【発明の詳細な説明】産業上の利用分野本発明は、撥水性を付与する目的で基材表面にコーティ
ングするための組成物及び、前記組成物を塗布した熱交
換器に間するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a composition for coating the surface of a substrate for the purpose of imparting water repellency, and to a heat exchanger coated with the composition. .
従来の技術シリコーン系または、フッ素系樹脂化合物は、優れた撥
水性、潤滑性などを有しその特性を活かすためのコーテ
ィング材料、表面処理剤として多くの分野で、実用化さ
れている。例えば、空気調和機の熱交換器の表面処理と
しても有効である。BACKGROUND OF THE INVENTION Silicone-based or fluorine-based resin compounds have excellent water repellency and lubricity, and have been put to practical use in many fields as coating materials and surface treatment agents to take advantage of these properties. For example, it is effective as a surface treatment for heat exchangers in air conditioners.
そして、空気調和機における、空気熱源ヒートポンプ式
空気調和機(以下単にヒートポンプと呼ぶ)のしめる割
合は急増してきており、家庭用ルームエアコン、業務用
ルームエアコン等については、半数以上を占めている。The proportion of air-source heat pump type air conditioners (hereinafter simply referred to as heat pumps) among air conditioners is rapidly increasing, and they now account for more than half of household room air conditioners, commercial room air conditioners, etc.
又、これらヒートポンプに用いられる熱交換器の大部分
は、アルミフィンと、またこれに直行する冷媒管から構
成されているフィンチューブ型熱交換器である。ヒート
ポンプにおいて、冷房時には室内側熱交換器のフィン表
面に水分の凝縮が起こり、フィン間における凝縮水のブ
リッジ現象により、熱交換器通過風量の低下を招き、ひ
いては、冷房能力の低下の原因となる。一方、暖房時に
は、室外側熱交換器において、前述した冷房時、室内側
熱交換器と同様な現象が起こる。熱交換器に、着霜した
場合は、通風抵抗が増加し、暖房能力の低下の原因とな
り、更に進むと、着霜によるフィンの目詰まりを生じ、
その場合暖房運転を一時停止し、除霜を行なう必要があ
るため、暖房の快適性を損なう原因にもなる。したがっ
て前記冷房能力、暖房能力の低下を減少させるために及
び、暖房時における、室外側熱交換器の着霜を減少し、
除霜回数を減らし、快適性を向上させるためには、室内
機及び、室外機の熱交換器のフィン表面の凝縮水を常に
取り除けば、良いわけである。その方法としてフィン表
面を撥水化して凝縮水を転がり落とす方法があり、実開
昭48−11414号公報、実開昭51−15261号
公報で提案されているような4フツ化エチレン樹脂、塩
化3フツ化エチレン樹脂などのコーティングが知られて
いる。Furthermore, most of the heat exchangers used in these heat pumps are fin-tube heat exchangers that are composed of aluminum fins and refrigerant pipes that run perpendicularly to the aluminum fins. In a heat pump, during cooling, moisture condenses on the fin surface of the indoor heat exchanger, and the bridging phenomenon of condensed water between the fins causes a decrease in the air flow passing through the heat exchanger, which in turn causes a decrease in cooling capacity. . On the other hand, during heating, the same phenomenon occurs in the outdoor heat exchanger as in the indoor heat exchanger during cooling, as described above. If frost forms on the heat exchanger, ventilation resistance will increase, causing a reduction in heating capacity, and if the heat exchanger continues to grow, the fins will become clogged due to frost formation.
In this case, it is necessary to temporarily stop the heating operation and defrost the air, which may impair the comfort of heating. Therefore, in order to reduce the reduction in the cooling capacity and heating capacity, and to reduce frost formation on the outdoor heat exchanger during heating,
In order to reduce the number of times of defrosting and improve comfort, it is better to constantly remove condensed water from the fin surfaces of the heat exchangers of the indoor and outdoor units. One way to do this is to make the fin surface water repellent and roll off the condensed water. Coatings such as trifluoroethylene resin are known.
発明が解決しようとする課題前記撥水性に優れた樹脂を塗布したフィン材表面におい
ては、直径2 m m以上の比較的大きな凝縮水をフィ
ン表面から転がり落とすことが可能であり、熱交換器用
フィン材として、ある程度の効果が期待できる。しかし
、最近の熱交換器は、高能力化を目的とし、フィン総表
面積を増やすためにフィン間隔が狭くなる傾向にある。Problems to be Solved by the Invention On the surface of the fin material coated with the resin with excellent water repellency, it is possible to roll off relatively large condensed water with a diameter of 2 mm or more from the fin surface. As a material, it can be expected to have some effect. However, in recent heat exchangers, the fin spacing tends to become narrower in order to increase the total fin surface area in order to increase the capacity.
現在の熱交換器のフィン間隔は、約2〜3mmが一般的
でありこれからますます狭められていくと考えられる。The fin spacing of current heat exchangers is generally about 2 to 3 mm, and it is thought that it will become narrower in the future.
そこで、前記の撥水性に優れた樹脂を塗布する方法では
、直@1 m m程度の微細な水滴をフィン表面から落
とすことはできない、そこで、フィン表面に残存した水
滴が、フィン間2溜るため、通風抵抗になったり、その
まま氷結し霜となるなどその撥水効果は不十分であった
。したがって、ヒートポンプの冷暖房能力を低下させな
いようフィン表面の凝縮水を常に取り除くことが可能な
高性能な熱交換器用フィン材が望まれ、より高い撥水性
を付与しつるコーティング材料が必要となる。Therefore, with the above-mentioned method of applying resin with excellent water repellency, it is not possible to drop water droplets as small as 1 mm directly from the fin surface, so the water droplets remaining on the fin surface accumulate between the fins. The water repellent effect was insufficient, as it caused ventilation resistance and froze as it was, resulting in frost. Therefore, a high-performance heat exchanger fin material is desired that can constantly remove condensed water from the fin surface so as not to reduce the heating and cooling capacity of the heat pump, and a coating material that provides higher water repellency is required.
課題を解決するための手段この目的を達成するために本発明の撥水性コーチインク
用組成物は、一般に撥水性が高いことで知られるシリコ
ーン系、または、フッ素系樹脂化合物からなる溶液に疎
水基を有する物質の気相吸着により表面を疎水化処理し
た無機粉体を前記溶液中に添加し構成されたものである
。Means for Solving the Problems In order to achieve this object, the water-repellent coach ink composition of the present invention incorporates a hydrophobic group into a solution consisting of a silicone-based or fluorine-based resin compound, which is generally known to have high water repellency. The inorganic powder whose surface has been made hydrophobic by vapor phase adsorption of a substance having the following properties is added to the solution.
また、板状フィンの表面にシリコーン系または、フッ素
系樹脂化合物からなる溶液と、疎水基を有する物質の気
相吸着により表面を疎水化処理した無機粉体とからなる
層を形成してなるものである。In addition, a layer formed by forming a layer on the surface of a plate-shaped fin consisting of a solution made of a silicone-based or fluorine-based resin compound and an inorganic powder whose surface has been made hydrophobic by vapor phase adsorption of a substance having a hydrophobic group. It is.
作用上記の構成の撥水性コーティング組成物を施した基材表
面は、シリコーン系または、フッ素系樹脂の撥水効果に
加え、無機粉体により形成された表面の微細凹凸により
、表面と水滴との接触面積が小さくなり、撥水性が著し
く高くなる。Effect The surface of the base material coated with the water-repellent coating composition having the above structure has a water-repellent effect due to the silicone or fluorine-based resin, as well as the fine irregularities on the surface formed by the inorganic powder, which prevent water droplets from coming into contact with the surface. The contact area becomes smaller and water repellency becomes significantly higher.
また、熱交換器の板状フィンにこの撥水性コーティング
組成物を施しことにより、板状フィンの間隔を狭くして
熱交換率を向上させることができる。Moreover, by applying this water-repellent coating composition to the plate-shaped fins of a heat exchanger, the interval between the plate-shaped fins can be narrowed and the heat exchange efficiency can be improved.
実施例以下本発明の一実施例について説明する。ExampleAn embodiment of the present invention will be described below.
実施例1は、シリコーン系樹脂コーティング剤(トーレ
シリコーン社製5R2411)に対し、シリコーンオイ
ルを気相吸着することにより疏水化処理を施した二酸化
ケイ素粉(日本アエロジル社製R202)をシリコーン
樹脂コーティング剤に対して10wt%添加し、常温で
攪拌分散し、コーティング組成物を作威した後、厚さ0
.5mmのアルミニウム板に浸漬塗布し、100℃の熱
風乾燥炉中で60分間乾燥硬化したものである。In Example 1, a silicone resin coating agent (5R2411 manufactured by Toray Silicone Co., Ltd.) was coated with silicon dioxide powder (R202 manufactured by Nippon Aerosil Co., Ltd.) that had been subjected to hydrophobic treatment by vapor phase adsorption of silicone oil. After adding 10 wt% to the coating composition and stirring and dispersing at room temperature to form a coating composition, a coating composition with a thickness of 0
.. It was coated by dip coating on a 5 mm aluminum plate and dried and hardened in a hot air drying oven at 100° C. for 60 minutes.
比較例1は、シリコーン系樹脂コーティング剤を比較例
2はフッソ樹脂系コーティング剤を同様に、厚さ0.5
mmのアルミニウム板に浸漬塗布し、100℃の熱風乾
燥炉中で60分間乾燥硬化したものである。また比較例
3は、シリコーン系樹脂コーティング剤に対し、表面処
理を施していない二酸化ケイ素粉(日本アエロジル社製
TT600 )をシリコーン樹脂コーティング剤に対し
て、1゜wt%添加して、常温で攪拌分散し、コーティ
ング組成物を作威し、厚さ0.5mmのアルミニウム板
に浸漬塗布し、100℃の熱風乾燥炉中で60分間乾燥
硬化したものである。撥水性効果については、水に対す
る接触角を測定することにより、評価した。尚、水に対
する接触角とは、第1図に示すように、試料1表面に形
成した水滴5と試料1表面が作る角度θで表わされ、接
触角θが大きい程、撥水性が高いといえる。水に対する
接触角は、協和界面科学製コンタクトアングルメータD
A−T型で測定した。Comparative Example 1 uses a silicone resin coating agent, and Comparative Example 2 uses a fluorine resin coating agent with a thickness of 0.5 mm.
It was coated by dip coating on an aluminum plate with a diameter of 1.5 mm and was dried and cured for 60 minutes in a hot air drying oven at 100°C. In addition, in Comparative Example 3, 1°wt% of silicon dioxide powder (TT600 manufactured by Nippon Aerosil Co., Ltd.) without surface treatment was added to the silicone resin coating agent, and the mixture was stirred at room temperature. The coating composition was dispersed, applied to an aluminum plate with a thickness of 0.5 mm by dip coating, and dried and cured for 60 minutes in a hot air drying oven at 100°C. The water repellency effect was evaluated by measuring the contact angle with water. As shown in Figure 1, the contact angle with water is expressed by the angle θ formed between the water droplet 5 formed on the surface of the sample 1 and the surface of the sample 1. The larger the contact angle θ, the higher the water repellency. I can say that. The contact angle with water is measured using a contact angle meter D manufactured by Kyowa Interface Science.
Measured with AT type.
(以下余白)表;添加粒子の種類と水接触角および成膜性の関係性;
部分的にクラック発生表でも判るように、実施例6は、水に対する接触角が比
較例1のシリコーン系樹脂コーティング剤のみの場合や
、比較例2のフッ素系コーティング剤のみの場合よりも
、著しく接触角が大きくなっている。すなわち、本実施
例において、大幅に撥水性が向上していることを示す。(Left below) Table: Relationship between types of additive particles, water contact angle, and film forming properties;
As can be seen from the partial crack occurrence table, Example 6 has a significantly higher contact angle with water than the case of only the silicone resin coating agent of Comparative Example 1 or the case of only the fluorine-based coating agent of Comparative Example 2. The contact angle is large. That is, this example shows that the water repellency is significantly improved.
また比較例3の場合撥水性は向上するが部分的に塗膜の
クラックを生じ成膜性が劣る。In Comparative Example 3, although the water repellency was improved, the coating film partially cracked and the film forming properties were poor.
まず、撥水性樹脂に、微細な粉体を添加すると、撥水性
樹脂により、表面が撥水性になっていることに加えて、
微小な粉体の微細凹凸により、液滴の接触面積が小さく
なり、液滴とフィン表面の付着力が大幅に低下し、撥水
性が高くなる(モルフォロジカル効果)、この場合添加
する粉体の表面が親水性であるとその粉対同志が凝集し
やすくコーティング剤中に分散されにくく比較例3に示
すように部分的クラックが発生するなど良好な塗膜とは
ならない。そこで、表面を疎水化した粉体が必要となる
。本実施例1に用いた粉体は表面を気相吸着により疎水
化したもので粉体の表面はほぼ100%疎水化されてい
る。そのため粉対同志が凝集しにくくコーティング剤中
への分散性に優れ良好な塗膜が形成される。従って撥水
性も優れたものとなる。First, when fine powder is added to water-repellent resin, in addition to the water-repellent resin making the surface water-repellent,
The fine irregularities of the fine powder reduce the contact area of the droplet, significantly reducing the adhesion force between the droplet and the fin surface, and increasing the water repellency (morphological effect). If the surface is hydrophilic, the powder particles tend to aggregate and are difficult to disperse in the coating agent, resulting in poor coating films, such as partial cracking as shown in Comparative Example 3. Therefore, a powder with a hydrophobic surface is required. The surface of the powder used in Example 1 was made hydrophobic by vapor phase adsorption, and the surface of the powder was made almost 100% hydrophobic. Therefore, the powder particles are less likely to aggregate with each other and have excellent dispersibility in the coating agent, forming a good coating film. Therefore, the water repellency is also excellent.
発明の効果以上のように本発明では、撥水性コーティング用組成物
を、シリコーン系またはフッ素系樹脂化合物からなる溶
液と、疎水基を有する物質の気相吸着により表面を疎水
化処理した無機粉体を、前記溶液中に添加し構成したも
のであり、この撥水性コーティング用組成物を塗布した
基材は非常に高い撥水性を示す、この撥水性コーティン
グ用組成物を熱交換器用フィン材に塗布し、熱交換器を
構成した場合、フィン間隔が2mm程度と狭い場合でも
、フィン表面に凝縮した水滴を、転がり落とすために有
効な性能を有する。したがって、ヒートポンプエアコン
の熱交換器の着霜によるフィン間の目詰まりを遅れさせ
ることにより、ヒートポンプとして、冷房能力、暖房能
力の低下を減少させるとともに、暖房時室外機熱交換器
の除霜間隔を延長することができ、快適性を向上させる
ことが可能である。Effects of the Invention As described above, in the present invention, a water-repellent coating composition is prepared by combining a solution consisting of a silicone-based or fluorine-based resin compound and an inorganic powder whose surface has been made hydrophobic by vapor phase adsorption of a substance having a hydrophobic group. is added to the solution, and the base material coated with this water-repellent coating composition exhibits extremely high water repellency.This water-repellent coating composition is applied to a fin material for a heat exchanger. However, when a heat exchanger is constructed, even when the fin spacing is as narrow as about 2 mm, it has effective performance in rolling off water droplets condensed on the fin surfaces. Therefore, by delaying clogging between the fins due to frost formation on the heat exchanger of a heat pump air conditioner, the heat pump can reduce the decline in cooling and heating capacity, and also shorten the defrosting interval of the outdoor unit heat exchanger during heating. It can be extended to improve comfort.
図は接触角について説明した図である。1・・・試料、2・・・アルミニウム板、3・・・シリ
コーンまたは、フッ素樹脂コーティング層、4・・・無
機粉体、θ・・・接触角。The figure is a diagram explaining the contact angle. DESCRIPTION OF SYMBOLS 1... Sample, 2... Aluminum plate, 3... Silicone or fluororesin coating layer, 4... Inorganic powder, θ... Contact angle.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5830190AJPH03259975A (en) | 1990-03-09 | 1990-03-09 | Water-repellent coating composition and heat exchanger coated therewith |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5830190AJPH03259975A (en) | 1990-03-09 | 1990-03-09 | Water-repellent coating composition and heat exchanger coated therewith |
| Publication Number | Publication Date |
|---|---|
| JPH03259975Atrue JPH03259975A (en) | 1991-11-20 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP5830190APendingJPH03259975A (en) | 1990-03-09 | 1990-03-09 | Water-repellent coating composition and heat exchanger coated therewith |
| Country | Link |
|---|---|
| JP (1) | JPH03259975A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7854754B2 (en) | 2006-02-22 | 2010-12-21 | Zeltiq Aesthetics, Inc. | Cooling device for removing heat from subcutaneous lipid-rich cells |
| JP2011185590A (en)* | 2010-02-09 | 2011-09-22 | Sumitomo Light Metal Ind Ltd | Aluminum fin for heat exchanger and heat exchanger |
| US8192474B2 (en) | 2006-09-26 | 2012-06-05 | Zeltiq Aesthetics, Inc. | Tissue treatment methods |
| US8275442B2 (en) | 2008-09-25 | 2012-09-25 | Zeltiq Aesthetics, Inc. | Treatment planning systems and methods for body contouring applications |
| US8285390B2 (en) | 2007-08-21 | 2012-10-09 | Zeltiq Aesthetics, Inc. | Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue |
| US9545523B2 (en) | 2013-03-14 | 2017-01-17 | Zeltiq Aesthetics, Inc. | Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue |
| USD777338S1 (en) | 2014-03-20 | 2017-01-24 | Zeltiq Aesthetics, Inc. | Cryotherapy applicator for cooling tissue |
| US9655770B2 (en) | 2007-07-13 | 2017-05-23 | Zeltiq Aesthetics, Inc. | System for treating lipid-rich regions |
| US9737434B2 (en) | 2008-12-17 | 2017-08-22 | Zeltiq Aestehtics, Inc. | Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells |
| US9844460B2 (en) | 2013-03-14 | 2017-12-19 | Zeltiq Aesthetics, Inc. | Treatment systems with fluid mixing systems and fluid-cooled applicators and methods of using the same |
| US9844461B2 (en) | 2010-01-25 | 2017-12-19 | Zeltiq Aesthetics, Inc. | Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants |
| US9861520B2 (en) | 2009-04-30 | 2018-01-09 | Zeltiq Aesthetics, Inc. | Device, system and method of removing heat from subcutaneous lipid-rich cells |
| US9861421B2 (en) | 2014-01-31 | 2018-01-09 | Zeltiq Aesthetics, Inc. | Compositions, treatment systems and methods for improved cooling of lipid-rich tissue |
| US10092346B2 (en) | 2010-07-20 | 2018-10-09 | Zeltiq Aesthetics, Inc. | Combined modality treatment systems, methods and apparatus for body contouring applications |
| US10292859B2 (en) | 2006-09-26 | 2019-05-21 | Zeltiq Aesthetics, Inc. | Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile |
| US10383787B2 (en) | 2007-05-18 | 2019-08-20 | Zeltiq Aesthetics, Inc. | Treatment apparatus for removing heat from subcutaneous lipid-rich cells and massaging tissue |
| US10524956B2 (en) | 2016-01-07 | 2020-01-07 | Zeltiq Aesthetics, Inc. | Temperature-dependent adhesion between applicator and skin during cooling of tissue |
| US10555831B2 (en) | 2016-05-10 | 2020-02-11 | Zeltiq Aesthetics, Inc. | Hydrogel substances and methods of cryotherapy |
| US10568759B2 (en) | 2014-08-19 | 2020-02-25 | Zeltiq Aesthetics, Inc. | Treatment systems, small volume applicators, and methods for treating submental tissue |
| US10675176B1 (en) | 2014-03-19 | 2020-06-09 | Zeltiq Aesthetics, Inc. | Treatment systems, devices, and methods for cooling targeted tissue |
| US10682297B2 (en) | 2016-05-10 | 2020-06-16 | Zeltiq Aesthetics, Inc. | Liposomes, emulsions, and methods for cryotherapy |
| US10722395B2 (en) | 2011-01-25 | 2020-07-28 | Zeltiq Aesthetics, Inc. | Devices, application systems and methods with localized heat flux zones for removing heat from subcutaneous lipid-rich cells |
| US10765552B2 (en) | 2016-02-18 | 2020-09-08 | Zeltiq Aesthetics, Inc. | Cooling cup applicators with contoured heads and liner assemblies |
| US10935174B2 (en) | 2014-08-19 | 2021-03-02 | Zeltiq Aesthetics, Inc. | Stress relief couplings for cryotherapy apparatuses |
| US10952891B1 (en) | 2014-05-13 | 2021-03-23 | Zeltiq Aesthetics, Inc. | Treatment systems with adjustable gap applicators and methods for cooling tissue |
| US11076879B2 (en) | 2017-04-26 | 2021-08-03 | Zeltiq Aesthetics, Inc. | Shallow surface cryotherapy applicators and related technology |
| US11154418B2 (en) | 2015-10-19 | 2021-10-26 | Zeltiq Aesthetics, Inc. | Vascular treatment systems, cooling devices, and methods for cooling vascular structures |
| US11382790B2 (en) | 2016-05-10 | 2022-07-12 | Zeltiq Aesthetics, Inc. | Skin freezing systems for treating acne and skin conditions |
| US11446175B2 (en) | 2018-07-31 | 2022-09-20 | Zeltiq Aesthetics, Inc. | Methods, devices, and systems for improving skin characteristics |
| US11986421B2 (en) | 2006-09-26 | 2024-05-21 | Zeltiq Aesthetics, Inc. | Cooling devices with flexible sensors |
| US12070411B2 (en) | 2006-04-28 | 2024-08-27 | Zeltiq Aesthetics, Inc. | Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8337539B2 (en) | 2006-02-22 | 2012-12-25 | Zeltiq Aesthetics, Inc. | Cooling device for removing heat from subcutaneous lipid-rich cells |
| US7854754B2 (en) | 2006-02-22 | 2010-12-21 | Zeltiq Aesthetics, Inc. | Cooling device for removing heat from subcutaneous lipid-rich cells |
| US12070411B2 (en) | 2006-04-28 | 2024-08-27 | Zeltiq Aesthetics, Inc. | Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells |
| US8192474B2 (en) | 2006-09-26 | 2012-06-05 | Zeltiq Aesthetics, Inc. | Tissue treatment methods |
| US11179269B2 (en) | 2006-09-26 | 2021-11-23 | Zeltiq Aesthetics, Inc. | Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile |
| US11986421B2 (en) | 2006-09-26 | 2024-05-21 | Zeltiq Aesthetics, Inc. | Cooling devices with flexible sensors |
| US10292859B2 (en) | 2006-09-26 | 2019-05-21 | Zeltiq Aesthetics, Inc. | Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile |
| US11219549B2 (en) | 2006-09-26 | 2022-01-11 | Zeltiq Aesthetics, Inc. | Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile |
| US11395760B2 (en) | 2006-09-26 | 2022-07-26 | Zeltiq Aesthetics, Inc. | Tissue treatment methods |
| US11291606B2 (en) | 2007-05-18 | 2022-04-05 | Zeltiq Aesthetics, Inc. | Treatment apparatus for removing heat from subcutaneous lipid-rich cells and massaging tissue |
| US10383787B2 (en) | 2007-05-18 | 2019-08-20 | Zeltiq Aesthetics, Inc. | Treatment apparatus for removing heat from subcutaneous lipid-rich cells and massaging tissue |
| US9655770B2 (en) | 2007-07-13 | 2017-05-23 | Zeltiq Aesthetics, Inc. | System for treating lipid-rich regions |
| US8285390B2 (en) | 2007-08-21 | 2012-10-09 | Zeltiq Aesthetics, Inc. | Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue |
| US10675178B2 (en) | 2007-08-21 | 2020-06-09 | Zeltiq Aesthetics, Inc. | Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue |
| US8275442B2 (en) | 2008-09-25 | 2012-09-25 | Zeltiq Aesthetics, Inc. | Treatment planning systems and methods for body contouring applications |
| US9737434B2 (en) | 2008-12-17 | 2017-08-22 | Zeltiq Aestehtics, Inc. | Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells |
| US9861520B2 (en) | 2009-04-30 | 2018-01-09 | Zeltiq Aesthetics, Inc. | Device, system and method of removing heat from subcutaneous lipid-rich cells |
| US11224536B2 (en) | 2009-04-30 | 2022-01-18 | Zeltiq Aesthetics, Inc. | Device, system and method of removing heat from subcutaneous lipid-rich cells |
| US11452634B2 (en) | 2009-04-30 | 2022-09-27 | Zeltiq Aesthetics, Inc. | Device, system and method of removing heat from subcutaneous lipid-rich cells |
| US9844461B2 (en) | 2010-01-25 | 2017-12-19 | Zeltiq Aesthetics, Inc. | Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants |
| JP2011185590A (en)* | 2010-02-09 | 2011-09-22 | Sumitomo Light Metal Ind Ltd | Aluminum fin for heat exchanger and heat exchanger |
| US10092346B2 (en) | 2010-07-20 | 2018-10-09 | Zeltiq Aesthetics, Inc. | Combined modality treatment systems, methods and apparatus for body contouring applications |
| US10722395B2 (en) | 2011-01-25 | 2020-07-28 | Zeltiq Aesthetics, Inc. | Devices, application systems and methods with localized heat flux zones for removing heat from subcutaneous lipid-rich cells |
| US9844460B2 (en) | 2013-03-14 | 2017-12-19 | Zeltiq Aesthetics, Inc. | Treatment systems with fluid mixing systems and fluid-cooled applicators and methods of using the same |
| US9545523B2 (en) | 2013-03-14 | 2017-01-17 | Zeltiq Aesthetics, Inc. | Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue |
| US10912599B2 (en) | 2014-01-31 | 2021-02-09 | Zeltiq Aesthetics, Inc. | Compositions, treatment systems and methods for improved cooling of lipid-rich tissue |
| US11819257B2 (en) | 2014-01-31 | 2023-11-21 | Zeltiq Aesthetics, Inc. | Compositions, treatment systems and methods for improved cooling of lipid-rich tissue |
| US10806500B2 (en) | 2014-01-31 | 2020-10-20 | Zeltiq Aesthetics, Inc. | Treatment systems, methods, and apparatuses for improving the appearance of skin and providing other treatments |
| US9861421B2 (en) | 2014-01-31 | 2018-01-09 | Zeltiq Aesthetics, Inc. | Compositions, treatment systems and methods for improved cooling of lipid-rich tissue |
| US10201380B2 (en) | 2014-01-31 | 2019-02-12 | Zeltiq Aesthetics, Inc. | Treatment systems, methods, and apparatuses for improving the appearance of skin and providing other treatments |
| US10575890B2 (en) | 2014-01-31 | 2020-03-03 | Zeltiq Aesthetics, Inc. | Treatment systems and methods for affecting glands and other targeted structures |
| US10675176B1 (en) | 2014-03-19 | 2020-06-09 | Zeltiq Aesthetics, Inc. | Treatment systems, devices, and methods for cooling targeted tissue |
| USD777338S1 (en) | 2014-03-20 | 2017-01-24 | Zeltiq Aesthetics, Inc. | Cryotherapy applicator for cooling tissue |
| US10952891B1 (en) | 2014-05-13 | 2021-03-23 | Zeltiq Aesthetics, Inc. | Treatment systems with adjustable gap applicators and methods for cooling tissue |
| US10935174B2 (en) | 2014-08-19 | 2021-03-02 | Zeltiq Aesthetics, Inc. | Stress relief couplings for cryotherapy apparatuses |
| US10568759B2 (en) | 2014-08-19 | 2020-02-25 | Zeltiq Aesthetics, Inc. | Treatment systems, small volume applicators, and methods for treating submental tissue |
| US11154418B2 (en) | 2015-10-19 | 2021-10-26 | Zeltiq Aesthetics, Inc. | Vascular treatment systems, cooling devices, and methods for cooling vascular structures |
| US10524956B2 (en) | 2016-01-07 | 2020-01-07 | Zeltiq Aesthetics, Inc. | Temperature-dependent adhesion between applicator and skin during cooling of tissue |
| US10765552B2 (en) | 2016-02-18 | 2020-09-08 | Zeltiq Aesthetics, Inc. | Cooling cup applicators with contoured heads and liner assemblies |
| US11382790B2 (en) | 2016-05-10 | 2022-07-12 | Zeltiq Aesthetics, Inc. | Skin freezing systems for treating acne and skin conditions |
| US10682297B2 (en) | 2016-05-10 | 2020-06-16 | Zeltiq Aesthetics, Inc. | Liposomes, emulsions, and methods for cryotherapy |
| US10555831B2 (en) | 2016-05-10 | 2020-02-11 | Zeltiq Aesthetics, Inc. | Hydrogel substances and methods of cryotherapy |
| US11076879B2 (en) | 2017-04-26 | 2021-08-03 | Zeltiq Aesthetics, Inc. | Shallow surface cryotherapy applicators and related technology |
| US11446175B2 (en) | 2018-07-31 | 2022-09-20 | Zeltiq Aesthetics, Inc. | Methods, devices, and systems for improving skin characteristics |
| US12102557B2 (en) | 2018-07-31 | 2024-10-01 | Zeltiq Aesthetics, Inc. | Methods, devices, and systems for improving skin characteristics |
| Publication | Publication Date | Title |
|---|---|---|
| JPH03259975A (en) | Water-repellent coating composition and heat exchanger coated therewith | |
| US5181558A (en) | Heat exchanger | |
| JPH0493597A (en) | Water repellent coating composition and heat exchanger coated with water repellant coating composition | |
| JPS6261078B2 (en) | ||
| JPH08323285A (en) | Member with excellent water repellency and anti-frosting property and its preparation | |
| JPH06300482A (en) | Heat exchanger | |
| JPH03244680A (en) | Water-repellent coating composition and heat exchanger using water repellent-coating composition | |
| JP2834228B2 (en) | Water repellent coating composition and heat exchanger using the water repellent coating composition | |
| JP3383914B2 (en) | Aluminum fin material for heat exchanger | |
| JPH03244996A (en) | Water-repellent coating composition and heat exchanger using same | |
| JP2584109B2 (en) | Paint for water-repellent coating and heat exchanger coated with the paint | |
| JP2507119B2 (en) | Water-repellent coating composition and heat exchanger coated with the water-repellent coating composition | |
| JP2004360945A (en) | Heat exchanger tube for flow-down liquid film type heat exchanger | |
| JPH05222339A (en) | Water-repellent coating composition and heat exchanger coated with water-repellent coating composition | |
| JPH03251693A (en) | Composition for water repellent coating and heat exchanger employing composition for water repellent coating | |
| JP7601731B2 (en) | Aluminum fin material | |
| JP2803798B2 (en) | Heat exchanger | |
| JP7502232B2 (en) | Aluminum fin material | |
| JPH04178472A (en) | Composition for water-repelling coating and heat-exchanger coated with composition for water-repelling coating | |
| JPH05117637A (en) | Water-repellent coating composition and heat exchanger coated with water-repellent coating composition | |
| JP7373227B2 (en) | Heat exchanger parts, heat exchangers, indoor units for air conditioners, outdoor units for air conditioners, and refrigerators | |
| JPH08285491A (en) | Surface treated aluminum fin material | |
| JPH03251692A (en) | Composition for water repellent coating and heat exchanger coated with composition for water repellent coating | |
| JPH05223481A (en) | Material of fin for heat exchanger | |
| JPH05115845A (en) | Water repellent coating composition and heat exchanger coated with the same and coating method therefor |