Movatterモバイル変換


[0]ホーム

URL:


JPH03277475A - Manufacture of electrodeposited grinding wheel - Google Patents

Manufacture of electrodeposited grinding wheel

Info

Publication number
JPH03277475A
JPH03277475AJP2072960AJP7296090AJPH03277475AJP H03277475 AJPH03277475 AJP H03277475AJP 2072960 AJP2072960 AJP 2072960AJP 7296090 AJP7296090 AJP 7296090AJP H03277475 AJPH03277475 AJP H03277475A
Authority
JP
Japan
Prior art keywords
base metal
anode
abrasive grain
plate
superabrasive grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2072960A
Other languages
Japanese (ja)
Other versions
JP2687660B2 (en
Inventor
Tsutomu Takahashi
務 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials CorpfiledCriticalMitsubishi Materials Corp
Priority to JP2072960ApriorityCriticalpatent/JP2687660B2/en
Publication of JPH03277475ApublicationCriticalpatent/JPH03277475A/en
Application grantedgrantedCritical
Publication of JP2687660B2publicationCriticalpatent/JP2687660B2/en
Anticipated expirationlegal-statusCritical
Expired - Lifetimelegal-statusCriticalCurrent

Links

Landscapes

Abstract

PURPOSE:To enable the burial of super-abrasive grain not only in the horizontal face part of base metal but also at the inclined face and perform electrodeposition work simultaneously in the wide range of the peripheral surface while rotating the base metal continuously at equal speed by holding the super- abrasive grain on the face to be placed by means of the through holes of a mask plate. CONSTITUTION:A conductive, deflectable anode plate 3 is fixed on one face of a deflectable, non-conductive mask plate 2, and numerous mutually discontinuous through holes 4 opened in the thickness direction of these plates 2, 3 are provided to form a porous anode body 1. The opposite face, to the anode plate 3, of this porous anode body 1 is fixed at the abrasive layer formed face of base metal 5, and this base metal 5 is soaked into plating liquid 8 with super- abrasive grain 13 dispersed therein. A current is applied to the base metal 5 as the cathode and the anode plate 3 as the anode so as to form an electrodeposited abrasive grain layer 15 at the part, corresponding to the through hole 4, of the surface of the base metal 5, and then the porous anode body 3 is removed from the base metal 5 to obtain a desired electrodeposited grinding wheel.

Description

Translated fromJapanese

【発明の詳細な説明】「産業上の利用分野」本発明は電着砥石の製造方法に係わり、特に、超砥粒を
多層状に含む砥粒層を台金表面に均一に形成するたぬの
改良に関する。
Detailed Description of the Invention "Industrial Application Field" The present invention relates to a method of manufacturing an electrodeposited grindstone, and in particular to a method for manufacturing an electrodeposited grindstone, in particular a grindstone that uniformly forms an abrasive grain layer containing multi-layered superabrasive grains on the surface of a base metal. Regarding the improvement of

「従来の技術」一般的な電着砥石は、台金に多数の超砥粒を金属めっき
相で単層状に固定したちのて、砥粒層を砥石の研削面全
面に形成したもの、あるいは特定のパターンで砥粒層を
杉成し几ものなどが知られている。
``Prior art'' A typical electrodeposited grindstone is one in which a large number of superabrasive grains are fixed to a base metal in a single layer with a metal plating phase, and then an abrasive grain layer is formed over the entire grinding surface of the grindstone, or It is known that the abrasive grain layer is made of cedar in a specific pattern.

ところで、この種の電着砥石のうち、ホイール型などの
ように外周面に砥粒層を有する円筒状砥石を製造する場
合には、従来、以下のような製造方法か採られていた。
By the way, when producing a cylindrical grindstone having an abrasive grain layer on its outer circumferential surface, such as a wheel type, among these types of electrodeposited grindstones, the following manufacturing method has conventionally been adopted.

すなわち、まず台金の両端面にマスキングを施してリー
ト線を接続したうえ、この台金を回転軸に通して固定し
、めっき槽内の電解めっき液に垂直状態で浸漬する。
That is, first, both end faces of the base metal are masked to connect the Riet wire, and then the base metal is passed through a rotating shaft and fixed, and vertically immersed in an electrolytic plating solution in a plating bath.

次いで、台金の外周面のほぼ水平な上端部分にダイヤ砥
粒をスプーン等で均一になるように蒔き、台金の上方に
配置した陽極板と台金との間に静置状態で通電し、超砥
粒を蒔いた面に金属めっき相を析出させる。
Next, diamond abrasive grains are evenly spread on the almost horizontal upper end of the outer peripheral surface of the base metal using a spoon, etc., and electricity is applied while standing between the anode plate placed above the base metal and the base metal. , a metal plating phase is precipitated on the surface coated with superabrasive grains.

そして、金属めっき相により超砥粒が脱落しない程度に
固定されたら、円形台金を僅かに回転し、新たな上端面
に再び超砥粒を蒔き、上記と同様に金属めっき相で仮固
定する。以後この操作を順次繰り返し、台金の全周に亙
って砥粒層を形成していた。
Then, once the superabrasive grains are fixed by the metal plating phase to the extent that they will not fall off, rotate the circular base metal slightly, sow the superabrasive grains again on the new upper end surface, and temporarily fix them with the metal plating phase in the same way as above. . Thereafter, this operation was repeated one after another to form an abrasive layer over the entire circumference of the base metal.

なお、パターン状に砥粒層を形成する場合には、台金の
外周面に予めフォトレノスト等を用いてパターンに対応
したマスキングを施し、後は上記同様に電着を行なって
いた。
When forming an abrasive grain layer in a pattern, the outer peripheral surface of the base metal is masked in advance using photorenost or the like in accordance with the pattern, and then electrodeposition is performed in the same manner as described above.

「発明が解決しようとする課題Jしかし、上記の製造方法では、局部的なめっきを断続的
に繰り返して砥粒層を形成する方法であるから、例えば
人手による超砥粒の散布密度のばらつきゃ、めっき時間
およびめっき条件のばらつき等に起因するめっき厚さの
不均一さなどにより、砥粒層中の超砥粒の分布密度が不
均一になることが避けられず、砥粒層各部の切れ味、寿
命にばらつきが生じて、偏摩耗や砥石の異常振動を生じ
る原因となっていた。
``Problem to be Solved by the Invention'' However, in the above manufacturing method, the abrasive grain layer is formed by repeating local plating intermittently, so for example, variations in the distribution density of superabrasive grains caused by manual Due to non-uniform plating thickness caused by variations in plating time and plating conditions, it is inevitable that the distribution density of superabrasive grains in the abrasive grain layer will become non-uniform, which will affect the sharpness of each part of the abrasive grain layer. This caused variations in service life, leading to uneven wear and abnormal vibration of the grinding wheel.

また上記方法では、被めっき面からの超砥粒の脱落を防
ぐために、めっき液を撹拌せずに静止状態で電着するた
め、被めっき面への金属イオン供給が不十分になり易い
。したがって、めっき電流を大きくできず、その分、め
っき作業に時間がかかり、生産性が悪く、製造コストが
高くつく欠点を有していた。
Furthermore, in the above method, in order to prevent the superabrasive grains from falling off the surface to be plated, the plating solution is electrodeposited in a stationary state without stirring, so that metal ions are likely to be insufficiently supplied to the surface to be plated. Therefore, the plating current cannot be increased, and the plating operation takes time, resulting in poor productivity and high manufacturing costs.

さらに、多層状に超砥粒を電着できれば砥石の長寿命化
か図れるのであるが、上記の方法では、相当母金に電着
を行なわないと、超砥粒の分布ばらつきか累積して使用
に堪える精度の砥粒層が形成できない問題があり、一般
には単層状の砥粒層しか形成されていないのが現状で、
寿命が短いという欠点があった。
Furthermore, if superabrasive grains can be electrodeposited in multiple layers, it is possible to extend the life of the grinding wheel, but with the above method, if the electrodeposition is not performed on the base metal, the distribution of superabrasive grains will vary and the usage will accumulate. There is a problem that it is not possible to form an abrasive grain layer with an accuracy that can withstand
The drawback was that it had a short lifespan.

「課題を解決するための手段」本発明は上記課題を解決するためになされたもので、ま
ず本発明の第1項に係わる電着砥石の製造方法は、可撓
性を有する非導電性のマスク板の一面に、導電性および
可撓性を有する陽極板を固定し、これらの厚さ方向?口
開口する互いに不連続な貫通孔を多数形成して多孔陽極
体を構成し、この多孔陽極体の前記陽極板とは反対面を
台金の砥粒層形成面に固定し、この台金を超砥粒が分散されためっき液内に浸漬して、
台金を陰極、陽極板を陽極として通電し、台金表面の前
記貫通孔と対応する部分に電着砥粒層を形成したうえ、
台金から多孔陽極体を除去することを特徴としている。
"Means for Solving the Problems" The present invention has been made to solve the above problems, and firstly, the method for manufacturing an electrodeposited grindstone according to the first aspect of the present invention uses a flexible non-conductive grindstone. A conductive and flexible anode plate is fixed on one side of the mask plate, and the thickness direction of the anode plate is fixed to one side of the mask plate. A porous anode body is formed by forming a large number of mutually discontinuous open through-holes, and the surface of the porous anode body opposite to the anode plate is fixed to the abrasive layer forming surface of the base metal. Immerse it in a plating solution in which superabrasive grains are dispersed,
Electricity is applied using the base metal as a cathode and the anode plate as an anode, and an electrodeposited abrasive layer is formed on the surface of the base metal at a portion corresponding to the through hole, and then
The feature is that the porous anode body is removed from the base metal.

また本発明の第2項に係わる方法は、犀さ方向に開口す
る互いに不連続な貫通孔が多数形成された、可撓性を有
する非導電性のマスク板を台金の砥粒層形成面に貼付す
るとともに、前記マスク板の表面に沿って導電性を有す
るメッンユ状の陽極板を固定し、この台金を超砥粒を分散しためっき液内に浸漬し、台金
を陰極、陽極板を陽極として通電することにより、台金
表面の面記貫通孔と対応する部分に電着砥粒層を形成し
たうえ、台金から前記陽極板およびマスク板を除去する
ことを特徴としている。
In addition, the method according to the second aspect of the present invention includes a flexible non-conductive mask plate in which a large number of mutually discontinuous through holes opening in the grain direction are formed on the abrasive layer forming surface of the base metal. At the same time, a conductive menyu-shaped anode plate is fixed along the surface of the mask plate, and this base metal is immersed in a plating solution in which superabrasive grains are dispersed, and the base metal is attached to the cathode and anode plates. The present invention is characterized in that an electrodeposited abrasive layer is formed on the surface of the base metal at a portion corresponding to the inscribed through-hole by applying current to the base metal as an anode, and then the anode plate and the mask plate are removed from the base metal.

なお、上記いずれの場合も、超砥粒として表面に予め導
電性皮膜が形成された超砥粒を用いることにより、電着
砥粒層を多孔質構造としてもよい。
In any of the above cases, the electrodeposited abrasive layer may have a porous structure by using superabrasives on the surface of which a conductive film has been previously formed.

「作 用」上記の各方法によれば、マスク板の貫通孔により超砥粒
が被めっき面上に保持されるため、台金の水平面部分だ
けでなく、傾斜した面にも超砥粒の電着が行なえる。し
たがって、台金が円筒状である場合にも、台金を等速度
で連続的に回転しつつ、外周面の広い範囲で同時に電着
作業が行なえる。
``Function'' According to each of the above methods, the superabrasive grains are held on the surface to be plated by the through holes in the mask plate, so the superabrasive grains are applied not only to the horizontal surface of the base metal but also to the inclined surface. Electrodeposition can be performed. Therefore, even when the base metal is cylindrical, electrodeposition can be performed simultaneously over a wide range of the outer peripheral surface while continuously rotating the base metal at a constant speed.

また、被めっき面と陽極板との離間量は、マスク板の厚
さにより正確に規定されるから、各貫通孔内の被めっき
面における電流密度は、貫通孔の形状が共通であれば全
て一定になるうえ、個々の貫通孔への超砥粒の入り込み
数は、台金を等速度で回転し続ければほぼ一定に維持さ
れるため、L)ずれの部位の被めっき面に形成される砥
粒層も、砥粒含有率、砥粒積層度および厚さが均等化さ
れる。
In addition, since the distance between the surface to be plated and the anode plate is precisely determined by the thickness of the mask plate, the current density on the surface to be plated in each through hole will be all the same if the shape of the through hole is the same. In addition to being constant, the number of superabrasive grains entering each through hole will remain approximately constant if the base metal continues to rotate at a constant speed. The abrasive grain layer is also made uniform in abrasive grain content, abrasive grain lamination degree, and thickness.

さらに、回転軸を交互に正逆回転させることにより、貫
通孔内に形成される砥粒層中の超砥粒の分布をより均一
化することができる。
Furthermore, by alternately rotating the rotating shaft forward and backward, the distribution of superabrasive grains in the abrasive grain layer formed in the through hole can be made more uniform.

さらに、超砥粒として、表面に導電性皮膜が形成された
超砥粒を用いた場合には、各超砥粒間に気孔を残した状
態で金属めつき相が析出するため、電着砥粒層が多孔質
構造となり、切粉排出性および冷却効率がさらに高い砥
石が容易に製造できる。
Furthermore, when superabrasive grains with a conductive film formed on their surfaces are used as superabrasive grains, the metal plating phase precipitates with pores remaining between each superabrasive grain. The grain layer has a porous structure, and a grindstone with higher chip evacuation performance and cooling efficiency can be easily manufactured.

「実施例」以下、本発明に係わる電着砥石の製造方法の実施例を図
面を用いて説明する。
"Example" Hereinafter, an example of the method for manufacturing an electrodeposited grindstone according to the present invention will be described with reference to the drawings.

第1図および第2図は、この方法に使用する多孔陽極体
lを示す縦断面図および平面図で、この多孔陽極体lは
、非導電性で可撓性を有するマスク板2の一面に、導電
性で可撓性を有する陽極板3を接着固定し、これらに多
数の円形の貫通孔4を等間隔で形成したものである。
FIGS. 1 and 2 are a longitudinal cross-sectional view and a plan view showing a porous anode body l used in this method. , a conductive and flexible anode plate 3 is adhesively fixed, and a large number of circular through holes 4 are formed at equal intervals.

前記マスク板2の材質としては、アクリルフオーム等の
各種の発泡性樹脂や、合成または天然ゴム等の不透水性
の弾性体が使用され、その厚さTIは0,2〜20yx
の範囲で、かつ貫通孔4の口径りの30〜300%とさ
れる。この範囲よりも厚いと、貫通孔4が小さい場合に
は貫通孔4内へのめっき液の供給が悪くなり、電解速度
が低下する。また上記範囲よりも薄いと、貫通孔4が太
きい場合に貫通孔4内の被めっき面の中央部と周縁部で
の電流密度差が大きくなり、砥粒層の周辺部が盛り上が
り過ぎて好ましくない。
As the material of the mask plate 2, various foamable resins such as acrylic foam or water-impermeable elastic bodies such as synthetic or natural rubber are used, and the thickness TI thereof is 0.2 to 20 yx.
and 30 to 300% of the diameter of the through hole 4. If it is thicker than this range, if the through hole 4 is small, the plating solution will not be supplied into the through hole 4, and the electrolysis rate will decrease. In addition, if it is thinner than the above range, the difference in current density between the center and the periphery of the surface to be plated in the through-hole 4 will become large when the through-hole 4 is thick, and the periphery of the abrasive grain layer will swell too much, which is not preferable. do not have.

一方、陽極板3は、白金や白金めつきしたチタン等の、
めっき時に溶出しない不溶性金属で成形されている。陽
極板3が不溶性であれば、電着時に陽極板3からアノー
ドスライムが生じず、めっき面の荒れが生じないうえ、
陽極板3が消耗しないため電流密度の一定化が図れ、繰
返し使用も可能である。陽極板3の厚さT2は、十分な
可撓性および導電性が得られるように、例えば0.03
〜lxx程度に設定されている。
On the other hand, the anode plate 3 is made of platinum, platinum-plated titanium, etc.
Molded from an insoluble metal that does not dissolve during plating. If the anode plate 3 is insoluble, anode slime will not be generated from the anode plate 3 during electrodeposition, and the plated surface will not be roughened.
Since the anode plate 3 does not wear out, the current density can be kept constant and repeated use is possible. The thickness T2 of the anode plate 3 is, for example, 0.03 in order to obtain sufficient flexibility and conductivity.
~lxx is set.

貫通孔4の開口径りは0.5〜20yx程度、より好ま
しくは2〜IOxm程度とされている。20ytより大
では超砥粒を被めっき面上に保持する効果(第6図参照
)が低下する。また、0.5i+i未満では超砥粒が貫
通孔4内に入り込みに<<、砥粒含有率にばらつきが生
じやすくなる。
The opening diameter of the through hole 4 is about 0.5 to 20 yx, more preferably about 2 to IOxm. If it is larger than 20 yt, the effect of holding the superabrasive grains on the surface to be plated (see FIG. 6) decreases. Moreover, if it is less than 0.5i+i, the superabrasive grains will not easily enter the through holes 4, and the abrasive grain content will tend to vary.

貫通孔4同士の最短離間量Cは開口径りの10%より大
とされている。これより小さいと、隣接する貫通孔4に
近い部分で金属析出量が減少し、砥粒層の厚さの不均一
さが大きくなり、好ましくない。
The shortest distance C between the through holes 4 is set to be greater than 10% of the opening diameter. If it is smaller than this, the amount of metal precipitated in a portion close to the adjacent through hole 4 will decrease, and the non-uniformity of the thickness of the abrasive grain layer will increase, which is not preferable.

なお、貫通孔4の形状は図示のような円形に限らず、砥
石の用途に応じて適宜形状変更してよい。
Note that the shape of the through hole 4 is not limited to the circular shape shown in the figure, but may be changed as appropriate depending on the use of the grindstone.

例えば、第3図は長孔を配列した例、第4図は六角孔を
ハニカム状に配列した例を示す。
For example, FIG. 3 shows an example in which elongated holes are arranged, and FIG. 4 shows an example in which hexagonal holes are arranged in a honeycomb shape.

次に、多孔陽極体lの裏面を、台金の砥粒層形成面の全
面に固定する。そのためには、マスク板2の裏面に予め
粘着シートを貼付しておいてから貫通孔4を形成しても
よいし、貫通孔4を形成したマスク板2の裏面に粘着剤
を塗布してもよい。
Next, the back surface of the porous anode body 1 is fixed to the entire surface of the abrasive layer forming surface of the base metal. For this purpose, an adhesive sheet may be attached to the back surface of the mask plate 2 in advance and then the through holes 4 may be formed, or an adhesive may be applied to the back surface of the mask plate 2 on which the through holes 4 have been formed. good.

あるいはまた、適当な固定治具を用いてマスク板2を台
金に固定してもよい。
Alternatively, the mask plate 2 may be fixed to the base metal using a suitable fixing jig.

なお、ここでいう台金とは、金属で全体が構成されたも
のを指すのみではなく、少なくとも砥粒層形成面が導電
性を有する物質で構成されていれば、その他の部分はい
かなる材質で構成されていてもよい。
Note that the base metal here does not only refer to something that is entirely made of metal, but also that the other parts can be made of any material as long as at least the surface on which the abrasive grain layer is formed is made of a conductive substance. may be configured.

次いで、多孔陽極体1を貼付した台金を、電解めっき装
置にセットして電着を行なう。第5図は一例として総型
砥石の製造を行なっている状態を示す図である。
Next, the base metal to which the porous anode body 1 is attached is set in an electrolytic plating apparatus, and electrodeposition is performed. FIG. 5 is a diagram showing, as an example, a state in which a complete grindstone is being manufactured.

図中5は円環形の台金で、その外周面には全面に亙って
多孔陽極体lが粘着固定されたうえ、水平な回転軸6に
通され、めっき槽7内のめっき液8に全体が浸漬されて
いる。
In the figure, reference numeral 5 denotes an annular base metal, on which a porous anode body l is adhesively fixed over the entire surface of its outer circumferential surface. The whole thing is immersed.

台金5の両端面にはそれぞれ円板状の遮蔽板9(絶縁テ
ープでもよい)が配置され、これら遮蔽板9は固定リン
グIOで回転軸6に固定され、回転軸6は図示しない回
転装置により定速回転される。
Disk-shaped shielding plates 9 (insulating tape may be used) are arranged on both end faces of the base metal 5, and these shielding plates 9 are fixed to the rotating shaft 6 with a fixing ring IO, and the rotating shaft 6 is connected to a rotating device (not shown). Rotates at a constant speed.

また、めっき槽7には、その上部からめっき液を吸い出
し、底部から噴出させる循環路11とポンプ12、およ
び撹拌機(図示せず)が設けられている。
The plating tank 7 is also provided with a circulation path 11, a pump 12, and a stirrer (not shown) that suck out the plating solution from the top and jet it out from the bottom.

そして台金5は、めっき液8との接触面が絶縁された回
転軸6を通して電源の陰極に接続される一方、陽極板3
はリード線を介して陽極に接続されている。なお、使用
する電源は直流電源、パルス電源、あるいは直流バイア
スをかけた交流電源のいずれでもよい。
The base metal 5 is connected to the cathode of the power source through the rotating shaft 6 whose contact surface with the plating solution 8 is insulated, while the anode plate 3
is connected to the anode via a lead wire. Note that the power source used may be a DC power source, a pulse power source, or an AC power source with a DC bias applied.

装置へのセットを終えたら、めっき液8内に所定濃度の
超砥粒を分散し、超音波等によりぬつき液を撹拌しつつ
、台金5を低速回転して通電する。
After setting in the apparatus, superabrasive grains of a predetermined concentration are dispersed in the plating solution 8, and the base metal 5 is rotated at low speed and energized while stirring the plating solution using ultrasonic waves or the like.

すると、台金5の上半分の部分では、第6図に示すよう
に上向きに開口した各貫通孔4にめっき液8中の超砥粒
13が多数入り込み、被めっき面上に積もって、析出す
る金属めっき相14に取り込まれていく。
Then, in the upper half of the base metal 5, as shown in FIG. 6, many superabrasive grains 13 in the plating solution 8 enter the through holes 4 that open upward, accumulate on the surface to be plated, and precipitate. It is incorporated into the metal plating phase 14.

やがて、台金5が回転して貫通孔4か下向きになると、
貫通孔4内の遊離状態の超砥粒13は落下してめっき液
8中に戻されるが、金属めっき相14に取り込まれかけ
た超砥粒13はそのまま残り、金属めっき相14への埋
め込みが続行される。
Eventually, when the base metal 5 rotates and the through hole 4 faces downward,
The free superabrasive grains 13 in the through hole 4 fall and are returned to the plating solution 8, but the superabrasive grains 13 that are about to be incorporated into the metal plating phase 14 remain as they are and are not embedded in the metal plating phase 14. Continued.

そして再び貫通孔4が上向きになると、新たな超砥粒1
3が再び貫通孔4に飛び込み、以上のサイクルが繰り返
されて砥粒層15が全ての貫通孔4の内部で均等に形成
されていく。
Then, when the through hole 4 turns upward again, a new superabrasive grain 1
3 jumps into the through holes 4 again, the above cycle is repeated, and the abrasive grain layer 15 is evenly formed inside all the through holes 4.

なお、台金5の回転速度が金属めっき相14の析出速度
に比して速すぎると、超砥粒13が台金5の上半部て十
分に金属めっき相14に取り込まれないうちに下半部て
貫通孔4から落下し、砥粒層15の砥粒含有率が低下す
る。
Note that if the rotational speed of the base metal 5 is too fast compared to the precipitation rate of the metal plating phase 14, the superabrasive grains 13 will be lowered in the upper half of the base metal 5 before being sufficiently incorporated into the metal plating phase 14. Half of the particles fall from the through hole 4, and the abrasive grain content of the abrasive grain layer 15 decreases.

逆に遅すぎると、下半部で金属めっき相I4か析出しす
ぎ、砥粒層15の厚さ方向に砥粒分布のむらが生じるお
それかあるため、最適回転速度を実験により決定すべき
である。回転方向については、交互に正逆回転させると
砥粒層15内の超砥粒の分布を一層均一化できる。
On the other hand, if it is too slow, the metal plating phase I4 may precipitate too much in the lower half, causing unevenness in the abrasive grain distribution in the thickness direction of the abrasive grain layer 15. Therefore, the optimum rotation speed should be determined through experiments. . Regarding the rotation direction, by alternately rotating forward and backward, the distribution of superabrasive grains in the abrasive grain layer 15 can be made more uniform.

こうして、マスク板2より薄い範囲内で所望の厚さの砥
粒層15が形成されたら、台金5を装置から外して水洗
し、多孔陽極体lを剥がす。
When the abrasive grain layer 15 is formed to have a desired thickness and is thinner than the mask plate 2 in this manner, the base metal 5 is removed from the apparatus, washed with water, and the porous anode body 1 is peeled off.

この状態での砥粒層I5は、貫通孔4の径とマスク板2
の厚さとの比がめつき条件として適切であった場合には
、第7図に示すようにほぼ平坦な砥粒層15が得られる
か、砥石性能を重視して前記比をめっき条件から見て適
切でない値に設定した場合には、第8図に示すように陽
極板3に近かった周縁部が盛り上がるため、一般砥石な
どによるドレッシングを行ない、第9図に示すように平
坦化するとよい。
In this state, the abrasive layer I5 has the diameter of the through hole 4 and the mask plate 2.
If the ratio between the thickness of If it is set to an inappropriate value, the peripheral edge near the anode plate 3 will bulge as shown in FIG. 8, so dressing it with a general grindstone or the like may be performed to flatten it as shown in FIG. 9.

この製造方法によれば、以下の効果か得られる。According to this manufacturing method, the following effects can be obtained.

■ マスク板2の貫通孔4により、超砥粒13か被めっ
き面上に保持されるため、従来法のように台金5の水平
面部分たけてなく、傾斜した面にも超砥粒13の埋込み
か可能である。したがって、この例のように台金5が円
筒状の場合にも、台金5を等速度で連続的に回転しつつ
、外周面の広い範囲で同時に電着作業が行なえる。
■ Because the superabrasive grains 13 are held on the surface to be plated by the through-holes 4 of the mask plate 2, the horizontal surface of the base metal 5 is not raised as in the conventional method, and the superabrasive grains 13 are also applied to the inclined surface. Embedding is possible. Therefore, even when the base metal 5 is cylindrical as in this example, electrodeposition can be performed simultaneously over a wide range of the outer peripheral surface while continuously rotating the base metal 5 at a constant speed.

■ 被めっき面と陽極板3との離間量はマスク板2の厚
さにより正確に確保されるから、各貫通孔4内の被めっ
き面における電流密度は貫通孔4の形状が共通であれば
全て一定になるうえ、個々の貫通孔4への超砥粒13の
入り込み数は、台金5を等速度で回転し続ければ平均化
によりほぼ一定数に維持されるため、いずれの部位の被
めっき面においても、均等な砥粒含有率と砥粒積層度お
よび厚さを有する砥粒層15が形成できる。
■ Since the distance between the surface to be plated and the anode plate 3 is accurately ensured by the thickness of the mask plate 2, the current density on the surface to be plated in each through-hole 4 is as long as the shape of the through-hole 4 is the same. In addition, the number of superabrasive grains 13 entering each through hole 4 is maintained at a nearly constant number by averaging if the base metal 5 continues to rotate at a constant speed. Also on the plating surface, an abrasive grain layer 15 having a uniform abrasive grain content, uniform abrasive grain lamination degree, and thickness can be formed.

■ めっき液8を攪拌しつつ電着作業が行なえるため、
被めっき面での電流密度を高めてめっき速度を増大する
ことができ、生産時間を短縮して生産性を高め、製造コ
ストを低減することが可能である。
■ Electrodeposition work can be performed while stirring the plating solution 8, so
It is possible to increase the current density on the surface to be plated to increase the plating speed, shorten production time, increase productivity, and reduce manufacturing costs.

■ 陽極体■が可撓性を有するため、第5図のように台
金5の砥粒形成面が曲面である場合にも、この曲面に沿
って容易に多孔陽極体lを固定することができ、電着不
要部分のマスキング、台金5と陽極板3との絶縁、陽極
板3の固定が一度に行なえる。また、多孔陽極体lは電
着後に容易に剥がすことができ、再使用も可能であるか
ら生産性が高い。
■ Since the anode body ■ has flexibility, even when the abrasive grain forming surface of the base metal 5 is a curved surface as shown in FIG. 5, the porous anode body l can be easily fixed along this curved surface. Therefore, masking of parts that do not require electrodeposition, insulation between the base metal 5 and the anode plate 3, and fixing of the anode plate 3 can be performed at the same time. Furthermore, the porous anode body 1 can be easily peeled off after electrodeposition and can be reused, resulting in high productivity.

■ 台金5上に互いに独立した砥粒層15が形成される
ので、これら砥粒層15の間の空隙部分が研削液の供給
路および切粉排出通路となり、砥粒層15の目詰まりを
防止し、切れ味を高めることができる。また砥粒層I5
が多層状に形成されるため、従来の単層状砥粒層に比し
て砥石寿命が格段に長い。
■ Since mutually independent abrasive grain layers 15 are formed on the base metal 5, the gaps between these abrasive grain layers 15 serve as a supply path for grinding fluid and a chip discharge path, thereby preventing clogging of the abrasive grain layer 15. It can prevent this and improve sharpness. Also, abrasive layer I5
Since it is formed in multiple layers, the life of the grinding wheel is much longer than that of conventional single-layer abrasive grain layers.

なお、陽極板3の代わりに、第1O図のようにメツシュ
状の陽極板20を使用することも可能である。この陽極
板20は、多数の超砥粒の粒径よりも大きな開口部を有
する前記不溶性金属製のもので、ワイヤを編んだ網状物
や、金属板に多数の切れ込みを形成して引き延ばしたエ
キスパンデッドメタル、あるいは貫通孔よりも小さい孔
をプレスで多数形成した多孔板等が使用される。
In addition, instead of the anode plate 3, it is also possible to use a mesh-shaped anode plate 20 as shown in FIG. 1O. The anode plate 20 is made of the above-mentioned insoluble metal and has openings larger than the grain size of many superabrasive grains, and is made of a net made of wires or an extract made by forming many cuts in a metal plate and stretching it. Panned metal or a perforated plate in which many holes smaller than the through holes are formed by pressing are used.

このメッンユ状陽極板20を使用するには、貫通孔4を
形成したマスク板2を台金5に貼付した後、その表面に
沿って陽極板20を張力をかけて張るか、あるいは貫通
孔4を形成したマスク板2にメツシュ板20を何等かの
手段で固定した後、台金5にマスク板2を貼付し、後は
上記同様に電着を行なえばよい。
In order to use this menu-shaped anode plate 20, the mask plate 2 with the through holes 4 formed therein is attached to the base metal 5, and then the anode plate 20 is stretched along the surface with tension, or the through holes 4 After the mesh plate 20 is fixed by some means to the mask plate 2 on which the mask plate 2 is formed, the mask plate 2 is attached to the base metal 5, and then electrodeposition is performed in the same manner as described above.

この第2の方法によれば、被めっき面の全面においてメ
ッンユ状陽極板20ま′での距離が均等になるから、砥
粒層15の周縁部の盛り上がりが生じにくいという利点
を有する。
According to this second method, since the distance to the menu-shaped anode plate 20 is equalized over the entire surface to be plated, it has the advantage that the peripheral edge of the abrasive grain layer 15 is less likely to bulge.

なお本発明は、上記のように研削面が円筒状の砥石にの
み適用されるものではなく、研削面が平面であるカップ
型砥石や、ブロック状砥石にも勿論適用可能である。
Note that the present invention is not only applicable to a grindstone having a cylindrical grinding surface as described above, but also to a cup-shaped grindstone having a flat grinding surface or a block-shaped grindstone.

また、電着装置の構成等は任意に変更してよい。Furthermore, the configuration of the electrodeposition apparatus may be changed as desired.

例えば第11図の変形例では、台金5を一対のケース部
材30.31  で気密的に包囲することにより、台金
5の外周面に沿って円環状の空間を形成し、この空間内
に超砥粒を分散しためっき液8を循環させる。同時に、
回転軸6および台金5をケース(30+31)に対して
定速回転させ、陽極板3と台金5との間に通電すること
により、各貫通孔4内の被めっき面に砥粒層を形成する
For example, in the modification shown in FIG. 11, the base metal 5 is airtightly surrounded by a pair of case members 30 and 31, thereby forming an annular space along the outer circumferential surface of the base metal 5. A plating solution 8 in which superabrasive grains are dispersed is circulated. at the same time,
By rotating the rotating shaft 6 and the base metal 5 at a constant speed with respect to the case (30+31) and applying electricity between the anode plate 3 and the base metal 5, an abrasive grain layer is formed on the surface to be plated in each through hole 4. Form.

この例によれば、装置寸法が小さくなるうえ、超砥粒の
使用量が低減できる。
According to this example, the device size can be reduced and the amount of superabrasive grains used can be reduced.

なお、ケース部材30.31を、超砥粒13を通さない
細かさのメツシュ材またはイオン交換膜で成形し、この
ケース部材の内部空間にのみ超砥粒を入れ、全体をめっ
き槽内のめっき液中に浸漬して、台金5とケースを共に
回転しつつ電着を行なう方法も可能で、この場合にも超
砥粒の使用量が低減できる。
Incidentally, the case members 30 and 31 are formed of a mesh material or an ion exchange membrane having a fineness that does not allow the superabrasive grains 13 to pass through, and the superabrasive grains are placed only in the internal space of this case member, and the entire body is plated in a plating bath. It is also possible to perform electrodeposition by immersing the base metal in a liquid and rotating the base metal 5 and the case together, and in this case as well, the amount of superabrasive grains used can be reduced.

また、上記いずれの実施例においても、超砥粒13の表
面に予め導電性皮膜を形成しておくことにより、電着砥
粒層15を多孔質化することが可能である。
Further, in any of the above embodiments, by forming a conductive film on the surface of the superabrasive grains 13 in advance, it is possible to make the electrodeposited abrasive grain layer 15 porous.

この場合、先に述べた製造方法において、予め超砥粒1
3に導電性皮膜を形成し、後は前記と全く同じ操作を行
なえばよい。すると、金属めっき相は、前記実施例の場
合のように台金上にのみ析出するのではなく、台金に対
して導通している超砥粒13の導電性皮膜上にも順次析
出し、超砥粒13同士が金属めっき相によって架橋され
るため、超砥粒13の間に部分的に気孔が残り、電着砥
粒層15が多孔質になる。
In this case, in the manufacturing method described above, the superabrasive grains are
A conductive film may be formed on No. 3, and the rest may be performed in exactly the same manner as described above. Then, the metal plating phase is not deposited only on the base metal as in the case of the above embodiment, but is sequentially deposited on the conductive film of the superabrasive grains 13 that is electrically conductive to the base metal, Since the superabrasive grains 13 are crosslinked with each other by the metal plating phase, pores remain partially between the superabrasive grains 13, and the electrodeposited abrasive grain layer 15 becomes porous.

導電性皮膜の材質としては、Ni、Co、Cuなど無電
解めっき法により皮膜形成が容易な金属、あるいはCr
+Ct等の導電性セラミックスが使用可能である。
The material for the conductive film may be metals that can be easily formed into a film by electroless plating, such as Ni, Co, or Cu, or Cr.
Conductive ceramics such as +Ct can be used.

このような多孔質砥石によれば、電着砥粒層中に形成さ
れた気孔の一部が相互に連通ずるため、砥粒層15の内
部に研削液が流れ込み、砥石の冷却作用および切粉排出
性をさらに向上することが可能である。
According to such a porous grinding wheel, some of the pores formed in the electrodeposited abrasive grain layer communicate with each other, so that the grinding fluid flows into the inside of the abrasive grain layer 15, which cools the grinding wheel and removes chips. It is possible to further improve the discharge performance.

なお、電着砥粒層中に気孔を形成するには、上記方法以
外に、電着時に超砥粒と金属粉とを混合しておき、これ
らを共に台金に電着する方法も実施可能である。ただし
、この場合には、金属粉を混入する分、金属めっき相に
よる超砥粒の保持力が低下する傾向を有する。
In addition to the above method, to form pores in the electrodeposited abrasive layer, it is also possible to mix superabrasive grains and metal powder during electrodeposition and then electrodeposit them together on the base metal. It is. However, in this case, the holding power of the superabrasive grains by the metal plating phase tends to decrease as the metal powder is mixed.

「発明の効果」以上説明したよう?こ、本発明に係わる電着砥石の製造
方法によれば、以下のような優れた効果が得られる。
“Effects of invention” As explained above? According to the method for manufacturing an electrodeposited grindstone according to the present invention, the following excellent effects can be obtained.

■ マスク板の貫通孔により、超砥粒が被めっき面上に
保持されるため、台金の水平面部分のみならず傾斜した
面にも超砥粒の埋込みが可能である。
(2) Since the superabrasive grains are held on the surface to be plated by the through holes in the mask plate, it is possible to embed the superabrasive grains not only in the horizontal surface portion of the base metal but also in the inclined surface.

したがって、円筒状台金の外周面に砥粒層を形成する場
合にも、台金を等速度で連続的に回転しつつ、外周面の
広い範囲で同時に電着作業が行なえる。
Therefore, even when forming an abrasive grain layer on the outer peripheral surface of a cylindrical base metal, electrodeposition can be performed simultaneously over a wide range of the outer peripheral surface while continuously rotating the base metal at a constant speed.

■ 各貫通孔内の被めっき面における電流密度は、貫通
孔の形状が共通であれば全て一定になるうえ、個々の貫
通孔への超砥粒の入り込み数は、台金を等速度で回転し
続ければ平均化によりほぼ一定数に維持されるため、い
ずれの部位の被めっき面においても、均等な砥粒含有率
と砥粒積層塵および厚さを有する砥粒層が形成できる。
■ The current density on the surface to be plated in each through-hole is constant if the through-holes have the same shape, and the number of superabrasive grains entering each through-hole is determined by rotating the base metal at a constant speed. If this is continued, the number will be maintained at a substantially constant value by averaging, so that an abrasive grain layer having a uniform abrasive grain content, abrasive grain lamination dust, and thickness can be formed on any part of the surface to be plated.

■ めっき液を十分に攪拌しつつ電着作業が行なえるた
め、被めっき面での電流密度を高めてめっき速度を増大
することができ、生産時間を短縮して生産性を高め、製
造コストを低減することができる。
■ Electrodeposition can be performed while sufficiently stirring the plating solution, increasing the current density on the surface to be plated and increasing the plating speed, shortening production time, increasing productivity, and reducing manufacturing costs. can be reduced.

■ 超砥粒として、表面に導電性皮膜が形成された超砥
粒を用いた場合には、各超砥粒間に気孔を残した状態で
金属めっき相が析出するため、電着砥粒層が多孔質構造
となり、切粉排出性および冷却効率がさらJこ高い砥石
が容易に製造できる。
■ When using superabrasive grains with a conductive film formed on the surface, the metal plating phase will precipitate with pores remaining between each superabrasive grain, so the electrodeposited abrasive grain layer will has a porous structure, making it easy to produce a grindstone with even higher chip evacuation and cooling efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明に係わる電着砥石の製造方
法の一実施例に使用される多孔陽極体の縦断面図および
平面図、第3図および第4図は多孔陽極体の変形例を示
す平面図、第5図は台金に電着を行なっている状態での
縦断面図、第6図は電着の進行状態を示す断面拡大図、
第7図ないし第9図は得られた砥粒層の縦断面図、第1
0図は本発明の他の実施例を示す第6図と同様の図、第
11図は電着装置の変形例を示す縦断面図である。l・多孔陽極体、2・・マスク板、3・・陽極板、4・
・貫通孔、5・・−台金、6・・回転軸、7・めっき槽
、8・・めっき液、9・・・遮蔽板、10・・固定リン
グ、12・・循環ポンプ、13・・・超砥粒、I4・・
・金属めっき相、15・・・砥粒層、20・・・メツシ
ュ状陽極板、30.31・・ケース部材。
1 and 2 are longitudinal cross-sectional views and plan views of a porous anode body used in an embodiment of the method for manufacturing an electrodeposited grindstone according to the present invention, and FIGS. 3 and 4 are deformations of the porous anode body. A plan view showing an example; FIG. 5 is a vertical cross-sectional view showing the state in which electrodeposition is being performed on the base metal; FIG. 6 is an enlarged cross-sectional view showing the progress of electrodeposition;
7 to 9 are longitudinal cross-sectional views of the obtained abrasive grain layer,
0 is a view similar to FIG. 6 showing another embodiment of the present invention, and FIG. 11 is a longitudinal sectional view showing a modification of the electrodeposition apparatus. l. Porous anode body, 2. Mask plate, 3. Anode plate, 4.
・Through hole, 5...-base metal, 6...rotating shaft, 7...plating tank, 8...plating solution, 9...shielding plate, 10...fixing ring, 12...circulation pump, 13...・Super abrasive grain, I4...
- Metal plating phase, 15... Abrasive grain layer, 20... Mesh-like anode plate, 30.31... Case member.

Claims (3)

Translated fromJapanese
【特許請求の範囲】[Claims](1)可撓性を有する非導電性のマスク板の一面に、導
電性および可撓性を有する陽極板を固定し、これらの厚
さ方向に開口する互いに不連続な貫通孔を多数形成して
多孔陽極体を構成し、この多孔陽極体の前記陽極板とは反対面を台金の砥粒層
形成面に固定し、この台金を超砥粒が分散されためっき
液内に浸漬して、台金を陰極、陽極板を陽極として通電
し、台金表面の前記貫通孔と対応する部分に電着砥粒層
を形成したうえ、台金から多孔陽極体を除去することを
特徴とする電着砥石の製造方法。
(1) A conductive and flexible anode plate is fixed on one side of a flexible, non-conductive mask plate, and a large number of mutually discontinuous through holes are formed in the thickness direction of the anode plate. to form a porous anode body, the surface of the porous anode body opposite to the anode plate is fixed to the abrasive layer forming surface of a base metal, and the base metal is immersed in a plating solution in which superabrasive grains are dispersed. The base metal is used as a cathode and the anode plate is used as an anode, and electricity is applied to the base metal as a cathode and the anode plate as an anode to form an electrodeposited abrasive layer on a portion of the base metal surface corresponding to the through hole, and then the porous anode body is removed from the base metal. A method for manufacturing an electrodeposited grindstone.
(2)厚さ方向に開口する互いに不連続な貫通孔が多数
形成された、可撓性を有する非導電性のマスク板を台金
の砥粒層形成面に貼付するとともに、前記マスク板の表
面に沿って導電性を有するメッシュ状の陽極板を固定し
、この台金を超砥粒を分散しためっき液内に浸漬し、台金
を陰極、陽極板を陽極として通電することにより、台金
表面の前記貫通孔と対応する部分に電着砥粒層を形成し
たうえ、台金から前記陽極板およびマスク板を除去する
ことを特徴とする電着砥石の製造方法。
(2) A flexible, non-conductive mask plate in which a large number of mutually discontinuous through-holes are formed in the thickness direction is attached to the abrasive layer forming surface of the base metal, and the mask plate is A conductive mesh anode plate is fixed along the surface, this base metal is immersed in a plating solution in which superabrasive grains are dispersed, and electricity is applied using the base metal as a cathode and the anode plate as an anode. A method for manufacturing an electrodeposited grindstone, comprising forming an electrodeposition abrasive grain layer on a gold surface at a portion corresponding to the through hole, and then removing the anode plate and the mask plate from the base metal.
(3)前記超砥粒として、表面に導電性皮膜が形成され
た超砥粒を用いることにより、前記電着砥粒層を多孔質
構造とすることを特徴とする請求項1または2記載の電
着砥石の製造方法。
(3) The electrodeposited abrasive layer has a porous structure by using superabrasive grains having a conductive film formed on the surface as the superabrasive grains. Manufacturing method of electroplated grindstone.
JP2072960A1990-03-221990-03-22 Manufacturing method of electrodeposited whetstoneExpired - LifetimeJP2687660B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP2072960AJP2687660B2 (en)1990-03-221990-03-22 Manufacturing method of electrodeposited whetstone

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP2072960AJP2687660B2 (en)1990-03-221990-03-22 Manufacturing method of electrodeposited whetstone

Publications (2)

Publication NumberPublication Date
JPH03277475Atrue JPH03277475A (en)1991-12-09
JP2687660B2 JP2687660B2 (en)1997-12-08

Family

ID=13504457

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP2072960AExpired - LifetimeJP2687660B2 (en)1990-03-221990-03-22 Manufacturing method of electrodeposited whetstone

Country Status (1)

CountryLink
JP (1)JP2687660B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH05285846A (en)*1992-04-131993-11-02Noritake Dia KkManufacture of electrodeposition grinding wheel
CN107378811A (en)*2017-08-012017-11-24华侨大学The producing device of abrasive particle pattern distribution emery wheel is realized in a kind of hollow out solidification in place
CN107378810A (en)*2017-08-012017-11-24华侨大学A kind of engraving in place realizes the producing device of abrasive particle pattern distribution emery wheel
CN107457715A (en)*2017-08-012017-12-12华侨大学A kind of preparation method and producing device of abrasive particle pattern distribution emery wheel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH05285846A (en)*1992-04-131993-11-02Noritake Dia KkManufacture of electrodeposition grinding wheel
CN107378811A (en)*2017-08-012017-11-24华侨大学The producing device of abrasive particle pattern distribution emery wheel is realized in a kind of hollow out solidification in place
CN107378810A (en)*2017-08-012017-11-24华侨大学A kind of engraving in place realizes the producing device of abrasive particle pattern distribution emery wheel
CN107457715A (en)*2017-08-012017-12-12华侨大学A kind of preparation method and producing device of abrasive particle pattern distribution emery wheel

Also Published As

Publication numberPublication date
JP2687660B2 (en)1997-12-08

Similar Documents

PublicationPublication DateTitle
US3491740A (en)Rotary diamond dressing tool
US5620581A (en)Apparatus for electroplating metal films including a cathode ring, insulator ring and thief ring
US7435323B2 (en)Method for controlling thickness uniformity of electroplated layers
US3957593A (en)Method of forming an abrasive tool
TW200800504A (en)Electroplated abrasive tools, methods, and molds
JP2003524079A (en) Pad design and construction for versatile material processing equipment
US3785938A (en)Method for making abrasive articles
US10480092B2 (en)Apparatus and method of contact electroplating of isolated structures
JP2687660B2 (en) Manufacturing method of electrodeposited whetstone
JP6650072B2 (en) Apparatus for performing vertical electric metal film formation on a substrate
US3915832A (en)Electroplating apparatus for forming a nonuniform coating on workpieces
JP4212905B2 (en) Plating method and plating apparatus used therefor
US4720329A (en)Apparatus and method for the electrolytic plating of layers onto computer memory hard discs
JP2504418B2 (en) Grinding stone manufacturing method
JP3049818B2 (en) Electroplated wheel manufacturing equipment
JP2754890B2 (en) Electroplated wheel manufacturing equipment
USRE28267E (en)Process for supporting and nonuniformly treating articles
JPS59142068A (en) Manufacturing method for cutting grindstone
JPH05212679A (en)Manufacture of grinding wheel for grinding machine and device thereof
JP2754888B2 (en) Apparatus and method for producing electrodeposited whetstone
KR19990001959A (en) Method for manufacturing grinding and polishing tools using electrodeposition
JPS63128192A (en)Production of thin metallic strip having hole
JP3042077B2 (en) Apparatus and method for producing electrodeposited whetstone
US3814117A (en)Nonuniformly treating articles and supporting them therefor
JPS62120979A (en) Electroplated grindstone manufacturing method and device

[8]ページ先頭

©2009-2025 Movatter.jp