【考案の詳細な説明】産業上の利用分野 本考案は塩と有機物等の目的物を含有する多く
とも数十c.c.、典型的には数c.c.から1c.c.内外の微小
量試料液を、電気透析法を用いて脱塩する卓上用
に適する小型装置に関する。[Detailed description of the invention] Industrial application field The present invention is designed to collect a very small amount of a sample solution containing target substances such as salts and organic substances, at most several tens of cc, typically from several cc to 1 c.c. This invention relates to a small device suitable for tabletop use for desalination using electrodialysis.
さらに詳しくは、送液ポンプ、送液管、電気透
析槽内の液流路形状及び空気取り入れ口の組み合
わせ構成により、電気透析脱塩された試料液を排
出し目的物を収率よく回収する装置に関する。 More specifically, it is a device that discharges the electrodialyzed sample liquid and recovers the target product in high yield by using a combination configuration of a liquid pump, a liquid sending pipe, a liquid flow path shape in an electrodialysis tank, and an air intake port. Regarding.
従来から、実験室規模における化学反応により
得られた試料液から塩を効率よく分離して、目的
物を鈍度良く得たいとの要求は根強いものがあつ
た。特に、近年、高速液体クロマトグラフイー法
の発展により、多くとも数十c.c.、典型的には数c.c.
から1c.c.内外の微小量であつて、塩と目的物を含
有する試料液から効率よく脱塩し、目的物を収率
よく回収する必要性が高まつている。 BACKGROUND ART There has been a deep-rooted demand for efficiently separating salts from sample liquids obtained by chemical reactions on a laboratory scale and obtaining target substances with good speed. In particular, in recent years, with the development of high-performance liquid chromatography, at most tens of cc, typically several cc
There is an increasing need to efficiently desalt a sample solution containing salt and a target substance in small amounts inside or outside the 1c.c., and to recover the target substance in a high yield.
従来の技術 このような微小量の試料液から脱塩する方法と
しては、拡散透析法、イオン交換樹脂法などが用
いられている。拡散透析法は、セロハン等の半透
膜を用いて試料液と水を分離し、塩のみを拡散に
より膜透過させて脱塩を行う方法である。この方
法では、脱塩は可能であるが、浸透圧によつて液
量が増加し、又脱塩度の制御も難しいなどの欠点
がある。イオン交換樹脂法は、ほぼ完全な脱塩が
可能であるが、一方、液量が増加する、脱塩度の
制御が難しいなどの諸欠点があり、さらに、目的
物が一部脱塩処理によつて失なわれて収率が低下
してしまう重大な欠点がある。BACKGROUND ART Diffusion dialysis, ion exchange resin method, and the like are used as methods for desalting such a minute amount of sample liquid. Diffusion dialysis is a method in which a semipermeable membrane such as cellophane is used to separate a sample liquid from water, and only the salt is allowed to permeate through the membrane by diffusion to perform desalination. Although desalination is possible with this method, it has drawbacks such as the amount of liquid increasing due to osmotic pressure and the degree of desalination being difficult to control. Although the ion exchange resin method allows almost complete desalination, it has various drawbacks such as an increase in liquid volume and difficulty in controlling the degree of desalination. This has the serious drawback that it is lost and the yield decreases.
電気透析法は、これらの従来法に比し、液量は
殆んど変化せず、脱塩度の制御が自由で、目的物
が処理によつても失なわれにくいなど、多くの長
所を有するが、実用的には殆んど利用されていな
い。 The electrodialysis method has many advantages over these conventional methods, such as the liquid volume hardly changing, the degree of desalination can be freely controlled, and the target substance is not easily lost during processing. However, it is hardly used practically.
電気透析法において、電気透析槽内に空気を導
入する例としては、特開昭53−94277の明細書の
開示がある。これは、イオン交換膜間にガスを流
すことにより、その気泡によつて液を撹拌するこ
とを目的としている。また、電気透析槽への気泡
導入管の提案としては、特開昭53−113277の記載
がある。これも特開昭53−94277と同様に、気泡
により槽内の液撹拌を狙いとしているにすぎな
い。 In the electrodialysis method, an example of introducing air into an electrodialysis tank is disclosed in the specification of JP-A-53-94277. The purpose of this is to flow gas between the ion exchange membranes and stir the liquid using the bubbles. Furthermore, a proposal for a bubble introduction tube to an electrodialysis tank is described in JP-A-53-113277. Similar to JP-A-53-94277, this technique merely aims at stirring the liquid in the tank using air bubbles.
考案が解決しようとする問題点 前記のごとく電気透析法は、従来法と比較して
本質的に有利な点を有するにも拘らず、実用的に
利用されないのは、専ら、装置上の問題による。Problems that the invention aims to solve Although the electrodialysis method has inherent advantages compared to conventional methods, the reason why it is not put to practical use is mainly due to problems with the equipment. .
一般に電気透析法は通電面積1m2前後で数百枚
の膜を積層してなる大型の装置により、海水の濃
縮やミルクホエーの脱塩に使用されている。処理
される液は一種類であり、連続運転により大量処
理を行なう。処理液量の小さい小型の電気透析装
置も大型と同様の思想で作られるのが通常で、本
考案が対象とするごとく、多くとも数十c.c.典型的
には数c.c.から1c.c.内外の試料液を脱塩して収率よ
く回収し、ひき続いて異なる成分の試料液を脱塩
するというような機能には適さない。即ち、単に
大型装置の膜面積を小さくして対象とする液量を
減少させただけの装置では、液排出操作によつて
も透析槽内や配管内に試料液が残存してしまい、
完全には排出されないことになる。液量が多いと
きには、少量の残存は問題とならないが、本考案
が対象とするような微小量の試料液では、わずか
の残存でも、目的物の収率は大巾に低下する。 In general, electrodialysis is used to concentrate seawater and desalinate milk whey using a large device consisting of several hundred membranes stacked together with an energized area of about 1 m2 . Only one type of liquid is processed, and a large amount of liquid is processed through continuous operation. Small-sized electrodialysis machines that handle a small amount of liquid are usually made using the same concept as large-sized ones, and as the subject of this invention, the electrodialysis equipment has a capacity of at most several tens of cc, typically a few cc to 1 c.c. It is not suitable for functions such as desalting a sample liquid and recovering it with a good yield, and then desalting a sample liquid of different components. In other words, in a device where the membrane area of a large device is simply reduced to reduce the target liquid volume, sample liquid remains in the dialysis tank or piping even when the liquid is drained.
It will not be completely discharged. When the amount of liquid is large, a small amount of sample liquid remaining is not a problem, but in the case of a minute amount of sample liquid, which is the subject of the present invention, even a small amount of sample liquid remaining significantly reduces the yield of the target product.
また、一般には装置内の液の排出は手動になつ
ており、異なる組成の液をつぎつぎに脱塩するよ
うな場合は操作が煩雑なものとなる。装置内に残
存した液は、ひき続き脱塩処理を施こそうとする
異なる試料液と混合してしまい、鈍度の低下や、
場合によつては沈殿の発生をもたらすこともあ
る。 Further, in general, the liquid in the apparatus is discharged manually, and the operation becomes complicated when desalting liquids of different compositions one after another. The liquid remaining in the device will mix with different sample liquids to be desalted subsequently, resulting in a decrease in dullness and
In some cases, this may lead to the formation of precipitates.
問題点を解決するための手段 本考案は、電気透析法に用いる電気透析装置の
上記のような問題点を除去するために、電気透析
装置において特定のポンプ、チユーブ、液流路形
状と空気取り入れ口を組み合わせることにより、
装置内に空気を導入して、液排出を行ない、実用
的に利用できる、卓上型電気透析装置を提案する
ことを目的とする。Means for Solving the Problems The present invention aims to solve the above-mentioned problems of electrodialysis equipment used in electrodialysis by using specific pumps, tubes, liquid flow path shapes, and air intakes in electrodialysis equipment. By combining the mouth,
The purpose of the present invention is to propose a tabletop electrodialysis device that can be used practically by introducing air into the device and discharging liquid.
本考案は、ローラーポンプを用いて試料液を送
液する卓上型電気透析装置であつて、試料液を流
すチユーブが内径5mm以下の軟質プラスチツクス
製チユーブであり、電気透析槽内の試料液流路は
巾2cm以下で、厚さ5mm以下で、かつ流路断面積
が0.5cm2以下の一過性流路であり、かつ試料液を
流すチユーブのチユーブ端もしくはチユーブ途中
にチユーブ内への空気取入口を設けたことを要旨
とするものである。 The present invention is a table-top electrodialysis device that uses a roller pump to transport the sample liquid, and the tube through which the sample liquid flows is a soft plastic tube with an inner diameter of 5 mm or less. The channel is a transient channel with a width of 2 cm or less, a thickness of 5 mm or less, and a cross-sectional area of 0.5 cm2 or less, and there is no air flow into the tube at the end of the tube through which the sample liquid flows or in the middle of the tube. The main point is that an intake port has been provided.
実施例 以下、本考案の構成を図示の具体例にもとづい
て詳説する。Embodiments Hereinafter, the configuration of the present invention will be explained in detail based on specific examples shown in the drawings.
第1図において、1は試料液を収容するサンプ
ルビンであつて、この液中に保持される吸入口2
から軟質プラスチツクチユーブ3によつて、ロー
ラーポンプ4を経て電気透析槽5に試料液が供給
される。ローラーポンプ4は回転ローラーによつ
て軟質チユーブ3を順次に圧迫、解放をくり返す
ことによつて流体を吸引しかつ回転方向に送り出
す形式のポンプである。 In FIG. 1, 1 is a sample bottle containing a sample liquid, and an inlet 2 is held in this liquid.
A sample liquid is supplied from the soft plastic tube 3 to the electrodialysis tank 5 via a roller pump 4. The roller pump 4 is a type of pump that suctions fluid and sends it out in the rotational direction by repeatedly compressing and releasing the soft tube 3 using rotating rollers.
電気透析槽5内の試料液流路6は槽内の透析槽
間を蛇行し、この間に脱塩処理を受けた試料液は
サンプルビン7に集められる。 A sample liquid flow path 6 in the electrodialysis tank 5 meanders between the dialysis tanks in the tank, and during this time, the sample liquid that has undergone desalination treatment is collected in a sample bottle 7.
試料液を流すチユーブ3のチユーブ端もしく
は、チユーブ途中にチユーブ内への空気取入れ口
を設けることが必要である。空気取入れ口は単に
チユーブ端の吸入口2をサンプルビン1の液面か
ら離すだけのものでも良いし、特別に、チユーブ
3の途中に空気取り入れ用の弁を設ける形式でも
よい(第2図8参照)。試料液の吸い込みによる
液面の低下、もしくは一定時間経過後の弁の開放
により、チユーブ内に空気が吸い込まれ、チユー
ブ及び電気透析槽内の脱塩処理後の試料液が装置
外部へ排出されるのである。 It is necessary to provide an air intake into the tube at the end of the tube 3 through which the sample liquid flows or in the middle of the tube. The air intake port may be one that simply separates the suction port 2 at the end of the tube from the liquid level of the sample bottle 1, or it may be of a type in which a special air intake valve is provided in the middle of the tube 3 (see Fig. 2, 8). reference). Air is sucked into the tube by lowering the liquid level due to suction of the sample liquid, or by opening the valve after a certain period of time, and the sample liquid in the tube and electrodialysis tank after desalination treatment is discharged to the outside of the device. It is.
送液チユーブ3は内径5mm以下さらに望ましく
は3mm以下の軟質プラスチツクス製チユーブであ
ることが必要である。内径が5mmより大きいとチ
ユーブ内へ空気を送り込んで液を排出する操作を
行なつても液が完全には排出されずに、チユーブ
内壁に残存してしまう。また、必要な試料液量も
増加してしまう。軟質プラスチツクス製チユーブ
は、塩ビ又はシリコン製チユーブが揆水性が強く
液排出が容易で望ましい。またポンプ部分以外に
は、テフロンのごときチユーブを利用しても良
い。 The liquid feeding tube 3 needs to be a soft plastic tube with an inner diameter of 5 mm or less, more preferably 3 mm or less. If the inner diameter is larger than 5 mm, even if air is pumped into the tube to drain the liquid, the liquid will not be completely drained and will remain on the inner wall of the tube. Moreover, the required amount of sample liquid also increases. Among the soft plastic tubes, vinyl chloride or silicone tubes are preferred because they have strong water repellency and are easy to drain. Also, a tube such as Teflon may be used for parts other than the pump part.
また、ローラーポンプの関係においてもチユー
ブ内径を小さくすることにより、ポンプ部分で必
要な試料液量を小さくすることが可能で、かつ空
気を送ることもできるため、チユーブ内の液を容
易に排出できる利点がある。他の形式、たとえば
ロータリーポンプなどでは、ポンプ部分に必要な
液量が多量となり、本考案では用いることができ
ない。またポンプ内に液が残存しやすい欠点もあ
る。 In addition, in relation to roller pumps, by reducing the inner diameter of the tube, it is possible to reduce the amount of sample liquid required at the pump part, and since it is also possible to send air, the liquid in the tube can be easily drained. There are advantages. Other types, such as rotary pumps, require a large amount of fluid in the pump section and cannot be used in the present invention. Another drawback is that liquid tends to remain inside the pump.
次に電気透析槽5内の液流路6は、巾2cm以
下、厚さ5mm以下さらに好ましくは1mm以下でか
つ、断面積0.5cm2以下さらに好ましくは0.1cm2以下
であることが必要である。空気による液の排出を
完全とするためである。 Next, the liquid flow path 6 in the electrodialysis tank 5 needs to have a width of 2 cm or less, a thickness of 5 mm or less, more preferably 1 mm or less, and a cross-sectional area of 0.5 cm2 or less, more preferably 0.1 cm2 or less. . This is to ensure that the liquid is completely discharged by air.
また、目的とする試料液量が少ないことから、
膜面での充分な液撹拌を行なつて、濃度分極を防
ぎつつ、効率良く脱塩を行なうためでもある。 In addition, since the target sample volume is small,
This is also to ensure efficient desalination while preventing concentration polarization by sufficiently stirring the liquid on the membrane surface.
流路6の巾、厚さ、断面積の何れかが、これら
以上であると、液排出用の空気が片流れ等をおこ
し、液が槽内に残存してしまう。 If any of the width, thickness, or cross-sectional area of the flow path 6 is larger than these, the air for discharging the liquid will cause a one-sided flow, and the liquid will remain in the tank.
また、電気透析槽内での液撹拌が不充分となり
やすく、液PHの変化が生じることもある。さらに
は電気透析槽内に必要な試料液量も増加してしま
うことになる。 In addition, liquid stirring within the electrodialysis tank tends to be insufficient, which may result in changes in the liquid pH. Furthermore, the amount of sample liquid required in the electrodialysis tank also increases.
液流路の形状は、一過性流路であることが必要
である。ここで一過性流路とは、槽入口から出口
までの液流路が単一であつて、複数の流路に分岐
していない流路をいう。流路が複数に分岐してい
ると液排出用空気が、片流れを生じ、液排出が不
完全となりやすいからである。なお、流路は液が
垂直に流れる流路であつても良いが、水平に流れ
る流路が、液排出の点からより望ましい。 The shape of the liquid flow path needs to be a temporary flow path. Here, the transient flow path refers to a flow path that has a single liquid flow path from the tank inlet to the outlet, and that does not branch into a plurality of flow paths. This is because if the flow path is branched into a plurality of branches, the liquid discharge air tends to flow in one direction, resulting in incomplete liquid discharge. Note that the channel may be a channel in which the liquid flows vertically, but a channel in which the liquid flows horizontally is more desirable from the viewpoint of liquid discharge.
有効な通電膜面積は、できるだけ大きいことが
脱塩処理の時間効率の点から望ましい。しかし、
一方、対象とする試料液量が微小量であることか
ら、膜面積が大きすぎると、通電面全体を試料液
がいきわたらず、電流分布の不均一を生じ、安定
した処理ができなくなる恐れがある。本考案が対
象とする多くとも数十c.c.、典型的には数c.c.から1
c.c.内外の試料液量の場合、有効な通電膜面積は大
きくとも1dm2、好ましくは0.5dm2以下、さらに好
ましくは0.3dm2以下であることが望ましい。同様
に電気透析槽5内の試料液流路6の全容積は、チ
ユーブ、ポンプ部で必要な液量を考慮して、多く
とも10c.c.、好ましくは5c.c.以下、さらに好ましく
は3c.c.以下とすることが望ましい。 It is desirable that the effective current-carrying membrane area be as large as possible from the viewpoint of time efficiency of the desalting process. but,
On the other hand, since the target sample liquid volume is minute, if the membrane area is too large, the sample liquid will not be able to spread over the entire current-carrying surface, causing non-uniform current distribution, and there is a risk that stable processing will not be possible. be. This invention targets tens of cc at most, typically several cc to 1
In the case of a sample liquid volume within or outside cc, it is desirable that the effective current-carrying membrane area be at most 1 dm2 , preferably 0.5 dm2 or less, and more preferably 0.3 dm2 or less. Similarly, the total volume of the sample liquid channel 6 in the electrodialysis tank 5 is at most 10 c.c., preferably 5 c.c. or less, more preferably It is desirable that it be 3c.c. or less.
次に第2図によつて本考案の他の実施例につい
て説明する。第2図の例は第1図の連続(断続)
的な脱塩装置を回分式にしたものであるが、基本
的な構成は前記の実施例と同様であり、送液チユ
ーブ3の途中に空気取入れ用の3方弁8を有する
点と、電気透析槽5の脱塩処理液がサンプルビン
7に集められることなく、サンプルビン1に戻さ
れて排出口9としている点が異つている。この方
式は脱塩すべき塩の含有量が大きい試料液の場合
に有効である。この形式では吸入口2は常に液中
にあるので、チユーブ3中に空気を入れるための
弁8を特別に設けて、一定時間経過後に空気吸入
をスタートするか、もしくは、吸入口2を手動も
しくは自動で持ち上げることによつて、空気吸入
を行なう。もしくは弁8を設けずに、排出口9が
空気中に露出した状態でポンプを逆転させ、吸入
口2より液を排出してもよい。 Next, another embodiment of the present invention will be described with reference to FIG. The example in Figure 2 is continuous (intermittent) of Figure 1.
This is a batch-type desalination device, but its basic configuration is the same as that of the previous embodiment, except that it has a three-way valve 8 for air intake in the middle of the liquid feeding tube 3, and an electrical connection. The difference is that the desalted liquid in the dialysis tank 5 is not collected in the sample bottle 7 but is returned to the sample bottle 1 and used as an outlet 9. This method is effective when the sample liquid to be desalted has a large salt content. In this type, the suction port 2 is always in the liquid, so either a special valve 8 is provided to introduce air into the tube 3 and air suction is started after a certain period of time, or the suction port 2 is closed manually or Air is inhaled by lifting automatically. Alternatively, the liquid may be discharged from the suction port 2 by reversing the pump with the discharge port 9 exposed to the air without providing the valve 8.
作 用 装置のスタート前にはチユーブ及び電気透析槽
5内は液の希釈化等を防ぐため空気で満たされて
いることが望ましい。ポンプ作動により、チユー
ブ端から試料液が吸入されて脱塩処理がスタート
する。液面の低下もしくは一定時間経過後の空気
取り入れ弁の開放により、空気取り入れ口よりチ
ユーブ内に空気が吸入され、空気はチユーブ及び
電気透析槽内の試料液を押し出していき、装置内
の試料液を排出する。Effect: Before starting the apparatus, it is desirable that the inside of the tube and electrodialysis tank 5 be filled with air to prevent dilution of the liquid. When the pump is activated, the sample liquid is sucked in from the end of the tube and the desalting process begins. When the liquid level drops or the air intake valve opens after a certain period of time, air is sucked into the tube from the air intake port, and the air pushes out the sample liquid in the tube and electrodialysis tank, causing the sample liquid in the device to discharge.
効 果 本考案の装置により、微小量試料液の電気透析
法による収率よい脱塩が可能となる。Effects The device of the present invention enables high-yield desalination of minute amounts of sample liquid by electrodialysis.
試料液の液量は変化なく、脱塩度も任意に制御
できる。試料液中の目的物の収率が良好となり、
無駄のない処理が行なえる。また、装置内への液
の残存がないことから、装置内での腐敗等も起こ
りにくく、断続的に異なる成分の試料液を脱塩処
理するにあたつて、1回毎に装置内を洗浄する必
要性も小さくなり、試料液に残存液が混ざること
による純度低下が防止できる。さらにポンプの作
動により、空気を吸入して液を排出するから、手
動で排出操作を行なう必要がなく、装置の自動化
が容易となる。 The volume of the sample solution does not change, and the degree of desalination can also be controlled arbitrarily. The yield of the target product in the sample solution is improved,
Processing can be done without waste. In addition, since there is no residual liquid inside the device, spoilage is unlikely to occur within the device, and the inside of the device is cleaned every time when sample solutions with different components are desalted intermittently. This reduces the need to do so, and it is possible to prevent a decrease in purity due to mixing of residual liquid with the sample liquid. Furthermore, since the pump sucks in air and discharges the liquid, there is no need to perform a manual discharge operation, making it easy to automate the device.
図面は本考案の電気透析装置の構成例を示し、
第1図は連続処理形式の卓上型電気透析装置の構
成図、第2図は回分式とした他の実施例の構成図
である。 1,7……サンプルビン、2……吸入口、空気
取入口、3……送液チユーブ、4……ローラーポ
ンプ、5……電気透析槽、6……液流路、8……
弁、空気取入口、9……排出口。 The drawings show an example of the configuration of the electrodialysis device of the present invention,
FIG. 1 is a block diagram of a table-top electrodialysis apparatus of a continuous processing type, and FIG. 2 is a block diagram of another embodiment of a batch type electrodialysis apparatus. 1, 7...Sample bottle, 2...Suction port, air intake port, 3...Liquid feeding tube, 4...Roller pump, 5...Electrodialysis tank, 6...Liquid channel, 8...
Valve, air intake, 9...outlet.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP19957285UJPH0323299Y2 (en) | 1985-12-27 | 1985-12-27 |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP19957285UJPH0323299Y2 (en) | 1985-12-27 | 1985-12-27 |
| Publication Number | Publication Date |
|---|---|
| JPS62109705U JPS62109705U (en) | 1987-07-13 |
| JPH0323299Y2true JPH0323299Y2 (en) | 1991-05-21 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP19957285UExpiredJPH0323299Y2 (en) | 1985-12-27 | 1985-12-27 |
| Country | Link |
|---|---|
| JP (1) | JPH0323299Y2 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6855368B1 (en) | 2000-06-28 | 2005-02-15 | Applied Materials, Inc. | Method and system for controlling the presence of fluorine in refractory metal layers |
| US6878206B2 (en) | 2001-07-16 | 2005-04-12 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
| US6911391B2 (en) | 2002-01-26 | 2005-06-28 | Applied Materials, Inc. | Integration of titanium and titanium nitride layers |
| US6916398B2 (en) | 2001-10-26 | 2005-07-12 | Applied Materials, Inc. | Gas delivery apparatus and method for atomic layer deposition |
| US6936906B2 (en) | 2001-09-26 | 2005-08-30 | Applied Materials, Inc. | Integration of barrier layer and seed layer |
| US6951804B2 (en) | 2001-02-02 | 2005-10-04 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
| US6998579B2 (en) | 2000-12-29 | 2006-02-14 | Applied Materials, Inc. | Chamber for uniform substrate heating |
| US7022948B2 (en) | 2000-12-29 | 2006-04-04 | Applied Materials, Inc. | Chamber for uniform substrate heating |
| US7049226B2 (en) | 2001-09-26 | 2006-05-23 | Applied Materials, Inc. | Integration of ALD tantalum nitride for copper metallization |
| US7085616B2 (en) | 2001-07-27 | 2006-08-01 | Applied Materials, Inc. | Atomic layer deposition apparatus |
| US7101795B1 (en) | 2000-06-28 | 2006-09-05 | Applied Materials, Inc. | Method and apparatus for depositing refractory metal layers employing sequential deposition techniques to form a nucleation layer |
| US7115499B2 (en) | 2002-02-26 | 2006-10-03 | Applied Materials, Inc. | Cyclical deposition of tungsten nitride for metal oxide gate electrode |
| US7201803B2 (en) | 2001-03-07 | 2007-04-10 | Applied Materials, Inc. | Valve control system for atomic layer deposition chamber |
| US7208413B2 (en) | 2000-06-27 | 2007-04-24 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
| US7211144B2 (en) | 2001-07-13 | 2007-05-01 | Applied Materials, Inc. | Pulsed nucleation deposition of tungsten layers |
| US7262133B2 (en) | 2003-01-07 | 2007-08-28 | Applied Materials, Inc. | Enhancement of copper line reliability using thin ALD tan film to cap the copper line |
| US7405158B2 (en) | 2000-06-28 | 2008-07-29 | Applied Materials, Inc. | Methods for depositing tungsten layers employing atomic layer deposition techniques |
| US7439191B2 (en) | 2002-04-05 | 2008-10-21 | Applied Materials, Inc. | Deposition of silicon layers for active matrix liquid crystal display (AMLCD) applications |
| US7595263B2 (en) | 2003-06-18 | 2009-09-29 | Applied Materials, Inc. | Atomic layer deposition of barrier materials |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7501344B2 (en) | 2000-06-27 | 2009-03-10 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
| US7208413B2 (en) | 2000-06-27 | 2007-04-24 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
| US7501343B2 (en) | 2000-06-27 | 2009-03-10 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
| US7033922B2 (en) | 2000-06-28 | 2006-04-25 | Applied Materials. Inc. | Method and system for controlling the presence of fluorine in refractory metal layers |
| US6855368B1 (en) | 2000-06-28 | 2005-02-15 | Applied Materials, Inc. | Method and system for controlling the presence of fluorine in refractory metal layers |
| US7115494B2 (en) | 2000-06-28 | 2006-10-03 | Applied Materials, Inc. | Method and system for controlling the presence of fluorine in refractory metal layers |
| US7235486B2 (en) | 2000-06-28 | 2007-06-26 | Applied Materials, Inc. | Method for forming tungsten materials during vapor deposition processes |
| US7465666B2 (en) | 2000-06-28 | 2008-12-16 | Applied Materials, Inc. | Method for forming tungsten materials during vapor deposition processes |
| US7101795B1 (en) | 2000-06-28 | 2006-09-05 | Applied Materials, Inc. | Method and apparatus for depositing refractory metal layers employing sequential deposition techniques to form a nucleation layer |
| US7405158B2 (en) | 2000-06-28 | 2008-07-29 | Applied Materials, Inc. | Methods for depositing tungsten layers employing atomic layer deposition techniques |
| US7022948B2 (en) | 2000-12-29 | 2006-04-04 | Applied Materials, Inc. | Chamber for uniform substrate heating |
| US6998579B2 (en) | 2000-12-29 | 2006-02-14 | Applied Materials, Inc. | Chamber for uniform substrate heating |
| US7094680B2 (en) | 2001-02-02 | 2006-08-22 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
| US6951804B2 (en) | 2001-02-02 | 2005-10-04 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
| US7201803B2 (en) | 2001-03-07 | 2007-04-10 | Applied Materials, Inc. | Valve control system for atomic layer deposition chamber |
| US7211144B2 (en) | 2001-07-13 | 2007-05-01 | Applied Materials, Inc. | Pulsed nucleation deposition of tungsten layers |
| US6878206B2 (en) | 2001-07-16 | 2005-04-12 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
| US7085616B2 (en) | 2001-07-27 | 2006-08-01 | Applied Materials, Inc. | Atomic layer deposition apparatus |
| US7352048B2 (en) | 2001-09-26 | 2008-04-01 | Applied Materials, Inc. | Integration of barrier layer and seed layer |
| US7049226B2 (en) | 2001-09-26 | 2006-05-23 | Applied Materials, Inc. | Integration of ALD tantalum nitride for copper metallization |
| US6936906B2 (en) | 2001-09-26 | 2005-08-30 | Applied Materials, Inc. | Integration of barrier layer and seed layer |
| US7494908B2 (en) | 2001-09-26 | 2009-02-24 | Applied Materials, Inc. | Apparatus for integration of barrier layer and seed layer |
| US6916398B2 (en) | 2001-10-26 | 2005-07-12 | Applied Materials, Inc. | Gas delivery apparatus and method for atomic layer deposition |
| US7094685B2 (en) | 2002-01-26 | 2006-08-22 | Applied Materials, Inc. | Integration of titanium and titanium nitride layers |
| US7473638B2 (en) | 2002-01-26 | 2009-01-06 | Applied Materials, Inc. | Plasma-enhanced cyclic layer deposition process for barrier layers |
| US6911391B2 (en) | 2002-01-26 | 2005-06-28 | Applied Materials, Inc. | Integration of titanium and titanium nitride layers |
| US7115499B2 (en) | 2002-02-26 | 2006-10-03 | Applied Materials, Inc. | Cyclical deposition of tungsten nitride for metal oxide gate electrode |
| US7429516B2 (en) | 2002-02-26 | 2008-09-30 | Applied Materials, Inc. | Tungsten nitride atomic layer deposition processes |
| US7439191B2 (en) | 2002-04-05 | 2008-10-21 | Applied Materials, Inc. | Deposition of silicon layers for active matrix liquid crystal display (AMLCD) applications |
| US7262133B2 (en) | 2003-01-07 | 2007-08-28 | Applied Materials, Inc. | Enhancement of copper line reliability using thin ALD tan film to cap the copper line |
| US7595263B2 (en) | 2003-06-18 | 2009-09-29 | Applied Materials, Inc. | Atomic layer deposition of barrier materials |
| Publication number | Publication date |
|---|---|
| JPS62109705U (en) | 1987-07-13 |
| Publication | Publication Date | Title |
|---|---|---|
| JPH0323299Y2 (en) | ||
| Strathmann | Membrane separation processes | |
| US3821108A (en) | Reverse osmosis or ultrafiltration module | |
| RU2642794C2 (en) | Submersible flat devices for direct osmosis | |
| EP1297857A1 (en) | Dialyzate solution preparing device | |
| EP3930877B1 (en) | Production of concentrated spent dialysate | |
| US3722680A (en) | Hemodialysis apparatus | |
| CN210385508U (en) | Membrane electrodialysis equipment | |
| JP2010512997A (en) | How to process a material stream | |
| CN109052588B (en) | The removal methods and its device of heavy metal ion in a kind of marine algae extract based on electrodialytic technique | |
| CN205925449U (en) | Lactalbumin's concentrated desalination system | |
| CN211255482U (en) | Reverse osmosis device for treating industrial wastewater | |
| CN222766030U (en) | Continuous dialysis device | |
| JP2018118186A (en) | Forward osmosis membrane and water treatment system | |
| KR102314410B1 (en) | Method of Operation of Vacuum Enhanced Forward Osmosis Membrane Bioreactor | |
| EP0052008A1 (en) | Method of conducting dialyzate fluid to and from a dialysis membrane cassette and apparatus for carrying out the method | |
| CN215712409U (en) | Self-adjusting ultrapure water treatment system | |
| US4525259A (en) | Method and apparatus for electrodialysis | |
| CN206476786U (en) | Water purifier concentrated water recovery system | |
| CN112898448B (en) | Lentinan extraction system and extraction method | |
| CN213803336U (en) | Clean piece-rate system of phenylserine and glycine | |
| CN106517602A (en) | An inorganic ceramic microfiltration membrane and electrodialysis integrated device and its preparation method | |
| JPS5851906A (en) | How to treat aqueous solution | |
| JPS56118702A (en) | Treatment of ion exchange membrane | |
| CN106995250A (en) | A kind of casing processes sewage-treatment plant |