Movatterモバイル変換


[0]ホーム

URL:


JPH03175088A - Transferable sheet for laser recording - Google Patents

Transferable sheet for laser recording

Info

Publication number
JPH03175088A
JPH03175088AJP1314147AJP31414789AJPH03175088AJP H03175088 AJPH03175088 AJP H03175088AJP 1314147 AJP1314147 AJP 1314147AJP 31414789 AJP31414789 AJP 31414789AJP H03175088 AJPH03175088 AJP H03175088A
Authority
JP
Japan
Prior art keywords
material layer
coloring material
light
photoabsorbing
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1314147A
Other languages
Japanese (ja)
Inventor
Sumio Ikejiri
池尻 澄雄
Susumu Kobayashi
奨 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co LtdfiledCriticalAsahi Chemical Industry Co Ltd
Priority to JP1314147ApriorityCriticalpatent/JPH03175088A/en
Publication of JPH03175088ApublicationCriticalpatent/JPH03175088A/en
Pendinglegal-statusCriticalCurrent

Links

Landscapes

Abstract

PURPOSE:To prevent the constituent component resin of a coloring material layer and a photoabsorbing heat generating element from becoming splashed and attaching to an image receiving sheet and obtain an unfouled, sharp-toned high quality image by providing the particle diameter of a photoabsorbing heat generating element which is large than the thickness of the coloring material layer and allowing part of the volume to jut out of the surface of the color material layer. CONSTITUTION:A transfer sheet for laser recording 3 consists of a transparent support 1, a photoabsorbing heat generating element 7 having a distribution of less than 20mum particle sizes in a binder resin and a color material layer 2 containing dispersed sublimable dye 6. The particle size of at least, part of the photoabsorbing heat generating element 7 is larger than the thickness of the coloring material layer 2. In addition, part of the volume of the photoabsorbing heat generating element just out of the surface of the color material layer by 1 to 15mum. A laser beam 5 is condensed to form a focus in the interior of the color material layer 2 from the transparent support 1 side using a lens system, and subsequently the photoabsorbing heat generating element 7 becomes heated. The sublimable dye 6 in the color material layer 2 melts, spreads or sublimates to be absorbed by an image receiving sheet 4. Thus an image is recorded. As part of the photoabsorbing heat generating element 7 juts out of the surface of the color material layer 2, a gap is present between the color material layer 2 and the image receiving sheet 4 and the constituents of the color material layer 2 do not stick to the image receiving sheet 4 due to pyrolysis, hence no fouling of a recorded image is produced.

Description

Translated fromJapanese

【発明の詳細な説明】〔産業上の利用分野〕本発明は昇華型熱転写記録に関し、微細なスポット加熱
が容易でかつ高速記録可能なレーザエネルギを利用する
新たな熱転写シートである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to sublimation thermal transfer recording, and is a new thermal transfer sheet that uses laser energy to easily perform minute spot heating and enable high-speed recording.

〔従来技術〕[Prior art]

従来、熱転写記録方法として、二つの方法が提案されて
いる。
Conventionally, two methods have been proposed as thermal transfer recording methods.

その一つは熱源としてサーマルヘッド等の電気的発熱素
子を利用するサーマルプリンタによる方法であり、他の
一つは熱源としてレーザ光やキセノンランプ等の光学的
手法を利用する光プリンタによる方法である。
One is a method using a thermal printer that uses an electric heating element such as a thermal head as a heat source, and the other is a method using an optical printer that uses an optical method such as a laser beam or a xenon lamp as a heat source. .

前者は、転写シートを介して紙等の被転写体(以後、受
像紙と呼ぶ)に圧着したサーマルヘッドの発熱素子を選
択的に通電することで、転写シートの染料を溶融、拡散
または昇華させ、受像紙に吸着させて所定の画像記録を
行うものである。
The former melts, diffuses, or sublimates the dye on the transfer sheet by selectively energizing the heating element of a thermal head that is pressed onto a transfer target such as paper (hereinafter referred to as image receiving paper) via a transfer sheet. , to record a predetermined image by adsorbing it onto image-receiving paper.

一方、後者は、光吸収発熱体と染料を含む色材層を透明
支持体上に積層して構成される転写シ−ト上に、透明支
持体側からレーザ光を照射し、レーザ光が光吸収発熱体
に吸収され発熱し、その熱エネルギーで染料が溶融、拡
散または昇華し、受像紙に染料を吸着させて所定の画像
を記録するものである。
On the other hand, in the latter method, a laser beam is irradiated from the transparent support side onto a transfer sheet made by laminating a color material layer containing a light-absorbing heating element and a dye on a transparent support, and the laser light absorbs the light. The dye is absorbed by a heating element and generates heat, and the thermal energy melts, diffuses or sublimates the dye, causing the dye to be adsorbed onto the image receiving paper and recording a predetermined image.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

まず、サーマルヘッドを熱源としてより高精細、高解像
度の転写画像を記録する場合には、サーマルヘッドが高
価になること、製造上、発熱素子の大きさを微小にする
ことや発熱素子からの発生熱量を制御することが困難で
ある等の問題がある。
First of all, when recording higher-definition, high-resolution transfer images using a thermal head as a heat source, the thermal head becomes expensive, and in manufacturing, the size of the heating element must be miniaturized and the generation from the heating element must be minimized. There are problems such as difficulty in controlling the amount of heat.

また、大面積の画像記録の場合にも、大型用ラインヘッ
ドの製造が実質的に極めて困難であるといった問題があ
る。
Furthermore, even in the case of large-area image recording, there is a problem in that it is practically extremely difficult to manufacture a large-sized line head.

更に、より高速記録を目的としてサーマルヘッドに設け
られた発熱素子の発熱温度を上げると、転写フィルムの
支持体がその温度に耐えられない等の問題もある。
Furthermore, if the heat generation temperature of the heating element provided in the thermal head is increased for the purpose of higher speed recording, there are problems such as the support of the transfer film not being able to withstand the temperature.

熱源としてサーマルヘッドのかわりにレーザを用いれば
、上記の問題は解消されるが、なお新たな問題が発生す
る。
If a laser is used instead of a thermal head as a heat source, the above problem will be solved, but a new problem will still occur.

つまり、レーザ光の焦点での急激な昇温のために、転写
シートの色材層を形成するバインダ樹脂が溶融または熱
分解し、それに含まれる光吸収発熱体や炭化した樹脂が
染料転写とともに受像紙上へ飛散付着する。その結果、
画像の汚れが生じ、画質を著しく損なうことになり、ま
た画像の濃度も低下してしまう。
In other words, due to the rapid temperature rise at the focal point of the laser beam, the binder resin that forms the color material layer of the transfer sheet melts or thermally decomposes, and the light-absorbing heating element and carbonized resin contained therein receive the image along with the dye transfer. It scatters and adheres to the paper. the result,
The image becomes smudged, which significantly impairs the image quality and also reduces the density of the image.

従来の転写シートは、光吸収発熱体を含む色材層と受像
紙が密着している構造のために、画像転写の際に色材層
内の染料だけではなくその層内の構成物が受像紙上に飛
散付着していた。
Conventional transfer sheets have a structure in which the coloring material layer containing a light-absorbing heating element and the image-receiving paper are in close contact with each other, so when transferring an image, not only the dye in the coloring material layer but also the components in that layer receive the image. It was scattered and adhered to the paper.

本発明の目的は前記の問題点を解決し、色材層の構成成
分樹脂や光吸収発熱体等の受像紙上への飛散付着を防止
し、画像汚れがなく、鮮明な色調の高画質画像を得るた
めの新たな転写シートを提供することである。
The purpose of the present invention is to solve the above-mentioned problems, to prevent the constituent resin of the coloring material layer, the light-absorbing heating element, etc. from scattering and adhering to the image-receiving paper, and to produce high-quality images with clear color tones without image stains. The purpose of the present invention is to provide a new transfer sheet for obtaining.

〔課題を解決するための手段〕[Means to solve the problem]

本発明における転写シートは、色材層内の構成成分樹脂
や光吸収発熱体等の受像紙上への飛散付着を防ぐために
、色材層のバインダ樹脂中に分散している光吸収発熱体
の全て、若しくは一部のものの粒径が1〜20 pmで
、これが色材層と受像紙との間にスペースを生ずるよう
に色材層表面に体積の一部が突出しているものである。
The transfer sheet in the present invention includes all of the light-absorbing heat-generating elements dispersed in the binder resin of the coloring material layer in order to prevent the constituent resins and light-absorbing heat-generating elements in the coloring material layer from scattering and adhering onto the image receiving paper. , or some of them have a particle size of 1 to 20 pm, and a part of the volume protrudes from the surface of the coloring material layer so as to create a space between the coloring material layer and the image receiving paper.

すなわち、本発明は(1)透明支持体と、バインダ樹脂内に粒径20μm以
下の粒度分布を有する光吸収発熱体と昇華性染料とを分
散含有せしめてなる色材層とから成り、少くとも一部の
光吸収発熱体の粒径は色材層の厚さよりも大であり、そ
の体積の一部を1〜15μm色材層表面から突出させて
いることを特徴とするレーザ記録用転写シート(2)透明支持体と、バインダ樹脂内に粒径20μm以
下の粒度分布を有する光吸収発熱体と昇華性染料とを分
散含有せしめてなる色材層とから成り、かつ、粒径1〜
20μmの間で分布を有する光吸収発熱体は色材層中0
.1〜30重量%であり、しかも少くとも一部の光吸収
発熱体の粒径は色材層の厚さより大であり、その体積の
一部を1〜15μm色材層表面から突出させていること
を特徴とするレーザ記録用転写シートである。
That is, the present invention comprises (1) a transparent support and a coloring material layer comprising a binder resin containing a light-absorbing heating element having a particle size distribution of 20 μm or less and a sublimable dye dispersed therein; A transfer sheet for laser recording, characterized in that the particle size of some of the light-absorbing heating elements is larger than the thickness of the coloring material layer, and a part of the volume protrudes from the surface of the coloring material layer by 1 to 15 μm. (2) Consisting of a transparent support and a coloring material layer comprising a binder resin containing a light-absorbing heating element having a particle size distribution of 20 μm or less and a sublimable dye dispersed therein, and having a particle size of 1 to 1.
The light absorbing heating element having a distribution of 20 μm is 0 in the coloring material layer.
.. 1 to 30% by weight, and at least part of the particle size of the light-absorbing heating element is larger than the thickness of the coloring material layer, with a part of the volume protruding from the surface of the coloring material layer by 1 to 15 μm. This is a laser recording transfer sheet characterized by the following.

以下、図面に基いて本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail based on the drawings.

第1図は本発明のレーザ記録用転写シートの断面図であ
る。
FIG. 1 is a sectional view of the laser recording transfer sheet of the present invention.

透明支持体1上に色材層2が形成されている層構造を威
している。
A layered structure in which a coloring material layer 2 is formed on a transparent support 1 is used.

透明支持体lは色材層2を支持する働きを威す機械的強
さを有し、その材質は光透過性で耐熱性を有し、かつ、
色材層との接着性を有するものであれば良い。形状は目
的に応じて特に制限はないが、通常、フィルム状、シー
ト状などであれば良い。
The transparent support l has mechanical strength to support the coloring material layer 2, and its material is light-transmissive and heat-resistant, and
Any material may be used as long as it has adhesive properties with the coloring material layer. There is no particular restriction on the shape depending on the purpose, but it may be normally in the form of a film, sheet, etc.

材料として目的に応じて広く選択できるが、例えば、プ
ラスチックフィルム、ガラス、紙等が使用できる。
The material can be selected from a wide range depending on the purpose, and for example, plastic film, glass, paper, etc. can be used.

ポリエチレンテレフタレー) (PET)や芳香族ボリ
アミド(アラミド)等の透明フィルムが好ましい。また
、材料の厚さについても特に限定を受けないが、製造上
及び使用上の問題から、通常、2〜75μm、好ましく
は2〜20μm程度である。
Transparent films such as polyethylene terephthalate (PET) and aromatic polyamide (aramid) are preferred. The thickness of the material is also not particularly limited, but due to manufacturing and usage issues, it is usually about 2 to 75 μm, preferably about 2 to 20 μm.

色材N2は、光吸収発熱体、昇華性染料およびバインダ
樹脂で構成されており、光吸収発熱層で発生した熱エネ
ルギーにより、昇華性染料が溶融、拡散もしくは昇華し
て、受像紙に移行転写し画像形成を行う。
Coloring material N2 is composed of a light-absorbing heat-generating element, a sublimable dye, and a binder resin. The sublimable dye is melted, diffused, or sublimated by the thermal energy generated in the light-absorbing heat-generating layer, and is transferred and transferred to the image receiving paper. and performs image formation.

本発明に用い得るレーザ光は紫外光域、赤外光域及び可
視光域のレーザである。
Laser beams that can be used in the present invention include those in the ultraviolet, infrared, and visible light regions.

光吸収発熱機能を威す材料としては、いわゆる光吸収材
料であれば全て用いることが出来るが、特に熱源として
半導体レーザを用いる場合には半導体レーザの発振波長
に吸収を持つ物質としてカーボンブラック、グラファイ
ト、又はフタロシアニン系、ジオチールニッケル錯体系
、ナフトキノン・アントラキノン系、シアニン系等の色
素などが挙げられる。
All so-called light-absorbing materials can be used as materials that have a light-absorbing and heat-generating function, but especially when using a semiconductor laser as a heat source, carbon black and graphite can be used as substances that absorb at the oscillation wavelength of the semiconductor laser. or phthalocyanine-based, diothylnickel complex-based, naphthoquinone/anthraquinone-based, cyanine-based dyes, and the like.

なかでも安価で人手し易く熱変換率の良いカーボンブラ
ックが適当である。
Among them, carbon black, which is inexpensive, easy to handle, and has a good heat conversion rate, is suitable.

光吸収発熱体の総配合量は目的、材料の種類などにより
異るが光吸収率が50%以上になるように配合する。例
えば、色材層中の総配合量は2〜50重量%がよい。カ
ーボンブラックの例でも、この範囲が好ましい。
The total amount of the light-absorbing heating element varies depending on the purpose, type of material, etc., but it is blended so that the light absorption rate is 50% or more. For example, the total content in the coloring material layer is preferably 2 to 50% by weight. This range is also preferred in the case of carbon black.

光吸収率は赤外分光光度計により測定する。Light absorption rate is measured using an infrared spectrophotometer.

また色材N2に用いるバインダ樹脂は、昇華性染料を受
像紙に移行拡散し易くするために50°C以上150 
’C以下のガラス転移温度を有し、染料と親和性があり
、光吸収発熱体を分散状態で保持することが出来る樹脂
を用いることが適当である。
In addition, the binder resin used for coloring material N2 is heated at a temperature of 50°C or higher and 150°C to facilitate the transfer and diffusion of the sublimable dye to the receiving paper.
It is appropriate to use a resin that has a glass transition temperature of 'C or lower, has an affinity for dyes, and can hold the light-absorbing heating element in a dispersed state.

バインダ樹脂のガラス転移塩度が50゛c未満であると
、分散している昇華性染料が経時的に凝集し、析出して
くるので、転写シートの耐候性に問題が生じることと、
画像転写時のかぶりの原因になるため適当でない。
If the glass transition salinity of the binder resin is less than 50°C, the dispersed sublimable dye will aggregate and precipitate over time, causing problems with the weather resistance of the transfer sheet.
This is not suitable because it causes fogging during image transfer.

また、ガラス転移温度が150°Cを超えると、昇華性
染料の転写に高い熱エネルギーが必要となり、記録感度
の点から好ましくない。
Furthermore, if the glass transition temperature exceeds 150° C., high thermal energy is required to transfer the sublimable dye, which is undesirable from the viewpoint of recording sensitivity.

更に、染料と樹脂の親和性、相溶性が良くないと、染料
が析出したり、結晶化してしまう虞れがあるため、経時
安定性のためには染料と親和性のある樹脂を用いる方が
よい。
Furthermore, if the affinity and compatibility between the dye and the resin is not good, there is a risk that the dye will precipitate or crystallize, so for stability over time it is better to use a resin that has an affinity for the dye. good.

色材層2に用いる樹脂として適当なものは、例えば、ポ
リビニルブチラール、セルロース誘導体、ポリエステル
、ポリカーボネート、ポリアクリレート、ポリスチレン
なとである。
Suitable resins for use in the coloring material layer 2 include, for example, polyvinyl butyral, cellulose derivatives, polyester, polycarbonate, polyacrylate, and polystyrene.

なお、昇華性染料としては一般に知られている昇華性染
料を用いるが好ましくは分散染料である。
In addition, as the sublimable dye, generally known sublimable dyes are used, but preferably disperse dyes are used.

熱昇華温度、色相、耐候性、バインダ樹脂との相溶性等
を考慮して選択するが、特に分子量が300前後のもの
が適当な昇華特性を有し、また、熱昇華温度あるいは融
点が100〜200°Cであれば望ましい。
The selection is made taking into account the thermal sublimation temperature, hue, weather resistance, compatibility with the binder resin, etc., but in particular those with a molecular weight of around 300 have suitable sublimation characteristics, and those with a thermal sublimation temperature or melting point of 100~ A temperature of 200°C is desirable.

例えば、アントラキノン系、アゾ系、ナフトキノン系、
ポリメチン系等の昇華性染料が適当である。
For example, anthraquinones, azos, naphthoquinones,
Sublimable dyes such as polymethine are suitable.

昇華性染料の配合量は通常、色材層中10〜60、好ま
しくは20〜50重量%にするのがよい。
The content of the sublimable dye in the coloring material layer is usually 10 to 60% by weight, preferably 20 to 50% by weight.

次に光吸収発熱体及び昇華性染料を前記バインダ樹脂中
に分散させる方法としては、バインダ樹脂が溶解してい
る溶媒中でボールミルまたはペイントシェーカー等を用
いて溶解、又は分散させる方法がある。
Next, as a method for dispersing the light-absorbing heating element and the sublimable dye in the binder resin, there is a method of dissolving or dispersing the binder resin in a solvent using a ball mill, a paint shaker, or the like.

特にここでは、色材層中の光吸収発熱体の分散状態の違
い、すなわち、粒度分布の違いにより転写画像の画質が
異なることを発見した。その分散方法の例を述べると1)分散能力の異なる機器を用いることにより粒度分布
をコントロールする。
In particular, we discovered that the image quality of transferred images differs depending on the dispersion state of the light-absorbing heating element in the coloring material layer, that is, the particle size distribution. Examples of the dispersion method are as follows: 1) Particle size distribution is controlled by using equipment with different dispersion capabilities.

2) 同一機器を用いて分散時間を変数とすることによ
り粒度分布をコントロールする。
2) Control the particle size distribution by using the same equipment and making the dispersion time a variable.

3)粒径の異なる複数の光吸収発熱体を用いることによ
り粒度分布をコントロールする。
3) Control particle size distribution by using multiple light-absorbing heating elements with different particle sizes.

などである。etc.

いずれかの方法を用いることにより、粒径1〜20μm
の間で分布を有する光吸収発熱体が0.1〜30重量%
の割合で色材層中に分布する状態になるように調製でき
る。この光吸収発熱体が光吸収による発熱作用と共に被
転写体と色材層とのスペーサ粒子としても作用する。
By using either method, the particle size is 1 to 20 μm.
The light absorbing heating element has a distribution between 0.1 and 30% by weight.
It can be adjusted so that it is distributed in the coloring material layer at a ratio of . This light-absorbing heating element not only generates heat by absorbing light but also functions as a spacer particle between the transfer target and the coloring material layer.

色材層の膜厚より大の粒径部分を含有する粒度分布を持
つ光吸収発熱体であれば通常の塗布法すなわちグラビア
、ワイヤバー、アプリケータ等により、スペーサ効果の
ある色材層を形成できる。
If the light-absorbing heating element has a particle size distribution that includes a particle size portion larger than the film thickness of the coloring material layer, a coloring material layer with a spacer effect can be formed using normal coating methods, such as gravure, wire bar, applicator, etc. .

ただし、材料調合における分散混合中に生じる剪断力に
より光吸収材料が破壊され、つぶされて微粒化するよう
な場合は不都合なので時間のコントロールなどにより粒
子の原形をとどめる程度で分散混合する。
However, it is inconvenient if the light-absorbing material is destroyed and crushed into fine particles due to the shearing force generated during dispersion mixing during material preparation, so the dispersion and mixing is carried out to the extent that the original shape of the particles is maintained by controlling the time.

ここで色材N2の厚さは0.3〜10μm、好ましくは
0.5〜3μm程度が望ましいので、光吸収発熱体の粒
径は1〜20μm、好ましくは2〜15μm、更に好ま
しくは3〜10μm粒径でかつ、色材層中に占める割合
が0.1〜30重量%、好ましくは0.5〜20重量%
、更に好ましくは2〜10重量%で分布している場合が
よい。
Here, the thickness of the coloring material N2 is desirably about 0.3 to 10 μm, preferably about 0.5 to 3 μm, so the particle size of the light absorption heating element is 1 to 20 μm, preferably 2 to 15 μm, more preferably 3 to 3 μm. The particle size is 10 μm and the proportion in the coloring material layer is 0.1 to 30% by weight, preferably 0.5 to 20% by weight.
, more preferably 2 to 10% by weight.

色材層表面から少(とも一部の前記光吸収発熱体の体積
の一部が突出する構成が得られれば良い。
It is only necessary to obtain a structure in which at least a portion of the volume of some of the light-absorbing heating elements protrudes from the surface of the coloring material layer.

光吸収発熱体の粒径があまりに大きいものだけで構成さ
れると色材層厚みに対して光吸収率すなわちレーザエネ
ルギのトラップ率が低く、不均一になり記録エネルギの
無駄になるため、粒径分布として1μm以上の光吸収発
熱体は一定の光吸収率例えば50%以上、が色材層内で
均一に得られるように適量分散含有させる。また、20
μmを超える粒径をもつ光吸収発熱体が含まれると、転
写シートと被転写体との間の隙間が大きくなりすぎるた
め、被転写体上に昇華性染料が移行し難くなりあまり好
ましくないため、粒径が20μm以下の光吸収発熱体を
用いる等、混合分散の際は粒径コントロールを行う。ス
ペーサとして機能するため、これらの粒子のうち少くと
も一部が、色材層表面からその体積の一部を1〜15μ
m、好ましくは5〜10μm程度突出させるのがよい。
If the light-absorbing heat-generating element is composed only of particles whose particle size is too large, the light absorption rate, that is, the trapping rate of laser energy, will be low relative to the thickness of the coloring material layer, resulting in unevenness and wasted recording energy. The light-absorbing heating element having a diameter of 1 μm or more is dispersed and contained in an appropriate amount so that a certain light absorption rate, for example, 50% or more, can be uniformly obtained within the coloring material layer. Also, 20
If a light-absorbing heating element with a particle size exceeding μm is included, the gap between the transfer sheet and the transferred object becomes too large, making it difficult for the sublimable dye to migrate onto the transferred object, which is not very desirable. The particle size is controlled during mixing and dispersion, such as by using a light-absorbing heating element with a particle size of 20 μm or less. In order to function as a spacer, at least some of these particles extend a portion of their volume from the surface of the coloring material layer by 1 to 15 μm.
The protrusion is preferably about 5 to 10 μm.

また、粒径1μm未満の光吸収発熱体は本発明の目的を
好ましく達成できる範囲内で存在させ得る。つまり一定
の光吸収率、例えば、50%以上、より好ましくは80
%以上、を色材層内で均一に得られるように適量分散含
有させることができる。
Furthermore, light-absorbing heating elements having a particle size of less than 1 μm may be present within a range that can preferably achieve the object of the present invention. That is, a certain light absorption rate, for example, 50% or more, more preferably 80%
% or more can be dispersed and contained in an appropriate amount so as to be uniformly obtained within the coloring material layer.

50%未満のレーザエネルギしか利用することが出来な
ければ、記録エネルギのロスになることがある。
If less than 50% of the laser energy is available, there may be a loss of recording energy.

なお色材層の光吸収発熱体の分散方法については、本発
明で必要とする粒度分布が得られれば上記に示す方法に
限らずとも良い。
Note that the method for dispersing the light-absorbing heating element in the coloring material layer is not limited to the method described above as long as the particle size distribution required by the present invention can be obtained.

光吸収発熱体の粒度分布は5μm程度までの粒子が50
重量%以上、好ましくは70重量%以上の割合で存在し
ており、5μmを超える粒径をもつ粒子、特に粒径10
μm以上は50重量%未満、好ましくは20重量%以下
で存在している場合がよい。また粒径1μm未満の粒子
が99.5重量%以上存在すると、十分なスペーサ効果
を生み出すことができないことがある。
The particle size distribution of the light-absorbing heating element is 50 particles up to about 5 μm.
Particles present in an amount of at least 70% by weight, preferably at least 70% by weight, and having a particle size of more than 5 μm, in particular a particle size of 10
Pm or more may be present in an amount of less than 50% by weight, preferably 20% by weight or less. Furthermore, if 99.5% by weight or more of particles with a particle size of less than 1 μm are present, a sufficient spacer effect may not be produced.

光吸収発熱体の粒度分布の測定は、コールタ−カウンタ
ー法による。色材層を適当な溶媒に溶かしインク状に希
釈した後であれば通常のコールタ−カウンター法による
測定法が適用できる。
The particle size distribution of the light-absorbing heating element is measured by the Coulter counter method. After the coloring material layer is dissolved in a suitable solvent and diluted into ink form, a conventional Coulter counter method can be applied.

これにより粒子径と体積比又は重量比は容易に求められ
る。
Thereby, the particle diameter and volume ratio or weight ratio can be easily determined.

このような色材層2に、微細なスポット状のレーザ光線
が照射されると、急激な発熱現象が生じるが、色材層2
が溶融したり、熱分解しても付着物、熱分解物などによ
る転写画像の欠陥や汚染を引き起こすことはない。
When such a coloring material layer 2 is irradiated with a fine spot-shaped laser beam, a sudden heat generation phenomenon occurs, but the coloring material layer 2
Even if it melts or thermally decomposes, it will not cause defects or stains on the transferred image due to deposits or thermal decomposition products.

ここで、色材層2が透明支持体1に対し接着機能を併有
する場合は、特別な処理は必要ないが、接着機能が弱い
か、全くない場合には、別途透明な接着剤によって両者
を接着させることが必要である。
Here, if the coloring material layer 2 also has an adhesion function to the transparent support 1, no special treatment is necessary, but if the adhesion function is weak or not present at all, a separate transparent adhesive is used to bond the two. It is necessary to adhere it.

接着剤としてはエポキシ系やウレタン系等の接着剤が用
いられる。
As the adhesive, an epoxy adhesive, a urethane adhesive, or the like is used.

本発明の作用をその画像記録方法に沿って説明する。The operation of the present invention will be explained along with its image recording method.

第1図は本発明の画像記録シートの断面の模式図であり
、第2図は本発明の画像記録方法を模式的に示した概略
図である。
FIG. 1 is a schematic cross-sectional view of the image recording sheet of the present invention, and FIG. 2 is a schematic diagram schematically showing the image recording method of the present invention.

通常のレンズ系により透明支持体1側からのレーザ光5
が色材層2の内部で焦点を結ぶようにする。3は転写シ
ートを示す。この焦点において光吸収発熱体7がレーザ
ー光を吸収し、発熱する。
Laser light 5 is emitted from the transparent support 1 side using a normal lens system.
is focused inside the coloring material layer 2. 3 indicates a transfer sheet. At this focal point, the light absorbing heating element 7 absorbs the laser beam and generates heat.

生じた熱エネルギーにより色材層2内の昇華性染料6を
溶融、拡散または昇華せしめられ、受像紙4に吸着され
、画像記録が行われる。8は昇華性染料による記録画像
を示す。
The generated thermal energy causes the sublimable dye 6 in the color material layer 2 to be melted, diffused or sublimated, and is adsorbed onto the image receiving paper 4, thereby recording an image. 8 shows an image recorded with sublimable dye.

光吸収発熱体は1〜20μmの粒径をもつものが色材層
中に混合分布しており、色材層表面から少くともその一
部のものの体積の一部が突出しているため、受像紙4と
の間に数ミクロンの隙間すなわちスペースができ、この
ため、レーザ加熱により色材N2内の構成物が熱分解な
どを生じても受像紙4には付着せず、記録画像を汚染す
ることはない。
The light-absorbing heating elements have a particle size of 1 to 20 μm and are mixed and distributed in the coloring material layer, and at least a part of the volume of the light-absorbing heating elements protrudes from the surface of the coloring material layer. A gap or space of several microns is created between the coloring material N2 and the coloring material N2, so that even if the components in the coloring material N2 undergo thermal decomposition due to laser heating, they do not adhere to the image receiving paper 4 and contaminate the recorded image. There isn't.

ここで、転写シートは薄膜であるから、横方向の熱拡散
は少なく、レーザ照射スポットに応じて微小なドツト(
点)を記録することが可能であり、高速記録と同時に高
解像度画像を記録することもできる。
Here, since the transfer sheet is a thin film, there is little heat diffusion in the lateral direction, and minute dots (
It is possible to record high-speed recording and high-resolution images at the same time.

〔発明の効果〕〔Effect of the invention〕

本発明の感熱記録用転写シートは、熱源としてレーザを
用いるため、転写シートと熱源とは非接触で染料を受像
紙に転写できるため取扱が簡単である。
Since the transfer sheet for thermal recording of the present invention uses a laser as a heat source, the dye can be transferred to the image-receiving paper without contact between the transfer sheet and the heat source, making it easy to handle.

また、発生熱量はレーザの照射量と色材層に含有される
光吸収発熱体の材料で制御でき、高速かつ高解像度の画
像記録が可能である。
Furthermore, the amount of heat generated can be controlled by the amount of laser irradiation and the material of the light-absorbing heating element contained in the coloring material layer, making it possible to record images at high speed and high resolution.

更に、色材層中の光吸収発熱体が生み出す効果により、
色材層中の無用の物質は受像紙上に飛散付着せず、昇華
性染料のみが転写され、汚れがなく、きれいでより鮮明
な画像が形成できる。
Furthermore, due to the effect produced by the light-absorbing heating element in the coloring material layer,
Unnecessary substances in the coloring material layer do not scatter and adhere to the image-receiving paper, and only the sublimable dye is transferred, making it possible to form clean, clearer images without stains.

〔実施例〕〔Example〕

以下、実施例に基いて本発明を説明する。The present invention will be explained below based on Examples.

実施例1光吸収発熱体として2種類のカーボンブラックを用いた
実施例を示す。
Example 1 An example is shown in which two types of carbon black are used as light-absorbing heating elements.

色材層のバインダー樹脂としては熱可塑性樹脂であるポ
リビニル系ブチラール樹脂を用いた。
Polyvinyl butyral resin, which is a thermoplastic resin, was used as the binder resin for the coloring material layer.

材料の調製法を以下に示す。The method for preparing the material is shown below.

カーボンブラック;米キャボット社製、品名:ELFT
EX8、粒子径:27μmモード 2.5g(色材層中
25重量%)トリシアノ系昇華性染料;3.5gポリビニルブチラール;積木化学製、品名:ニレツクB
、BX−1、重合度: 1700  3.5 gメチル
エチルケトン;  45.0gトルエン;       45.Og株式会社エイシン製、(振動数:535rpm)のペイ
ントシェーカーを用いて一昼夜分散混合させた。
Carbon black; manufactured by Cabot, Inc., product name: ELFT
EX8, particle size: 27μm mode 2.5g (25% by weight in coloring material layer) Tricyano sublimable dye; 3.5g Polyvinyl butyral; manufactured by Block Chemical Co., Ltd., product name: Niretsu B
, BX-1, degree of polymerization: 1700 3.5 g methyl ethyl ketone; 45.0 g toluene; 45. Using a paint shaker manufactured by Eishin Co., Ltd. (frequency: 535 rpm), the mixture was dispersed and mixed all day and night.

さらに日本カーボン製(銘柄S ICB系、粒径:5μ
−前後)カーボンマイクロビーズ0.5g(色材層中5
重量%)を加え、ペイントシェーカーを用いて5時間分
散混合させた。
In addition, made by Nippon Carbon (brand SICB series, particle size: 5μ)
- before and after) carbon microbeads 0.5g (5 in color material layer)
% by weight), and the mixture was dispersed and mixed for 5 hours using a paint shaker.

この塗液をPET製5μm厚の透明支持体上にグラビア
コータで乾燥膜要約0.8μmとなるように塗布・乾燥
することで、目的の転写シートが得られる。
The desired transfer sheet is obtained by applying and drying this coating liquid onto a transparent support made of PET with a thickness of 5 μm using a gravure coater so that the dry film thickness becomes 0.8 μm.

得られた転写シートの色材層と受像紙とを重ね、パワー
36mw、発振波長810nmの半導体レーザ照射によ
る転写実験を行ったところ、受像紙には飛散付着物がな
くマゼンタ色の鮮明なベタ画像が最高濃度1.8まで記
録できた。
When the color material layer of the obtained transfer sheet and the image receiving paper were overlapped and a transfer experiment was conducted by irradiating a semiconductor laser with a power of 36 mW and an oscillation wavelength of 810 nm, there was no scattered deposit on the image receiving paper and a clear solid magenta image was obtained. was able to record up to a maximum density of 1.8.

比較例1光吸収発熱体として下記の1種類のカーボンブラックを
用いたこと以外は実施例1と全て同一の条件を行った例
を示す。
Comparative Example 1 An example was shown in which all the same conditions as in Example 1 were carried out except that one type of carbon black below was used as the light-absorbing heating element.

カーボンブラック;米キャボット社製、品名二ELFT
EX8、粒子径:27uraモード 3.0g(色材層
中3帽1%〉得られた転写シートの色材層と受像紙とを重ね、パワー
36mw、発振波長810nmの半導体レーザ照射によ
る転写実験を行ったところ、受像紙には色材層の熱分解
物らしきものが付着し、マゼンタ色のベタ画像濃度が最
大でも1.0までしか記録できなかった。
Carbon black; manufactured by Cabot, Inc., product name 2ELFT
EX8, particle size: 27 ura mode, 3.0 g (1% in the coloring material layer) The coloring material layer of the obtained transfer sheet and the image receiving paper were overlapped, and a transfer experiment was performed using semiconductor laser irradiation with a power of 36 mw and an oscillation wavelength of 810 nm. When this was done, what appeared to be thermally decomposed products of the coloring material layer adhered to the image-receiving paper, and the magenta solid image density could only be recorded at a maximum of 1.0.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のレーザ記録用転写シートの断面の模式
図であり、第2図は本発明の画像記録方法を模式的に示
した概念図である。1・・・・・・透明支持体、2・・・・・・色材層、3
・・・・・・転写シート、4・・・・・・受像紙、5・
・・・・・レーザ光、6・・・・・・昇華性染料、7・
・・・・・光吸収発熱体、8・・・・・・記録画像。
FIG. 1 is a schematic cross-sectional view of a transfer sheet for laser recording of the present invention, and FIG. 2 is a conceptual diagram schematically showing the image recording method of the present invention. 1...Transparent support, 2...Coloring material layer, 3
...Transfer sheet, 4... Image receiving paper, 5.
...Laser light, 6...Sublimable dye, 7.
. . . Light absorption heating element, 8 . . . Recorded image.

Claims (1)

Translated fromJapanese
【特許請求の範囲】1、透明支持体と、バインダ樹脂内に粒径20μm以下
の粒度分布を有する光吸収発熱体と昇華性染料とを分散
含有せしめてなる色材層とから成り、少くとも一部の光
吸収発熱体の粒径は色材層の厚さよりも大であり、その
体積の一部を1〜15μm色材層表面から突出させてい
ることを特徴とするレーザ記録用転写シート。2、透明支持体と、バインダ樹脂内に粒径20μm以下
の粒度分布を有する光吸収発熱体と昇華性染料とを分散
含有せしめてなる色材層とから成り、かつ、粒径1〜2
0μmの間で分布を有する光吸収発熱体は色材層中0.
1〜30重量%であり、しかも少くとも一部の光吸収発
熱体の粒径は色材層の厚さより大であり、その体積の一
部を1〜15μm色材層表面から突出させていることを
特徴とするレーザ記録用転写シート。
[Scope of Claims] 1. Consisting of a transparent support and a coloring material layer containing a light-absorbing heating element having a particle size distribution of 20 μm or less and a sublimable dye dispersed in a binder resin, at least A transfer sheet for laser recording, characterized in that the particle size of some of the light-absorbing heating elements is larger than the thickness of the coloring material layer, and a part of the volume protrudes from the surface of the coloring material layer by 1 to 15 μm. . 2. Consisting of a transparent support and a coloring material layer comprising a binder resin containing a light-absorbing heating element having a particle size distribution of 20 μm or less and a sublimable dye dispersed therein, and having a particle size of 1 to 2
The light absorbing heating element having a distribution between 0 μm and 0 μm in the coloring material layer.
1 to 30% by weight, and at least part of the particle size of the light-absorbing heating element is larger than the thickness of the coloring material layer, with a part of the volume protruding from the surface of the coloring material layer by 1 to 15 μm. A transfer sheet for laser recording characterized by the following.
JP1314147A1989-12-051989-12-05Transferable sheet for laser recordingPendingJPH03175088A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP1314147AJPH03175088A (en)1989-12-051989-12-05Transferable sheet for laser recording

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP1314147AJPH03175088A (en)1989-12-051989-12-05Transferable sheet for laser recording

Publications (1)

Publication NumberPublication Date
JPH03175088Atrue JPH03175088A (en)1991-07-30

Family

ID=18049795

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP1314147APendingJPH03175088A (en)1989-12-051989-12-05Transferable sheet for laser recording

Country Status (1)

CountryLink
JP (1)JPH03175088A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
EP0850779A1 (en)*1996-12-271998-07-01Omron CorporationMethod of marking an object with a laser beam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
EP0850779A1 (en)*1996-12-271998-07-01Omron CorporationMethod of marking an object with a laser beam
US6132818A (en)*1996-12-272000-10-17Omron CorporationMethod of marking with laser beam

Similar Documents

PublicationPublication DateTitle
DE68913675T2 (en) Dye-receiving element containing spacer particles in laser-induced thermal dye transfer.
JPH0665514B2 (en) Spacer bead layer for dye-donor element used for laser thermal dye transfer
JPH06210966A (en)Single-color dyestuff donor device for laser inductive thermal dyestuff transfer
JP2648568B2 (en) Method for forming dye ablation image
JP2908212B2 (en) Multicolor multilayer dye-donor element for laser-induced thermal dye transfer
JP2680253B2 (en) Multicolor multilayer dye-donor element for laser-induced thermal dye transfer
JP3437504B2 (en) Thermal transfer sheet
JPH07102742B2 (en) Method for forming laser-induced thermal dye transfer image
JP2763720B2 (en) Method for increasing the adhesion of spacer beads to dye-donor or dye-receiver elements used in laser-induced thermal dye transfer
JPH03175088A (en)Transferable sheet for laser recording
JP2608379B2 (en) Dye-donor element for laser-induced thermal dye transfer
JP2000141891A (en)Laser ablative recording element
JPH02253988A (en) Thermal transfer sheet for laser recording and image recording method using the same
JPH06206385A (en)Dyestuff donor device for heat sensitive dyestuff transfer
JP2637688B2 (en) Multicolor dye-donor element for laser-induced thermal dye transfer
US5578549A (en)Single-sheet process for obtaining multicolor image using dye-containing beads
JP2807155B2 (en) Dye receiving element for thermal dye transfer
JPS6360788A (en) discharge transfer recording medium
JPH0566272B2 (en)
JPH071751A (en)Laser thermal dye transfer using reverse light exposure
JPH02175292A (en)Sublimable heat transfer recording medium and heat transfer recording method
JPH02266985A (en) Thermal transfer sheet for laser recording and image recording method using the same
JP2000255164A (en)Image forming method
JPH0280290A (en) Dye sublimation thermal transfer recording media
JPS6322684A (en)Heat-meltable transfer ink sheet

[8]ページ先頭

©2009-2025 Movatter.jp