Movatterモバイル変換


[0]ホーム

URL:


JPH03272449A - Solute concentration measuring apparatus - Google Patents

Solute concentration measuring apparatus

Info

Publication number
JPH03272449A
JPH03272449AJP2072994AJP7299490AJPH03272449AJP H03272449 AJPH03272449 AJP H03272449AJP 2072994 AJP2072994 AJP 2072994AJP 7299490 AJP7299490 AJP 7299490AJP H03272449 AJPH03272449 AJP H03272449A
Authority
JP
Japan
Prior art keywords
concentration
solute
voltage
electrode
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2072994A
Other languages
Japanese (ja)
Other versions
JPH07119737B2 (en
Inventor
Shigeyoki Morinaga
森永 重代記
Nobuyoshi Ito
伊藤 信義
Hisao Kato
久雄 加藤
Masahiko Kojima
小島 雅彦
Mitsuru Tsukitou
月東 充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAGOYASHI
Original Assignee
NAGOYASHI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAGOYASHIfiledCriticalNAGOYASHI
Priority to JP2072994ApriorityCriticalpatent/JPH07119737B2/en
Publication of JPH03272449ApublicationCriticalpatent/JPH03272449A/en
Publication of JPH07119737B2publicationCriticalpatent/JPH07119737B2/en
Anticipated expirationlegal-statusCritical
Expired - Fee Relatedlegal-statusCriticalCurrent

Links

Landscapes

Abstract

PURPOSE:To measure concentration of solute having small ionization equilibrium constant by providing an operating electrode and an ion sensor of a predetermined FET near at hand. CONSTITUTION:An ion sensor 3 of an ion sensitive FET 2 secured by an insulator 5 and an operating electrode 1 are mounted near at hand in solvent 13 containing solute to be measured, a voltage between boundaries of the electrode 1 and the solvent 13 is measured by a comparison electrode 12, a predetermined voltage necessary to electrolytically decompose the solute is applied between the electrode 1 and an opposed electrode 4, a predetermined voltage is applied between the drain 8 and the source 9 of the FET 2, the solute 13 in contact with the electrode 1 is electrolyzed to generate ions. A voltage is generated at the boundary between the sensor 3 and the solvent 13 in response to the concentration of the solute due to sensing to the ions, the sum of the boundary voltage and the source voltage is applied between the sensor 3 and the source, the resistance of the channel of the FET 2 is varied, and a current flowing from the drain to the source is altered. The change in the current is detected as a voltage, and the concentration of the solute having small ionization equilibrium constant is also effectively measured.

Description

Translated fromJapanese

【発明の詳細な説明】(産業上の利用分野)この発明は、測定対象溶質の定電位電解反応によって生
じるイオン濃度から対象溶*濃度を求める濃度測定装置
に間するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a concentration measuring device that determines the concentration of a target solute from the ion concentration generated by a constant potential electrolytic reaction of the solute to be measured.

(従来の技術)イオンセンサによる溶媒中の特定溶質の濃度測定には、
従来、次のような装置が用いられている。
(Conventional technology) To measure the concentration of a specific solute in a solvent using an ion sensor,
Conventionally, the following devices have been used.

l)溶質が電解質の場合溶質の熱的な電離平衡反応によって生じるイオン濃度の
検出を特徴とする濃度測定装置。
l) When the solute is an electrolyte, a concentration measuring device characterized by detecting the ion concentration generated by a thermal ionization equilibrium reaction of the solute.

上記イオン濃度は溶媒に溶けた溶質濃度に比例するから
、イオン濃度を測定すれば、対象溶質の濃度がわかるの
を測定原理としている。
Since the ion concentration is proportional to the solute concentration dissolved in the solvent, the measurement principle is that by measuring the ion concentration, the concentration of the target solute can be determined.

2)溶質が非電解質の場合非電解質から電解質を生成する物、例えば、酵素や微生
物等がイオン感応部またはその近傍に固定されたイオン
検出部もつ濃度測定装置非電解質から電解質を生成する物、例えば、酵素や微生
物等をイオン感応部またはその近傍に固定されていると
、非電解質の溶質に比例した電解質が生成され、この生
成された電解質の濃度に比例したイオンが熱的な電離平
衡反応によって生じ、イオン濃度測定から間接的に非電
解質の濃度が測定されている。
2) When the solute is a non-electrolyte, a device that generates an electrolyte from a non-electrolyte, such as a concentration measuring device that has an ion-sensing section in which enzymes, microorganisms, etc. are fixed at or near the ion-sensing section; For example, when enzymes, microorganisms, etc. are immobilized on or near the ion-sensing part, an electrolyte is produced in proportion to the non-electrolyte solute, and ions proportional to the concentration of the produced electrolyte undergo a thermal ionization equilibrium reaction. The concentration of non-electrolytes is measured indirectly from the measurement of ion concentration.

(発明が解決しようとする課題)上記の濃度測定装置は、溶質の一部が熱的に電離平衡反
応して生じるイオン濃度を測定の原理にしている。した
がって、溶質濃度の測定下限は溶質の電離度を支配する
電離定数に左右され、電離定数の小さい溶質の濃度の測
定は困難になる。
(Problems to be Solved by the Invention) The concentration measuring device described above uses the ion concentration generated by a thermal ionization equilibrium reaction of a part of the solute as the principle of measurement. Therefore, the lower limit of solute concentration measurement depends on the ionization constant that governs the degree of ionization of the solute, making it difficult to measure the concentration of solutes with small ionization constants.

本願の第一の発明は、電離平衡定数の小さい溶質の濃度
測定が困難である上記の欠点を改善することを課題とし
て為したものであり、第二の発明は非電解質の濃度測定
における濃度検出感度の改善を為したものである。
The first invention of the present application has been made with the aim of improving the above-mentioned drawback that it is difficult to measure the concentration of solutes with small ionization equilibrium constants, and the second invention is directed to concentration detection in the concentration measurement of non-electrolytes. The sensitivity has been improved.

(課題を解決するための手段)(−)第一の発明の要点は、作用電極(1)とイオン感
応性電界効果型トランジスタ(以降I 5FETと略称
する)(2)のイオン感応部(3)とが近接して構成さ
れることにある。
(Means for Solving the Problem) (-) The gist of the first invention is that the working electrode (1) and the ion-sensitive part (3) of the ion-sensitive field effect transistor (hereinafter abbreviated as I5FET) (2) ) are arranged in close proximity.

に)第二の発明の要点は、作用電極(1)または15F
ET(2)のイオン感応部(3)の少なくとも何れかの
表面またはその近傍に、少なくともその何れかに、非電
解質から電解質を生成する物(11)、例えば、酵素や
微生物等の固定された作用電極(1)と15FET(2
)のイオン感応部(3)とが近接して構成されることに
ある。
) The main point of the second invention is that the working electrode (1) or 15F
A substance (11) that generates an electrolyte from a non-electrolyte, such as an enzyme or a microorganism, is immobilized on or near at least one of the surfaces of the ion-sensing part (3) of the ET (2). Working electrode (1) and 15FET (2
) are arranged in close proximity to the ion-sensing section (3).

(発明の作用)本願の第一の発明は、測定対象溶質の定電位電解によっ
て、測定対象溶質濃度に比例して生じるイオン濃度のI
 5FETによる検出値から対象溶質の濃度が測定され
る。
(Function of the Invention) The first invention of the present application is that the ion concentration is generated in proportion to the concentration of the solute to be measured by constant potential electrolysis of the solute to be measured.
The concentration of the target solute is measured from the value detected by the 5FET.

第二の発明は、測定対象の非電解質の溶質から生成され
る電解質の定電位電解によって、測定対象溶質濃度に比
例して、生じるイオン濃度のI 5FETによる検出値
から対象溶質の濃度が測定される。
In the second invention, the concentration of the target solute is measured from the detected value of the ion concentration generated by the I5FET in proportion to the concentration of the target solute by constant potential electrolysis of the electrolyte generated from the non-electrolyte solute to be measured. Ru.

(実施例)(第一発明の実施例)図面の第1図は第一発明の実施例を示す溶質濃度測定装
置の回路である。第2図および第3図は、作用電極(1
)および対向電極(4)と15FET(2)が絶縁物(
5)で固定された溶質濃度検出部(14)の図である。
(Example) (Example of the first invention) FIG. 1 of the drawings is a circuit of a solute concentration measuring device showing an example of the first invention. Figures 2 and 3 show the working electrode (1
) and the counter electrode (4) and 15FET (2) are insulators (
5) is a diagram of the solute concentration detection unit (14) fixed in FIG.

第4図および第5図は、作用電極(1)が15FET(
2)のイオン感応部3に近接して作り付けられ、対向電
極(4)が15FET(2)の装着されている絶縁基板
(6)の裏面に作り付けられて一体化された溶質濃度検
出部(14)の図である。
4 and 5, the working electrode (1) is a 15FET (
The solute concentration detection section (14) is built close to the ion sensing section 3 of 2), and the counter electrode (4) is built and integrated on the back surface of the insulating substrate (6) on which the 15FET (2) is mounted. ).

第1図において、第一発明の実施例の測定回路系にって
説明する。
Referring to FIG. 1, a measurement circuit system according to an embodiment of the first invention will be explained.

比較電極(12)は作用電極(1)と溶媒(13)との
界面間の電圧を正確に測定するための電極である。
The reference electrode (12) is an electrode for accurately measuring the voltage across the interface between the working electrode (1) and the solvent (13).

測定対象溶質の電解に必要な電圧は、作用電極(1)と
対向電極(4)に印加される。設定電圧(]5)で設定
される作用電極(1)と比較電極(12)との電位差は
、増幅器(16)によって常に、測定対象の溶質が選択
的に電解される一定の電圧に制御される。
The voltage necessary for electrolyzing the solute to be measured is applied to the working electrode (1) and the counter electrode (4). The potential difference between the working electrode (1) and the reference electrode (12), which is set by the set voltage (5), is always controlled by the amplifier (16) to a constant voltage at which the solute to be measured is selectively electrolyzed. Ru.

設定電圧(17)で設定された15FET(2)のドレ
ーン(8)・ソース(9)間の電圧は増幅器(18)に
よって常に一定に制御されている。
The voltage between the drain (8) and source (9) of the 15FET (2) set at the set voltage (17) is always controlled to be constant by the amplifier (18).

作用電極(1)に触れた測定対象溶質は電解され、イオ
ンが生じる。このイオンに選択的に感応し濃度に応じて
15FET(2)のイオン感応部(3)に設けたイオン
選択膜(7)と溶媒(13)との界面間に電圧が生じる
。この界面電圧とソース(9)の電圧との和の電圧がイ
オン選択膜(7)とソース(9)との間に印加される。
The solute to be measured that touches the working electrode (1) is electrolyzed and ions are generated. It is selectively sensitive to these ions, and a voltage is generated between the interface between the ion-selective membrane (7) provided in the ion-sensing part (3) of the 15FET (2) and the solvent (13) depending on the concentration. A voltage equal to the sum of this interfacial voltage and the voltage of the source (9) is applied between the ion selective membrane (7) and the source (9).

この電圧によってチャンネル(10)に電子が誘引され
、このチャンネル(10)の抵抗が変化し、ドレーン(
8)からソース(9〉へ流れる電流が変化する。この′
rIL流の変化は測定対象の溶質の濃度に対応した出力
電圧(19)となって出力される。
Electrons are attracted to the channel (10) by this voltage, the resistance of this channel (10) changes, and the drain (
The current flowing from 8) to the source (9〉) changes.
Changes in the rIL flow are output as an output voltage (19) corresponding to the concentration of the solute to be measured.

第一発明による過酸化水素の濃度測定結果を第6図に示
す。第6図は水溶液中の過酸化水素の濃度変化に対する
濃度測定装置の出力入電圧変化である。
The results of measuring the concentration of hydrogen peroxide according to the first invention are shown in FIG. FIG. 6 shows changes in the output and input voltage of the concentration measuring device with respect to changes in the concentration of hydrogen peroxide in an aqueous solution.

第1図を用いて、過酸化水素の濃度測定実施例の測定回
路系を説明する。
The measurement circuit system of an embodiment for measuring the concentration of hydrogen peroxide will be explained with reference to FIG.

第1図において、溶媒(13)として脱イオン水を使用
し、室内雰囲気との平衡がとれた後に、これに過酸化水
素溶液を滴下して濃度測定装置の出力電圧(19)の変
化を調べた。
In Figure 1, deionized water is used as the solvent (13), and after equilibrium with the room atmosphere is achieved, a hydrogen peroxide solution is dropped into it and the change in the output voltage (19) of the concentration measuring device is examined. Ta.

この溶質濃度検出に使用された溶質濃度検出部(14)
の構造は第2図および第3図に示す構造である0作用電
極(1)と対向電極(4)に、それぞれ、白金線を使用
し、I 5FETと共にシリコン樹脂で固定された。
Solute concentration detection section (14) used for this solute concentration detection
The structure is shown in FIGS. 2 and 3, using platinum wires for the working electrode (1) and counter electrode (4), respectively, and fixed with silicone resin together with the I5FET.

比較電極(12)として銀塩化銀電極(Ag/ AgC
1)を使用した。過酸化水素の電解のために、比較電極
(12)に対して作用電極(1)が0.7 Vになるよ
うに設定電圧(15)で設定された。
A silver-silver chloride electrode (Ag/AgC) was used as a comparison electrode (12).
1) was used. For the electrolysis of hydrogen peroxide, the working electrode (1) was set at a set voltage (15) of 0.7 V with respect to the reference electrode (12).

電解で生じるイオン検出のためのI 5FET(2)の
ドレーン(8)・ソース(9)間の電圧は設定電圧(1
7)によって1vに設定された。
The voltage between the drain (8) and source (9) of the I5FET (2) for detecting ions generated in electrolysis is the set voltage (1
7) was set to 1v.

第6図において、実線は本発明による測定電圧である。In FIG. 6, the solid line is the measured voltage according to the present invention.

破線は、作用電極(1)と対向電極(4)に電圧を印加
しない開放状態、即ち、従来の15FET(2)のみに
よる濃度測定電圧である。
The broken line represents the open state in which no voltage is applied to the working electrode (1) and the counter electrode (4), that is, the concentration measurement voltage using only the conventional 15FET (2).

脱イオン水が過酸化水素の最初の滴下によって1211
11bの過酸化水素水溶液に変化したとき、本発明によ
る濃度測定装置の出力電圧(19)は10a+V変化す
る。これに対して、作用電極(1)と対向電極(4)に
電圧を印加しない開放状態(従来の15FET(2)の
みによる検出状態)では、脱イオン水が12000 p
pbの過酸化水素の濃度に達したとき、はじめて、10
mvの出力電圧変化が得られた。
Deionized water is added to 1211 by the first drop of hydrogen peroxide.
When the hydrogen peroxide aqueous solution 11b changes, the output voltage (19) of the concentration measuring device according to the present invention changes by 10a+V. On the other hand, in the open state where no voltage is applied to the working electrode (1) and the counter electrode (4) (detection state using only the conventional 15FET (2)), deionized water is 12000 p
Only when a concentration of hydrogen peroxide of pb is reached, 10
An output voltage change of mv was obtained.

この結果から本発明の濃度測定装置による過酸化水素の
検出は従来のI 5FETのみによる検出濃度の下限の
1000分の1まで可能である。即ち、1000倍の測
定感度が得られた。
From this result, it is possible to detect hydrogen peroxide using the concentration measuring device of the present invention down to 1/1000 of the lower limit of the detection concentration using only the conventional I5FET. That is, a measurement sensitivity of 1000 times was obtained.

(第二発明の実施例)第7図、第8図、第9図、第10図、第11図、第12
図は、第二発明の実施例である、非電解質の溶質濃度検
出部(14)の図である。
(Embodiment of the second invention) Fig. 7, Fig. 8, Fig. 9, Fig. 10, Fig. 11, Fig. 12
The figure is a diagram of a non-electrolyte solute concentration detection section (14), which is an embodiment of the second invention.

第7図、第8図、第9図、第10図は、作用電極(1)
の表面とイオン感応部(3)の近傍に非電解質から電解
質を生成する物(11)、例えば、酵素や微生物等の固
定化された膜が被覆されている非電解質の溶質濃度検出
部(14〉の図である。
Figures 7, 8, 9, and 10 show the working electrode (1)
A non-electrolyte solute concentration detection part (14) coated with a substance (11) that generates an electrolyte from a non-electrolyte, for example, a membrane in which enzymes, microorganisms, etc. are immobilized, is coated on the surface of the This is a diagram of

第11図、第12図は、イオン感応部(3)の表面とそ
の近傍に非電解質から電解質を生成する物(11)、例
えば、酵素や微生物等の固定化された膜が被覆さ、れて
いる非電解質の溶質濃度検出部(14)の図である。
Figures 11 and 12 show that the surface of the ion-sensing part (3) and its vicinity are coated with a film in which an electrolyte is generated from a non-electrolyte (11), such as an enzyme or a microorganism immobilized thereon. FIG. 2 is a diagram of a non-electrolyte solute concentration detection unit (14).

第二発明による非電解質の濃度の測定実施例としてグル
コースの濃度測定結果を第13図に示す。
As an example of measuring the concentration of a non-electrolyte according to the second invention, the results of measuring the concentration of glucose are shown in FIG.

第13図は、溶媒(13)の脱イオン水にグルコース水
溶液を滴下した時の水槽中のグルコース濃度と濃度測定
H置の出力電圧である。
FIG. 13 shows the glucose concentration in the water tank and the output voltage at the concentration measurement position H when an aqueous glucose solution is dropped into deionized water as the solvent (13).

第1図を用いて、グルコースの濃度測定実施例の測定回
路系を説明する。
A measurement circuit system of an embodiment for measuring glucose concentration will be explained with reference to FIG.

溶媒(13)、比較電極(12〉、電解電圧は、第一発
明による過酸化水素の濃度測定実施例と同一である。
The solvent (13), reference electrode (12), and electrolytic voltage are the same as in the hydrogen peroxide concentration measurement example according to the first invention.

溶質濃度の検出部(14)は第11図、第12図の構造
である。非電解質から電解質を生成する物(11)とし
て、非電解質のグルコースから電解質を生成するために
作用電極(1)またはイオン感応部(3)の近傍にグル
コースオキシダーゼを固定した。
The solute concentration detection section (14) has the structure shown in FIGS. 11 and 12. As a product (11) for generating an electrolyte from a non-electrolyte, glucose oxidase was immobilized near the working electrode (1) or the ion-sensing part (3) in order to generate an electrolyte from the non-electrolyte glucose.

水溶液中のグルコースがグルコースオキシダーゼに触れ
るとこの触媒作用によってグルコースはグルコン酸と過
酸化水素に分解される。この過酸化水素の濃度はグルコ
ースの濃度に比例し、第一発明による過酸化水素の濃度
測定実施例と同様に、0.7Vの電圧が印加された作用
電極(1)に過酸化水素が触れると電気分解され、水素
イオンが生じる。この水素イオン濃度はグルコースの濃
度に比例し、水素イオン濃度の15FET(2)による
検出値からグルコースの濃度が測定される。
When glucose in an aqueous solution comes into contact with glucose oxidase, the catalytic action breaks down the glucose into gluconic acid and hydrogen peroxide. The concentration of hydrogen peroxide is proportional to the concentration of glucose, and as in the hydrogen peroxide concentration measurement example according to the first invention, hydrogen peroxide comes into contact with the working electrode (1) to which a voltage of 0.7V is applied. is electrolyzed, producing hydrogen ions. This hydrogen ion concentration is proportional to the glucose concentration, and the glucose concentration is measured from the hydrogen ion concentration detected by the 15FET (2).

グルコースオキシダーゼの触媒作用で生じるイオン濃度
を15FETで検出するにはイオン濃度が小さくグルコ
ース濃度の測定が困難であったが、第二の発明により、
第13図のように高感度でその測定が可能になった。
The ion concentration generated by the catalytic action of glucose oxidase was too small to be detected by a 15FET, making it difficult to measure the glucose concentration, but with the second invention,
As shown in Figure 13, it has become possible to measure this with high sensitivity.

(発明の効果)本願の第一の発明は、溶質の電離度を支配する電離定数
に左右されなく、電離定数の小さい溶質の低濃度測定限
界の下限を著しく下げることが可能になる。
(Effects of the Invention) The first invention of the present application is not affected by the ionization constant that governs the degree of ionization of a solute, and it becomes possible to significantly lower the lower limit of the low concentration measurement limit for a solute with a small ionization constant.

第二の発明は、測定対象の非電解質の溶質から生成され
た電解質の定電位電解によって、測定対象溶質濃度に比
例して生じるイオン濃度のT 5FETによる検出値か
ら測定される対象溶質の低濃度測定限界の下限を下げる
ことが可能になる。
The second invention is a low concentration of a target solute, which is measured from a value detected by a T5FET of an ion concentration generated in proportion to the concentration of a solute to be measured by constant potential electrolysis of an electrolyte generated from a non-electrolyte solute to be measured. It becomes possible to lower the lower limit of measurement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は溶質濃度測定装置の回路図第2図は電解質の溶質濃度検出部の正面図第3図は電解
質の溶質濃度検出部の2−2”断面図第4図は電解質の溶質濃度検出部の正面図第5図は電解
質の溶質濃度検出部の4−4′断面図第6図は過酸化水素の濃度測定結果第7図は非電解質の溶質濃度検出部の正面図第8図は非
電解質の溶質濃度検出部の7−7′断面図第9図は非電解質の溶質濃度検出部の正面図第10図は
非電解質の溶質濃度検出部の9−9′断面図第11図は非電解質の溶質濃度検出部の正面図第12図は非電解質の溶質濃度検出部の11−11’断
面図第13図はグルコースの濃度測定結果
Figure 1 is a circuit diagram of the solute concentration measuring device. Figure 2 is a front view of the electrolyte solute concentration detection section. Figure 3 is a 2-2" cross-sectional view of the electrolyte solute concentration detection section. Figure 4 is the electrolyte solute concentration detection section. Figure 5 is a 4-4' sectional view of the electrolyte solute concentration detection unit. Figure 6 is the hydrogen peroxide concentration measurement results. Figure 7 is a front view of the non-electrolyte solute concentration detection unit. FIG. 9 is a front view of the non-electrolyte solute concentration detection section. FIG. 10 is a 9-9' cross-section of the non-electrolyte solute concentration detection section. Figure 12 is a front view of the non-electrolyte solute concentration detection unit. Figure 12 is a 11-11' sectional view of the non-electrolyte solute concentration detection unit. Figure 13 is the glucose concentration measurement results.

Claims (1)

Translated fromJapanese
【特許請求の範囲】(イ)作用電極(1)とイオン感応性電界効果型トラン
ジスタ(2)のイオン感応部(3)とが近接したことを
特徴とする溶質濃度測定装置。(ロ)作用電極(1)またはイオン感応性電界効果型ト
ランジスタ(2)のイオン感応部(3)の少なくとも何
れかの表面またはその近傍に、少なくともその何れかに
、非電解質から電解質を生成する物(11)、例えば、
酵素や微生物等の固定された作用電極(1)とイオン感
応性電界効果型トランジスタ(2)のイオン感応部(3
)とが近接したのを特徴とする溶質濃度測定装置。
[Scope of Claims] (a) A solute concentration measuring device characterized in that a working electrode (1) and an ion sensitive part (3) of an ion sensitive field effect transistor (2) are located close to each other. (b) Generating an electrolyte from a non-electrolyte on or near the surface of at least one of the working electrode (1) or the ion-sensitive part (3) of the ion-sensitive field effect transistor (2); Things (11), e.g.
A working electrode (1) on which enzymes, microorganisms, etc. are immobilized and an ion-sensitive part (3) of an ion-sensitive field effect transistor (2).
) in close proximity to each other.
JP2072994A1990-03-221990-03-22 Solute concentration measuring deviceExpired - Fee RelatedJPH07119737B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP2072994AJPH07119737B2 (en)1990-03-221990-03-22 Solute concentration measuring device

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP2072994AJPH07119737B2 (en)1990-03-221990-03-22 Solute concentration measuring device

Publications (2)

Publication NumberPublication Date
JPH03272449Atrue JPH03272449A (en)1991-12-04
JPH07119737B2 JPH07119737B2 (en)1995-12-20

Family

ID=13505477

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP2072994AExpired - Fee RelatedJPH07119737B2 (en)1990-03-221990-03-22 Solute concentration measuring device

Country Status (1)

CountryLink
JP (1)JPH07119737B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US7488405B2 (en)2003-12-152009-02-10Fuji Xerox Co., Ltd.Electrode for electrochemical measurement and method for manufacturing the same
US7573186B2 (en)2003-12-152009-08-11Fuji Xerox Co., Ltd.Electrode for electrochemical measurement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US7488405B2 (en)2003-12-152009-02-10Fuji Xerox Co., Ltd.Electrode for electrochemical measurement and method for manufacturing the same
US7573186B2 (en)2003-12-152009-08-11Fuji Xerox Co., Ltd.Electrode for electrochemical measurement

Also Published As

Publication numberPublication date
JPH07119737B2 (en)1995-12-20

Similar Documents

PublicationPublication DateTitle
JPS6283649A (en) blood sugar meter
US20070114137A1 (en)Residual chlorine measuring method and residual chlorine measuring device
Sohn et al.ISFET glucose and sucrose sensors by using platinum electrode and photo-crosslinkable polymers
US5387328A (en)Bio-sensor using ion sensitive field effect transistor with platinum electrode
US7323091B1 (en)Multimode electrochemical sensing array
JPH05503580A (en) Polarographic chemical sensor with external reference electrode
GB2520753A (en)Electrochemical sensor apparatus and electrochemical sensing method
CN110753840A (en) Residual chlorine measuring method and residual chlorine measuring device
US7087150B2 (en)Chloramine amperometric sensor
WO2020091033A1 (en)Triple-pole electrode having electrically conductive diamond electrode as reference electrode, device, and electrochemical measuring method
US4839000A (en)Buffer compensation in enzyme-modified ion sensitive devices
JPS638423B2 (en)
Hahn et al.The development of new microelectrode gas sensors: an odyssey. Part 1. O2 and CO2 reduction at unshielded gold microdisc electrodes
EP0345347A1 (en)Fet electrode
Colombo et al.Coulometric micro-titrator with a ruthenium dioxide pH-electrode
US20070000778A1 (en)Multi-parameter sensor with readout circuit
US3960673A (en)Technique for continuously analyzing the concentration of ozone dissolved in water
CN109239144A (en)Current mode chlorine dioxide sensor
US20060163088A1 (en)Amperometric sensor with counter electrode isolated from fill solution
JPH03272449A (en)Solute concentration measuring apparatus
WO1982001772A1 (en)Reference electrode
JPH09178700A (en) Amperometric two-electrode sensor and measuring method with this sensor
Trapp et al.Development of a coulometric CO2 gas sensor
Hendrikse et al.The EMOSFET as a potentiometric transducer in an oxygen sensor
Anh et al.Electroactive gate materials for a hydrogen peroxide sensitive/sup E/MOSFET

Legal Events

DateCodeTitleDescription
LAPSCancellation because of no payment of annual fees

[8]ページ先頭

©2009-2025 Movatter.jp