピタキシャル成長させ
るものである。
The method for growing Si crystals of the present invention is to grow organic Si on a semiconductor substrate.
This method uses i-based gas to grow Si by atomic layer epitaxial growth.

〔作用〕[Effect]

本発明の作用を図1を用いて説明する。The operation of the present invention will be explained using FIG.

Si原子2の結合手にアルキル基の一種である1例えば
エチル基3がついているSiの有機化合物ガスは、熱に
より分解し、その一部のエチル基3がSi原子2からき
れると、そのダングリングボンド4をもったガスの分子
が図1〈a〉に示すように、Si基板1に近づく。そし
て図1(b)に示すように、基板の表面に付いていたエ
チル基3がはなれて、Si基板1の最表面にダングリン
グボンド4をもった分子のSi原子2Aが結合する。
An organic compound gas of Si in which a type of alkyl group 1, for example, an ethyl group 3 is attached to the bond of the Si atom 2, is decomposed by heat, and when some of the ethyl groups 3 are separated from the Si atom 2, the dangling Gas molecules with ring bonds 4 approach the Si substrate 1 as shown in FIG. 1(a). Then, as shown in FIG. 1(b), the ethyl group 3 attached to the surface of the substrate is separated, and the Si atoms 2A of the molecule having the dangling bond 4 are bonded to the outermost surface of the Si substrate 1.

アルキル基どうしは化学結合しにくい性質があるので、
通常のCVDのように気相中で反応してSi微粒子とな
ることはなく、Si原子は逐次堆積していく。また、S
i基板基板上上、基板のSi原子2と結合していない真
空側、すなわちSi第一層の最表面側にはエチル基3か
まだついており、このエチル基はダングリングボンド4
と一部のエチル基3を持ったSi化合物が近づくと、基
板から脱離してエチル基を持ったSi原子2Aが最表面
に結合する。ダングリングボンドを持ったSi化合物は
基板表面でマイグレートしてSi表面のキンクで安定に
基板のSi原子2と結合するため、表面に段差を作るこ
となく、原子層で制御できるエピタキシャル成長が行え
る。表面がSi以外の材料上では、ダングリングボンド
を持つr、)Si化合物は安定にその表面上に結合でき
ないので、選択成長が可能である。
Since alkyl groups have a property that it is difficult for them to chemically bond with each other,
Unlike normal CVD, Si atoms do not react in the gas phase to become Si fine particles, but instead are deposited one after another. Also, S
On the i-substrate substrate, on the vacuum side that is not bonded to the Si atoms 2 of the substrate, that is, on the outermost surface side of the first Si layer, there is an ethyl group 3 attached, and this ethyl group forms a dangling bond 4.
When a Si compound having some ethyl groups 3 approaches, it detaches from the substrate and the Si atoms 2A having ethyl groups bond to the outermost surface. The Si compound with dangling bonds migrates on the substrate surface and stably bonds to the Si atoms 2 of the substrate through kinks on the Si surface, so epitaxial growth that can be controlled in atomic layers can be performed without creating a step on the surface. On a material whose surface is other than Si, selective growth is possible because a Si compound having a dangling bond cannot be stably bonded to the surface.

〔実施例〕〔Example〕

次に本発明の一実施例を説明する。Next, one embodiment of the present invention will be described.

用いたSi基板は面方位(100)で、〈110〉方向
に4°オフしている。はじめに、Si基板をNH40H
: H202: H20=2 : 4 :10のブラン
ソン洗浄を20分間行い、表面に清浄なSiO2膜をつ
ける。その後、超高真空装置にいれ、基板を400℃に
設定し、クラッキングしたH2ガスを20分照射して酸
化膜を除去し、Si表面の清浄化を行なった。Si (
100)の清浄表面が2X1の超構造を示すことから、
反射電子線回折(RHEED)を用いて2X1の超構造
を確認することによって、清浄なSi表面が得られたと
した。
The Si substrate used has a plane orientation (100) and is offset by 4° in the <110> direction. First, the Si substrate was heated with NH40H.
:H202:H20=2:4:10 Branson cleaning is performed for 20 minutes to attach a clean SiO2 film to the surface. Thereafter, the substrate was placed in an ultra-high vacuum apparatus, the temperature of the substrate was set at 400° C., and cracked H2 gas was irradiated for 20 minutes to remove the oxide film and clean the Si surface. Si (
Since the clean surface of 100) shows a 2X1 superstructure,
It was assumed that a clean Si surface was obtained by confirming the 2X1 superstructure using reflection electron diffraction (RHEED).

Siのエピタキシャル成長に用いるガスは、テトラエチ
ルシラン(Si (C2H5)4 )と水素(H2)で
、混合比はSi (C2Hs )4 :H21:9であ
る。Si (C2H5)4は常圧で液体で、沸点は15
3℃と高い。しかし、チャンバー内は成長時においても
、I X 10−5To r rと真空度が高いこと、
ボンベを含め配管系を約100’Cに加熱することによ
り、ガス量を確保した。成長方法はガスソースMBE法
であり、ベース・プレッシャーが1X10−10Tor
rの超高真空装置を使用している。成長時、H2ガスの
み、カスセルに付いているECRのガスクラッキング装
置によりクラッキングをおこなった。成長時の全圧力は
1X10−5Torrである。Siの成長は基板温度6
00℃で行なった。その結果100原子層以上のSiを
制御性良くエピタキシャル成長させることができた。
The gases used for the epitaxial growth of Si are tetraethylsilane (Si (C2H5)4) and hydrogen (H2), and the mixing ratio is Si (C2Hs)4:H21:9. Si (C2H5)4 is a liquid at normal pressure and has a boiling point of 15
The temperature is as high as 3℃. However, even during growth, the vacuum inside the chamber is as high as 10-5 Torr.
The amount of gas was secured by heating the piping system, including the cylinder, to about 100'C. The growth method is gas source MBE method, and the base pressure is 1X10-10 Torr.
We use ultra-high vacuum equipment. During growth, cracking was performed using only H2 gas using an ECR gas cracking device attached to the cassette. The total pressure during growth is 1×10 −5 Torr. Growth of Si occurs at a substrate temperature of 6
The test was carried out at 00°C. As a result, it was possible to epitaxially grow more than 100 atomic layers of Si with good controllability.

本実施例を用いれば、極薄膜化したMOSFETのチャ
ネル部の形成や、バイポーラの薄膜ベースの形成にも応
用できる。
If this embodiment is used, it can be applied to the formation of an extremely thin MOSFET channel portion and the formation of a bipolar thin film base.

尚、上記実施例においてはSi基板上にSiの原子層を
エピタキシャル成長した場合について説明したが、Ge
基板上にも同様にエピタキシャル成長を行うことができ
る。
Incidentally, in the above embodiment, a case was explained in which an atomic layer of Si was epitaxially grown on a Si substrate.
Epitaxial growth can be similarly performed on the substrate.

〔発明の効果〕以上説明したように本発明は、有機Si系ガスを用いて
Siを原子層エピタキシャル成長させることにより、デ
バイスの微細化を進める上で精密な寸法制御が必要とさ
れるデバイスプロセスに利用でき、膜厚のばらつきによ
るデバイス特性のばらつきを低減させることができると
いう効果がある。
[Effects of the Invention] As explained above, the present invention enables atomic layer epitaxial growth of Si using an organic Si-based gas, thereby making it suitable for device processes that require precise dimensional control to advance device miniaturization. This has the effect of reducing variations in device characteristics due to variations in film thickness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)は本発明の詳細な説明するための
Si原子とエチル基の結合を示す図である。1・・・Si基板、2・・・Si原子、2A・・・St
基板上に成長した第1層のSi原子、3・・・エチル基
、4・・・ダングリングボンド、5・・・炭素、6・・
・水素。
FIGS. 1(a) and 1(b) are diagrams showing the bond between a Si atom and an ethyl group for explaining the present invention in detail. 1...Si substrate, 2...Si atom, 2A...St
Si atoms in the first layer grown on the substrate, 3... Ethyl group, 4... Dangling bond, 5... Carbon, 6...
·hydrogen.

Claims (1)

Translated fromJapanese
【特許請求の範囲】[Claims] 半導体基板上に有機Si系ガスを用いてSiを原子層
エピタキシャル成長させることを特徴とするSiの結晶
成長方法。
A method for growing Si crystals, which comprises growing Si on a semiconductor substrate by atomic layer epitaxial growth using an organic Si-based gas.
JP8871190A1990-04-031990-04-03Growth method of si crystalPendingJPH03286522A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP8871190AJPH03286522A (en)1990-04-031990-04-03Growth method of si crystal

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP8871190AJPH03286522A (en)1990-04-031990-04-03Growth method of si crystal

Publications (1)

Publication NumberPublication Date
JPH03286522Atrue JPH03286522A (en)1991-12-17

Family

ID=13950481

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP8871190APendingJPH03286522A (en)1990-04-031990-04-03Growth method of si crystal

Country Status (1)

CountryLink
JP (1)JPH03286522A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6825134B2 (en)2002-03-262004-11-30Applied Materials, Inc.Deposition of film layers by alternately pulsing a precursor and high frequency power in a continuous gas flow
US6833161B2 (en)*2002-02-262004-12-21Applied Materials, Inc.Cyclical deposition of tungsten nitride for metal oxide gate electrode
US6855368B1 (en)2000-06-282005-02-15Applied Materials, Inc.Method and system for controlling the presence of fluorine in refractory metal layers
US6878206B2 (en)2001-07-162005-04-12Applied Materials, Inc.Lid assembly for a processing system to facilitate sequential deposition techniques
US6911391B2 (en)2002-01-262005-06-28Applied Materials, Inc.Integration of titanium and titanium nitride layers
US6916398B2 (en)2001-10-262005-07-12Applied Materials, Inc.Gas delivery apparatus and method for atomic layer deposition
US6936906B2 (en)2001-09-262005-08-30Applied Materials, Inc.Integration of barrier layer and seed layer
US6951804B2 (en)2001-02-022005-10-04Applied Materials, Inc.Formation of a tantalum-nitride layer
US6998579B2 (en)2000-12-292006-02-14Applied Materials, Inc.Chamber for uniform substrate heating
US7022948B2 (en)2000-12-292006-04-04Applied Materials, Inc.Chamber for uniform substrate heating
US7049226B2 (en)2001-09-262006-05-23Applied Materials, Inc.Integration of ALD tantalum nitride for copper metallization
US7078302B2 (en)2004-02-232006-07-18Applied Materials, Inc.Gate electrode dopant activation method for semiconductor manufacturing including a laser anneal
US7085616B2 (en)2001-07-272006-08-01Applied Materials, Inc.Atomic layer deposition apparatus
US7101795B1 (en)2000-06-282006-09-05Applied Materials, Inc.Method and apparatus for depositing refractory metal layers employing sequential deposition techniques to form a nucleation layer
US7132338B2 (en)2003-10-102006-11-07Applied Materials, Inc.Methods to fabricate MOSFET devices using selective deposition process
US7166528B2 (en)2003-10-102007-01-23Applied Materials, Inc.Methods of selective deposition of heavily doped epitaxial SiGe
US7201803B2 (en)2001-03-072007-04-10Applied Materials, Inc.Valve control system for atomic layer deposition chamber
US7208413B2 (en)2000-06-272007-04-24Applied Materials, Inc.Formation of boride barrier layers using chemisorption techniques
US7211144B2 (en)2001-07-132007-05-01Applied Materials, Inc.Pulsed nucleation deposition of tungsten layers
US7235492B2 (en)2005-01-312007-06-26Applied Materials, Inc.Low temperature etchant for treatment of silicon-containing surfaces
US7262133B2 (en)2003-01-072007-08-28Applied Materials, Inc.Enhancement of copper line reliability using thin ALD tan film to cap the copper line
US7312128B2 (en)2004-12-012007-12-25Applied Materials, Inc.Selective epitaxy process with alternating gas supply
US7405158B2 (en)2000-06-282008-07-29Applied Materials, Inc.Methods for depositing tungsten layers employing atomic layer deposition techniques
US7439191B2 (en)2002-04-052008-10-21Applied Materials, Inc.Deposition of silicon layers for active matrix liquid crystal display (AMLCD) applications
US7560352B2 (en)2004-12-012009-07-14Applied Materials, Inc.Selective deposition
US7588980B2 (en)2006-07-312009-09-15Applied Materials, Inc.Methods of controlling morphology during epitaxial layer formation
US7595263B2 (en)2003-06-182009-09-29Applied Materials, Inc.Atomic layer deposition of barrier materials
US8387557B2 (en)2005-06-212013-03-05Applied MaterialsMethod for forming silicon-containing materials during a photoexcitation deposition process
US8501594B2 (en)2003-10-102013-08-06Applied Materials, Inc.Methods for forming silicon germanium layers

Cited By (50)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US7208413B2 (en)2000-06-272007-04-24Applied Materials, Inc.Formation of boride barrier layers using chemisorption techniques
US7501344B2 (en)2000-06-272009-03-10Applied Materials, Inc.Formation of boride barrier layers using chemisorption techniques
US7501343B2 (en)2000-06-272009-03-10Applied Materials, Inc.Formation of boride barrier layers using chemisorption techniques
US7033922B2 (en)2000-06-282006-04-25Applied Materials. Inc.Method and system for controlling the presence of fluorine in refractory metal layers
US6855368B1 (en)2000-06-282005-02-15Applied Materials, Inc.Method and system for controlling the presence of fluorine in refractory metal layers
US7465666B2 (en)2000-06-282008-12-16Applied Materials, Inc.Method for forming tungsten materials during vapor deposition processes
US7405158B2 (en)2000-06-282008-07-29Applied Materials, Inc.Methods for depositing tungsten layers employing atomic layer deposition techniques
US7235486B2 (en)2000-06-282007-06-26Applied Materials, Inc.Method for forming tungsten materials during vapor deposition processes
US7101795B1 (en)2000-06-282006-09-05Applied Materials, Inc.Method and apparatus for depositing refractory metal layers employing sequential deposition techniques to form a nucleation layer
US7115494B2 (en)2000-06-282006-10-03Applied Materials, Inc.Method and system for controlling the presence of fluorine in refractory metal layers
US7022948B2 (en)2000-12-292006-04-04Applied Materials, Inc.Chamber for uniform substrate heating
US6998579B2 (en)2000-12-292006-02-14Applied Materials, Inc.Chamber for uniform substrate heating
US7781326B2 (en)2001-02-022010-08-24Applied Materials, Inc.Formation of a tantalum-nitride layer
US6951804B2 (en)2001-02-022005-10-04Applied Materials, Inc.Formation of a tantalum-nitride layer
US7094680B2 (en)2001-02-022006-08-22Applied Materials, Inc.Formation of a tantalum-nitride layer
US7201803B2 (en)2001-03-072007-04-10Applied Materials, Inc.Valve control system for atomic layer deposition chamber
US7211144B2 (en)2001-07-132007-05-01Applied Materials, Inc.Pulsed nucleation deposition of tungsten layers
US6878206B2 (en)2001-07-162005-04-12Applied Materials, Inc.Lid assembly for a processing system to facilitate sequential deposition techniques
US10280509B2 (en)2001-07-162019-05-07Applied Materials, Inc.Lid assembly for a processing system to facilitate sequential deposition techniques
US7085616B2 (en)2001-07-272006-08-01Applied Materials, Inc.Atomic layer deposition apparatus
US7494908B2 (en)2001-09-262009-02-24Applied Materials, Inc.Apparatus for integration of barrier layer and seed layer
US7049226B2 (en)2001-09-262006-05-23Applied Materials, Inc.Integration of ALD tantalum nitride for copper metallization
US7352048B2 (en)2001-09-262008-04-01Applied Materials, Inc.Integration of barrier layer and seed layer
US6936906B2 (en)2001-09-262005-08-30Applied Materials, Inc.Integration of barrier layer and seed layer
US6916398B2 (en)2001-10-262005-07-12Applied Materials, Inc.Gas delivery apparatus and method for atomic layer deposition
US7094685B2 (en)2002-01-262006-08-22Applied Materials, Inc.Integration of titanium and titanium nitride layers
US7732325B2 (en)2002-01-262010-06-08Applied Materials, Inc.Plasma-enhanced cyclic layer deposition process for barrier layers
US6911391B2 (en)2002-01-262005-06-28Applied Materials, Inc.Integration of titanium and titanium nitride layers
US7473638B2 (en)2002-01-262009-01-06Applied Materials, Inc.Plasma-enhanced cyclic layer deposition process for barrier layers
US6833161B2 (en)*2002-02-262004-12-21Applied Materials, Inc.Cyclical deposition of tungsten nitride for metal oxide gate electrode
US7115499B2 (en)2002-02-262006-10-03Applied Materials, Inc.Cyclical deposition of tungsten nitride for metal oxide gate electrode
US7429516B2 (en)2002-02-262008-09-30Applied Materials, Inc.Tungsten nitride atomic layer deposition processes
US6825134B2 (en)2002-03-262004-11-30Applied Materials, Inc.Deposition of film layers by alternately pulsing a precursor and high frequency power in a continuous gas flow
US7439191B2 (en)2002-04-052008-10-21Applied Materials, Inc.Deposition of silicon layers for active matrix liquid crystal display (AMLCD) applications
US7262133B2 (en)2003-01-072007-08-28Applied Materials, Inc.Enhancement of copper line reliability using thin ALD tan film to cap the copper line
US7595263B2 (en)2003-06-182009-09-29Applied Materials, Inc.Atomic layer deposition of barrier materials
US7439142B2 (en)2003-10-102008-10-21Applied Materials, Inc.Methods to fabricate MOSFET devices using a selective deposition process
US7166528B2 (en)2003-10-102007-01-23Applied Materials, Inc.Methods of selective deposition of heavily doped epitaxial SiGe
US8501594B2 (en)2003-10-102013-08-06Applied Materials, Inc.Methods for forming silicon germanium layers
US7517775B2 (en)2003-10-102009-04-14Applied Materials, Inc.Methods of selective deposition of heavily doped epitaxial SiGe
US7132338B2 (en)2003-10-102006-11-07Applied Materials, Inc.Methods to fabricate MOSFET devices using selective deposition process
US7078302B2 (en)2004-02-232006-07-18Applied Materials, Inc.Gate electrode dopant activation method for semiconductor manufacturing including a laser anneal
US7611976B2 (en)2004-02-232009-11-03Applied Materials, Inc.Gate electrode dopant activation method for semiconductor manufacturing
US7572715B2 (en)2004-12-012009-08-11Applied Materials, Inc.Selective epitaxy process with alternating gas supply
US7560352B2 (en)2004-12-012009-07-14Applied Materials, Inc.Selective deposition
US7521365B2 (en)2004-12-012009-04-21Applied Materials, Inc.Selective epitaxy process with alternating gas supply
US7312128B2 (en)2004-12-012007-12-25Applied Materials, Inc.Selective epitaxy process with alternating gas supply
US7235492B2 (en)2005-01-312007-06-26Applied Materials, Inc.Low temperature etchant for treatment of silicon-containing surfaces
US8387557B2 (en)2005-06-212013-03-05Applied MaterialsMethod for forming silicon-containing materials during a photoexcitation deposition process
US7588980B2 (en)2006-07-312009-09-15Applied Materials, Inc.Methods of controlling morphology during epitaxial layer formation

Similar Documents

PublicationPublication DateTitle
JPH03286522A (en)Growth method of si crystal
JP3181171B2 (en) Vapor phase growth apparatus and vapor phase growth method
US5760426A (en)Heteroepitaxial semiconductor device including silicon substrate, GaAs layer and GaN layer #13
JP3137767B2 (en) Method for manufacturing semiconductor device
JPH07118450B2 (en) Method for growing a compound semiconductor layer on a single-component semiconductor substrate and such semiconductor structure
JPH01290221A (en) Semiconductor vapor phase growth method
JPS6345371A (en)Formation of deposited film
JPH01290222A (en) Semiconductor vapor phase growth method
EP0241204B1 (en)Method for forming crystalline deposited film
US20050268848A1 (en)Atomic layer deposition apparatus and process
EP0377954B1 (en)Method of producing hetero structure
JPH01134912A (en)Manufacture of semiconductor thin film
CN112420861B (en)Two-dimensional material heterojunction structure, preparation method and application thereof, and photoelectric device
JP3112796B2 (en) Chemical vapor deposition method
JP3983341B2 (en) Silicon carbide and method for producing silicon carbide
CN103548114A (en)Method for manufacturing III/V Si template
JPH0427116A (en) How to form semiconductor heterojunctions
JPS58209117A (en)Manufacture of compound semiconductor film
JP2025122719A (en) Method for preparing a substrate for crystal growth
JPS6143413A (en) Method for forming compound semiconductor single crystal thin film
JPH01214017A (en)Method and apparatus for molecular beam epitaxial growth
JPS62189721A (en)Semiconductor film forming method and apparatus therefor
JPH0788276B2 (en) Vapor phase epitaxial growth method
JPH03201425A (en)Semiconductor device
JPS62219614A (en)Method for growth of compound semiconductor

[8]ページ先頭

©2009-2025 Movatter.jp