Movatterモバイル変換


[0]ホーム

URL:


JPH03136636A - Position detecting device of medical capsule - Google Patents

Position detecting device of medical capsule

Info

Publication number
JPH03136636A
JPH03136636AJP26704389AJP26704389AJPH03136636AJP H03136636 AJPH03136636 AJP H03136636AJP 26704389 AJP26704389 AJP 26704389AJP 26704389 AJP26704389 AJP 26704389AJP H03136636 AJPH03136636 AJP H03136636A
Authority
JP
Japan
Prior art keywords
capsule
ultrasonic
position detecting
switching
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26704389A
Other languages
Japanese (ja)
Inventor
Koji Taguchi
耕司 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co LtdfiledCriticalOlympus Optical Co Ltd
Priority to JP26704389ApriorityCriticalpatent/JPH03136636A/en
Publication of JPH03136636ApublicationCriticalpatent/JPH03136636A/en
Pendinglegal-statusCriticalCurrent

Links

Classifications

Landscapes

Abstract

PURPOSE:To obtain a device safe to living body even if it is used for a long time and capable of precisely detecting position of capsule by receiving a position detecting ultrasonic wave from a capsule for detecting various information within a body cavity in three or more of three-dimensionally different external positions. CONSTITUTION:The control part 33 of a position detecting part II inputs a switching pulse to a communication part 32 at a fixed timing and transmits a switching wave from an antenna 17. This wave is received by a switching circuit 30 in a capsule I, which circuit drives a position detecting ultrasonic transmitting oscillator 31 and generates a position detecting ultrasonic pulse from a living body. This pulse is received by position detecting oscillators A, B, C externally situated in at least three three-dimensionally different positions. Each time between the received time of each signal and the generating time of the switching pulse is calculated in a calculating part 35, and the resulting position is processed by a three-dimensional graphic processing part 36 and three-dimensionally indicated on a monitor with the positions of the oscillators A, B, C situated on the body surface as the standard.

Description

Translated fromJapanese

【発明の詳細な説明】[産業上の利用分野]本発明は位置検出用装置に関し、詳細には体腔内にある
医用カプセルの位置を検出するための装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a position detection device, and more particularly to a device for detecting the position of a medical capsule within a body cavity.

[従来の技術]生体内に挿入された医用カプセルの位置をモニタするに
は、X線による透視法または超音波による断層像を得る
方法が考えられる。
[Prior Art] In order to monitor the position of a medical capsule inserted into a living body, a method of obtaining a tomographic image using X-ray fluoroscopy or ultrasound can be considered.

[発明が解決しようとする課題]しかしながら、前者の方法では長時間または何回かのX
線の照射により人体に悪影響がおよび、また後者の方法
では得られた超音波断層像がどこの部位のものか判断し
にくい。
[Problem to be solved by the invention] However, in the former method, X
The irradiation of the radiation has an adverse effect on the human body, and in the latter method, it is difficult to determine which part of the ultrasound tomographic image is obtained.

従って、本発明の目的は、長時間にわたって使用しても
生体に安全で、かつ正確に位置を検出できるカプセル位
置検出手段を提供するにある。
Therefore, an object of the present invention is to provide a capsule position detecting means that is safe for living organisms even when used for a long period of time and can accurately detect the position.

[課題を解決するための手段および作用]よって、上記
課題は体腔内の諸情報を検出するためのカプセルと、前
記医用カプセル内に設けられ、位置検出用超音波を送信
するための振動子手段と、少なくとも3ケ所の三次元的
に異なる体外位置に設けられ、前記位置検出用超音波を
受信するための超音波受信手段と、前記超音波受信手段
で受信された信号間の受信手段への到着時間内の差から
前記医用カプセルの位置を演算する手段と、から成るこ
とを特徴とする医用カプセルの位置検出装置により解決
される。
[Means and operations for solving the problem] Therefore, the above problem is to provide a capsule for detecting various information in a body cavity, and a transducer means provided in the medical capsule for transmitting position detecting ultrasonic waves. an ultrasonic receiving means provided at at least three three-dimensionally different positions outside the body for receiving the position detection ultrasonic waves; and an ultrasonic receiving means for receiving signals received by the ultrasonic receiving means. The present invention is solved by a medical capsule position detecting device comprising: means for calculating the position of the medical capsule from the difference in arrival times.

この位置検出装置によれば、カプセル内の振動子手段か
ら位置検出用超音波が送信され、体外の少なくとも3ケ
所の異なる位置に配置された超音波受信手段により、上
記位置検出用超音波が次々に検出される。これらの受信
手段への列前時間の差および超音波の体内伝播速度に基
づき、各受信手段と医用カプセルとの距離が求められ、
次にカプセルの位置が求められる。
According to this position detecting device, position detecting ultrasonic waves are transmitted from the transducer means in the capsule, and the position detecting ultrasonic waves are transmitted one after another by the ultrasonic wave receiving means arranged at at least three different positions outside the body. detected. The distance between each receiving means and the medical capsule is determined based on the difference in time before queuing to these receiving means and the propagation speed of the ultrasound in the body.
Next, the position of the capsule is determined.

[第1実施例]以下、添付図面を参照して本発明の実施例について説明
する。
[First Embodiment] Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

まず第1図を参照すると、本図には本発明により位置が
検出される超音波医用カプセルIが示されている。
Referring first to FIG. 1, there is shown an ultrasonic medical capsule I whose position is detected according to the invention.

この超音波医用カプセルlは、一方の端部寄り(図中で
は左端部)に空間が形成され、この空間には流動パラフ
ィン7が充填され、流動パラフィン7が流出しないよう
0リング9によりシールされている。この流動パラフィ
ン7内には、超音波モータ8にその後端が接続されたサ
イコロ状の超音波振動子1が配設されている。
This ultrasonic medical capsule l has a space formed near one end (the left end in the figure), and this space is filled with liquid paraffin 7 and sealed with an O-ring 9 to prevent the liquid paraffin 7 from flowing out. ing. A dice-shaped ultrasonic vibrator 1 whose rear end is connected to an ultrasonic motor 8 is disposed within the liquid paraffin 7 .

超音波振動子1は、カプセル■内を長手方向に延びる軸
を中心に回転し、超音波ビームを出射するように構成さ
れている。即ち、超音波医用カプセルlの長手方向に対
してラジアル方向に超音波ビームが回転されながら出射
されるように構成されている。
The ultrasonic transducer 1 is configured to rotate around an axis extending in the longitudinal direction within the capsule (2) and emit an ultrasonic beam. In other words, the ultrasonic beam is emitted while being rotated in the radial direction with respect to the longitudinal direction of the ultrasonic medical capsule l.

上記超音波モータ8の後端部側には、エンコーダ11と
その外周囲にロークリトランス10等がそれぞれ収納配
設されている。
On the rear end side of the ultrasonic motor 8, an encoder 11 and a low retransistor 10 and the like are respectively housed and arranged around the encoder 11.

またカプセル■の他方の端部(右端部)内には電池15
が収納され、この電池15は上記エンコーダ11との間
に配設した送信回路12と受信回路13と通信回路14
とにそれぞれ接続され、給電するようになっている。ま
た超音波振動子1と、上記送信回路12.受信回路13
間の信号の授受は、上記ロータリトランス10を介して
行われる。
Also, there is a battery 15 inside the other end (right end) of the capsule ■.
This battery 15 is connected to the transmitter circuit 12, the receiver circuit 13, and the communication circuit 14 arranged between the encoder 11 and the encoder 11.
and are connected to each other to supply power. Further, the ultrasonic transducer 1 and the transmitting circuit 12. Receiving circuit 13
Signals are exchanged between them via the rotary transformer 10.

また上記超音波モータ8と電池15とはロークリトラン
ス]−〇を介して接続されている。
Further, the ultrasonic motor 8 and the battery 15 are connected via a low retransistor]-0.

また超音波医用カプセルIの中央部位の外周面には、コ
イル状のアンテナ16が巻装着され、通信回路12から
の信号が電波として体外へ送られるように構成されてい
る。
Further, a coiled antenna 16 is wound around the outer peripheral surface of the central portion of the ultrasound medical capsule I, so that signals from the communication circuit 12 are sent outside the body as radio waves.

上記超音波振動子1の設けられた空間と反対側の端部に
は、位置検出用超音波送信振動子31が設けられている
。この振動子31は、近くに設置されたスイッチング振
動子駆動回路30により駆動され、生体内での減衰が少
ないように低い周波数1〜5MHzの超音波パルスを送
信する。この振動子31は、どの方向にも均一に超音波
パルスを放射する無指向性の放射特性を有する。スイッ
チング振動子駆動回路30は、電池15から給電され後
述する位置検出部位からの電波信号に応答してオン・オ
フし、振動子31から位置識別用超音波パルスを放射さ
せる。
An ultrasonic transmitting transducer 31 for position detection is provided at the end opposite to the space in which the ultrasonic transducer 1 is provided. This transducer 31 is driven by a switching transducer drive circuit 30 installed nearby, and transmits ultrasonic pulses at a low frequency of 1 to 5 MHz so as to reduce attenuation in the living body. This vibrator 31 has non-directional radiation characteristics that emit ultrasonic pulses uniformly in any direction. The switching transducer drive circuit 30 is supplied with power from the battery 15 and turns on and off in response to a radio wave signal from a position detection part, which will be described later, and causes the transducer 31 to emit a position identification ultrasonic pulse.

次に第2図を参照して、超音波断層像表示装置Hについ
て説明する。この超音波断層像表示装置■は主に位置検
出部位■と断層像作成部■とから成る。
Next, referring to FIG. 2, the ultrasonic tomographic image display device H will be explained. This ultrasonic tomographic image display device (2) mainly consists of a position detection section (2) and a tomographic image creation section (2).

断層像作成部■においては、アンテナ17で受信された
生体内の超音波医用カプセルIがらの信号は、まず通信
回路18を介して増幅器19へ入力され、ここで適当な
レベルまで増幅される。増幅された信号は、次にA/D
変換器20に入力され、ここでアナログ−ディジタル変
換される。こうしてアナログ−ディジタル変換されたデ
ィジタル信号は、ディジタルスキャニングコンバータ(
D、S、C)22に入力される。また超音波医用カプセ
ルIの超音波振動子1の回転を表示する回転角データは
、増幅器19で増幅された後、分離されて同期制御器2
1へ入力される。
In the tomographic image creation section (2), the signal from the in-vivo ultrasound medical capsule I received by the antenna 17 is first input to the amplifier 19 via the communication circuit 18, where it is amplified to an appropriate level. The amplified signal is then A/D
The signal is input to a converter 20 where it is analog-to-digital converted. The digital signal converted from analog to digital in this way is transferred to a digital scanning converter (
D, S, C) 22. Further, rotation angle data indicating the rotation of the ultrasonic transducer 1 of the ultrasonic medical capsule I is amplified by an amplifier 19, and then separated and sent to a synchronous controller 2.
1.

次にこの同期制御器21の出力信号は、ディジタルスキ
ャンコンバータ22に入力され、A/D変換器20から
のディジタル信号をCRT23上適当な座標位置に表示
するように制御する。
Next, the output signal of this synchronous controller 21 is input to a digital scan converter 22, which controls the digital signal from the A/D converter 20 to be displayed at an appropriate coordinate position on the CRT 23.

位置検出部■は、適当なタイミングでスイッチングパル
スを発生する制御部33と、このスイッチングバルスに
応答して、アンテナ17よりカプセルI内のスイッチン
グ回路30を駆動する通信部32を含む。更にこの位置
検出部■は、超音波医用カプセル■の位置検出用超音波
送信振動子31から発信される超音波を三次元的に異な
る生体外の少なくとも3つの位置で検出するための位置
検出用振動子A、  B、 Cからの信号を所定レベル
まで増幅する受信部34と、各受信信号に基づき、送信
振動子スイッチング時刻から振動子A。
The position detection section (2) includes a control section 33 that generates switching pulses at appropriate timing, and a communication section 32 that drives the switching circuit 30 in the capsule I from the antenna 17 in response to the switching pulses. Furthermore, this position detection unit (■) is a position detection unit for detecting the ultrasonic waves emitted from the position detection ultrasonic transmitting transducer 31 of the ultrasonic medical capsule (■) at at least three three-dimensionally different positions outside the living body. A receiving section 34 amplifies the signals from the transducers A, B, and C to a predetermined level, and the transducer A from the transmitting transducer switching time based on each received signal.

B、Cまでのそれぞれの超音波の到着時間tA。Arrival time tA of each ultrasound wave to B and C.

tB、tCを求め、生体内の音速に基づき、受信振動子
A、B、Cからカプセル■までの距離rt、。
Find tB and tC, and calculate the distance rt from the receiving transducers A, B, and C to the capsule ■ based on the speed of sound in the living body.

rB、rcを求め、カプセルの位置Pを決定する演算部
35と、この位置Pを、三次元の位置としてグラフィッ
ク処理する三次元グラフィック処理部36とから成り、
三次元グラフィック処理部36の出カバCRT 231
:入力サレテ、CRT23にカプセル位置を三次元表示
する。
It consists of a calculation unit 35 that calculates rB and rc and determines the position P of the capsule, and a three-dimensional graphic processing unit 36 that performs graphic processing on this position P as a three-dimensional position,
Output CRT 231 of the three-dimensional graphic processing unit 36
: Input signal and display the capsule position in three dimensions on the CRT 23.

次に上記構成による本実施例の作用について説明する。Next, the operation of this embodiment with the above configuration will be explained.

超音波医用カプセルI内の送信回路12により送出され
たパルスがロークリトランス10を介して超音波振動子
1を駆動すると、振動子1はカプセル長手方向軸を中心
にラジアル方向に超音波ビームを出射する。出射された
超音波ビームは、被検体内の組織に応じて透過したり、
反射したりする。反射された超音波エコーパルスは、再
び超音波振動子1で受信され、電気信号に変換され、ロ
ータリトランス10を介して受信回路13に入力される
When the pulses sent out by the transmitting circuit 12 in the ultrasound medical capsule I drive the ultrasound transducer 1 via the low retransducer 10, the transducer 1 emits an ultrasound beam in the radial direction around the longitudinal axis of the capsule. Emits light. The emitted ultrasound beam may pass through or pass through depending on the tissue within the subject.
It reflects. The reflected ultrasonic echo pulse is received by the ultrasonic transducer 1 again, converted into an electrical signal, and input to the receiving circuit 13 via the rotary transformer 10.

このとき超音波振動子1は、超音波モータ8により回転
されているので、例えば一回転につき512本の超音波
ビームの送受信を行う。エンコーダ11は、このときの
超音波振動子1の回転を検出しており、超音波エコー信
号は回転角データと共に通信回路14とアンテナ16か
ら電波として送信される。
At this time, since the ultrasonic transducer 1 is being rotated by the ultrasonic motor 8, it transmits and receives, for example, 512 ultrasonic beams per rotation. The encoder 11 detects the rotation of the ultrasonic transducer 1 at this time, and the ultrasonic echo signal is transmitted as radio waves from the communication circuit 14 and the antenna 16 together with the rotation angle data.

こうしてカプセル1のアンテナ16より送信された信号
は、超音波断層像表示装置■のアンテナ17で受信され
、通信回路18へ入力される。その後この受信信号は、
増幅器19で増幅された後、A/D変換器20でディジ
タル化され、D、  S。
The signal thus transmitted from the antenna 16 of the capsule 1 is received by the antenna 17 of the ultrasonic tomographic image display device (2) and input to the communication circuit 18. This received signal then becomes
After being amplified by an amplifier 19, it is digitized by an A/D converter 20, and D, S.

C22に入力される。It is input to C22.

上記超音波振動子1の回転角データは、増幅器19にて
一定の値に整形された後、同期増幅器21に入力され回
転角データに従ってり、S、C22内で受波信号を36
0@のラジアルスキャニングのデータに座標変換した後
CRTにより360’のラジアルスキャニング像を表示
される。
The rotation angle data of the ultrasonic transducer 1 is shaped into a constant value by the amplifier 19, and then input to the synchronous amplifier 21 in accordance with the rotation angle data.
After coordinate conversion to 0@ radial scanning data, a 360' radial scanning image is displayed on the CRT.

位置検出部■の制御部33は、一定のタイミングでスイ
ッチングパルスを通信部32へ入力し、この通信部32
はアンテナ17からスイッチング電波を送信する。この
スイッチング電波は、カプセルI内のスイッチング回路
3oに受信され、スイッチング回路30はこれに応答し
て位置検出用超音波送信振動子31を駆動する。このた
め振動子31は、生体内より位置検出用超音波パルスを
発生する。このパルスは、第3図に示すように生体外の
三次元的に異な・る少なくとも3つの位置に置かれた位
置検出用振動子A、BおよびCにより、次々に受信され
る。胃、十二指腸、小腸、大腸をカバーする領域をモニ
タする場合、これら振動子は例えば、水落ち、左右の腰
の体表面の3ケ所に設置される。
The control unit 33 of the position detection unit 3 inputs a switching pulse to the communication unit 32 at a certain timing, and
transmits switching radio waves from the antenna 17. This switching radio wave is received by the switching circuit 3o in the capsule I, and the switching circuit 30 drives the position detecting ultrasonic transmitting transducer 31 in response. For this reason, the transducer 31 generates position detection ultrasonic pulses from inside the living body. These pulses are successively received by position detection transducers A, B, and C placed at at least three three-dimensionally different positions outside the living body, as shown in FIG. When monitoring an area covering the stomach, duodenum, small intestine, and large intestine, these transducers are installed at three locations, for example, on the body surface of the water drop and on the left and right hips.

第4図に示すように振動子A、BおよびCでそれぞれ受
信される信号a、b、cの時刻とスイッチングパルスの
発生時刻との間の時間をそれぞれX 1 、  X B
およびXcとすると、各受信用振動子からカプセル■ま
での距MrA、rBおよびrcは、11″″tA”v「B″″tB’vrc″″jc”V(ここでVは生体内ににおける超音波の生体内平均速度
である)と求められる。
As shown in FIG. 4, the times between the times of signals a, b, and c received by transducers A, B, and C, respectively, and the generation time of the switching pulse are X 1 and X B, respectively.
and Xc, the distances MrA, rB and rc from each receiving transducer to the capsule is the in-vivo average velocity of ultrasound at .

実際のカプセルの位置は、第3図に示すように生体表面
に設置された振動子の各位置を中心とし、半径r 1 
+  r B *  r c−の球面を想定し、それら
の交点を求めることにより、カプセルの位置Pを求める
The actual position of the capsule is centered at each position of the vibrator installed on the biological surface, as shown in Fig. 3, and has a radius r 1
Assuming a spherical surface of + r B * r c-, the position P of the capsule is determined by determining their intersection points.

以上の演算を演算部35で実行し、その位置Pは三次元
グラフィック処理部36にて三次元グラフィック処理し
、体表面に配置された振動子A。
The above calculation is executed by the calculation unit 35, and the position P is subjected to three-dimensional graphic processing by the three-dimensional graphic processing unit 36, and the transducer A is placed on the body surface.

B、  Cの位置を基準にしてモニタ上に三次元表示す
る。こうしてカプセルの位置を検出して、目的とする部
位にカプセルがたどりついたかどうかを判定することが
でき、超音波診断を行うタイミングや、各々の部位にお
いて最適な診断領域の設定などの操作を行うことができ
る。
Three-dimensional display is performed on the monitor based on the positions of B and C. In this way, the position of the capsule can be detected and it can be determined whether the capsule has reached the target area, and operations such as the timing of ultrasonic diagnosis and setting of the optimal diagnostic area for each area can be performed. Can be done.

[第2実施例]第5図〜第7図を参照して本発明の第2実施例について
説明する。この第2実施例は第1実施例と実質的には同
一であるが、次の点で異なっている。すなわち第1実施
例では、表示装置■からカプセルIへ向けてスイッチン
グ用信号電波を送り、これに応答して位置検出用パルス
が送信されていたが、この第2実施例は、カプセルI内
の制御部40自体が一定時間Tごとに振動子41を駆動
するパルスを発振するようになっている。従って、表示
装置Hの位置検出部■内の通信部32と制御部33は第
7図に示すように不要になっている。
[Second Embodiment] A second embodiment of the present invention will be described with reference to FIGS. 5 to 7. This second embodiment is substantially the same as the first embodiment, but differs in the following points. That is, in the first embodiment, a switching signal radio wave was sent from the display device ① to the capsule I, and a position detection pulse was sent in response to this, but in the second embodiment, the The control unit 40 itself is configured to oscillate a pulse for driving the vibrator 41 at regular intervals T. Therefore, the communication section 32 and the control section 33 in the position detection section (3) of the display device H are no longer necessary, as shown in FIG.

この場合、位置検出用振動子A、B、Cで得られる受信
信号a、b、cは、第6図に示すようなタイミングで得
られる。振動子Aにおける受信時刻T1と振動子Bにお
ける受信時刻T2との差tABはカプセルの位置からA
までの距離をgAlBまでの距離をg。、生体内での音
速をVとすれば、tAB−(N o/v) −(ΩA/V)−(1/v)
  (I B−I A )となる。
In this case, the received signals a, b, and c obtained by the position detecting transducers A, B, and C are obtained at the timing shown in FIG. 6. The difference tAB between the reception time T1 at transducer A and the reception time T2 at transducer B is
The distance to g is the distance to AlB. , if the speed of sound in the living body is V, then tAB-(N o/v) -(ΩA/V)-(1/v)
(I B - I A ).

従って、1t−i)−v−t  となり、tABをB 
    A        AB限定すれば、gB−gAを求めることができる。
Therefore, it becomes 1t-i)-v-t, and tAB is B
If A AB is limited, gB-gA can be obtained.

双曲線は2t点からの距離の差が一定の点の軌跡である
ので、振動子Aの位置を振動子Bの位置から距離の差v
−1ABが一定になるような双曲線を引Iすば、この線
上にカプセルが位置する。
Since a hyperbola is a locus of points whose distance difference from point 2t is constant, the distance v between the position of oscillator A and the position of oscillator B is
If we draw a hyperbola I such that -1AB is constant, the capsule will be located on this line.

同様にtBe”ACから振動子Bと振動子Cの位置を定
点とした双曲線および振動子Aと振動子Cの位置を定点
とした双曲線を求めることが可能であり、以上の3本の
双曲線の交点として、カプセルの位置を検出することが
できる。
Similarly, it is possible to obtain a hyperbola with the positions of oscillators B and C as fixed points and a hyperbola with the positions of oscillators A and C as fixed points from tBe''AC, and the above three hyperbolas As a point of intersection, the position of the capsule can be detected.

以上の構成によって、カプセルの位置が刻々と移動して
ゆく様子を、カプセル内の位置検出用振動子の信号をモ
ニタし演算処理することで記録部37で3次元的な動き
として記録することができる。
With the above configuration, the recording unit 37 can record the gradual movement of the capsule position as a three-dimensional movement by monitoring the signal from the position detection vibrator inside the capsule and performing calculation processing. can.

このようなカプセルの移動の様子と同時に、それぞれの
位置における断層像も一触に記録しておくことは、診断
上有益なものと考えられる。記録手段として磁気ディス
ク、光ディスク等を用いることができる。
It is considered useful for diagnosis to simultaneously record the tomographic images at each position as well as the movement of the capsule. A magnetic disk, an optical disk, etc. can be used as the recording means.

[発明の効果]本発明によれば、人体に害を与えることなく、長時間に
わたって、または繰返して体内の医用カプセルの位置を
高精度で検出できる。
[Effects of the Invention] According to the present invention, the position of a medical capsule in the human body can be detected with high precision over a long period of time or repeatedly without causing harm to the human body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る位置検出装置により位置を検出
される医用カプセルの部分断面図、第2図は、本発明に
係る位置検出装置の第1の実施例を示すブロック図、第3図は、体の表面に配置された位置検出用振動子と医
用カプセルの位置関係を示す図、第4図は、スイッチン
グンパルスと各位置検出用振動子で検出される受信信号
とのタイミングを示すタイミングチャート、第5図は、本発明に係る医用カプセル位置検出装置の第
2実施例により位置検出される医用カプセルの略図、第6図は、第2実施例における各位置検出用振動子で受
信される信号のタイミングを示すタイミングチャート、第7図は、本発明の第2実施例の位置検出装置を示すブ
ロック図である。
FIG. 1 is a partial sectional view of a medical capsule whose position is detected by a position detection device according to the present invention, FIG. 2 is a block diagram showing a first embodiment of the position detection device according to the present invention, and FIG. The figure shows the positional relationship between the position detection transducer placed on the body surface and the medical capsule. Figure 4 shows the timing of the switching pulse and the received signal detected by each position detection transducer. Timing chart, FIG. 5 is a schematic diagram of a medical capsule whose position is detected by the second embodiment of the medical capsule position detection device according to the present invention, and FIG. FIG. 7 is a block diagram showing a position detection device according to a second embodiment of the present invention.

Claims (1)

Translated fromJapanese
【特許請求の範囲】[Claims](1)体腔内の諸情報を検出するためのカプセルと、前
記医用カプセル内に設けられ、位置検出用超音波を送信
するための振動子手段と、少なくとも3ケ所の三次元的に異なる体外位置に設けら
れ、前記位置検出用超音波を受信するための超音波受信
手段と、前記超音波受信手段で受信された信号間の受信手段への
到着時間内の差から前記医用カプセルの位置を演算する
手段と、から成ることを特徴とする医用カプセルの位置検出装置
(1) A capsule for detecting various information inside the body cavity, a transducer means provided in the medical capsule for transmitting position detection ultrasound, and at least three three-dimensionally different positions outside the body. and calculating the position of the medical capsule from the difference in arrival time at the receiving means between the signals received by the ultrasonic receiving means. A medical capsule position detection device comprising: means for detecting the position of a medical capsule; and a means for detecting the position of a medical capsule.
JP26704389A1989-10-141989-10-14Position detecting device of medical capsulePendingJPH03136636A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP26704389AJPH03136636A (en)1989-10-141989-10-14Position detecting device of medical capsule

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP26704389AJPH03136636A (en)1989-10-141989-10-14Position detecting device of medical capsule

Publications (1)

Publication NumberPublication Date
JPH03136636Atrue JPH03136636A (en)1991-06-11

Family

ID=17439250

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP26704389APendingJPH03136636A (en)1989-10-141989-10-14Position detecting device of medical capsule

Country Status (1)

CountryLink
JP (1)JPH03136636A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
KR20030089223A (en)*2002-05-172003-11-21대한민국(경북대학교 총장)Telemetry capsule and system for detecting position thereof
JP2004538055A (en)*2001-06-262004-12-24エントラック インコーポレイテッド Diagnostic capsule and method of using the same
US7001329B2 (en)2002-07-232006-02-21Pentax CorporationCapsule endoscope guidance system, capsule endoscope holder, and capsule endoscope
JP2006087523A (en)*2004-09-212006-04-06Olympus Corp Electronic device and in-subject introduction system
JP2006130160A (en)*2004-11-082006-05-25Olympus CorpUltrasonic diagnostic medical capsule
US7109933B2 (en)2004-03-082006-09-19Pentax CorporationWearable jacket having communication function, and endoscope system employing wearable jacket
JP2008229382A (en)*1999-03-112008-10-02Biosense Webster IncPosition sensing based on ultrasound emission
US7465271B2 (en)2003-09-012008-12-16Hoya CorporationCapsule endoscope
US7536217B2 (en)2003-12-252009-05-19Olympus CorporationSystem for detecting position of capsule endoscope in subject
US7585275B2 (en)2005-01-182009-09-08Hoya CorporationCapsule endoscope
JP2010158565A (en)*2010-04-192010-07-22Olympus CorpCapsule endoscope
CN103876702A (en)*2014-04-102014-06-25重庆金山科技(集团)有限公司Capsule endoscopy system with ultrasonic positioning function and capsule endoscopy thereof

Cited By (25)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2008229382A (en)*1999-03-112008-10-02Biosense Webster IncPosition sensing based on ultrasound emission
JP2013033054A (en)*1999-03-112013-02-14Biosense Webster IncPosition detection based on ultrasound radiation
US8005536B2 (en)2001-06-262011-08-23Entrack, Inc.Capsule and method for treating or diagnosing conditions or diseases of the intestinal tract
US9414768B2 (en)2001-06-262016-08-16Entrack, Inc.Capsule and method for treating or diagnosing conditions or diseases of the intestinal tract
US10226608B2 (en)2001-06-262019-03-12Entrack, Inc.Optical capsule and spectroscopic method for treating and diagnosing the intestinal tract
US9456774B2 (en)2001-06-262016-10-04Entrack, Inc.System for marking a location for treatment within the gastrointestinal tract
US8915867B2 (en)2001-06-262014-12-23Entrack, Inc.System for marking a location for treatment within the gastrointestinal tract
US8517961B2 (en)2001-06-262013-08-27Entrack, Inc.System for marking a location for treatment within the gastrointestinal tract
US9167990B2 (en)*2001-06-262015-10-27Entrack, Inc.Optical capsule and spectroscopic method for treating and diagnosing the intestinal tract
JP2004538055A (en)*2001-06-262004-12-24エントラック インコーポレイテッド Diagnostic capsule and method of using the same
US8360976B2 (en)2001-06-262013-01-29Entrack, Inc.Optical capsule and spectroscopic method for treating or diagnosing the intestinal tract
US7824347B2 (en)2001-06-262010-11-02Entrack, Inc.System for marking a location for treatment within the gastrointestinal tract
US20140206986A1 (en)*2001-06-262014-07-24Entrack, Inc.Optical capsule and spectroscopic method for treating and diagnosing the intestinal tract
US20160135720A1 (en)*2001-06-262016-05-19Entrack, Inc.Optical capsule and spectroscopic method for treating and diagnosing the intestinal tract
KR20030089223A (en)*2002-05-172003-11-21대한민국(경북대학교 총장)Telemetry capsule and system for detecting position thereof
US7001329B2 (en)2002-07-232006-02-21Pentax CorporationCapsule endoscope guidance system, capsule endoscope holder, and capsule endoscope
US7465271B2 (en)2003-09-012008-12-16Hoya CorporationCapsule endoscope
US7536217B2 (en)2003-12-252009-05-19Olympus CorporationSystem for detecting position of capsule endoscope in subject
US7109933B2 (en)2004-03-082006-09-19Pentax CorporationWearable jacket having communication function, and endoscope system employing wearable jacket
US8715163B2 (en)2004-09-212014-05-06Olympus CorporationElectronic apparatus with noise shielding
JP2006087523A (en)*2004-09-212006-04-06Olympus Corp Electronic device and in-subject introduction system
JP2006130160A (en)*2004-11-082006-05-25Olympus CorpUltrasonic diagnostic medical capsule
US7585275B2 (en)2005-01-182009-09-08Hoya CorporationCapsule endoscope
JP2010158565A (en)*2010-04-192010-07-22Olympus CorpCapsule endoscope
CN103876702A (en)*2014-04-102014-06-25重庆金山科技(集团)有限公司Capsule endoscopy system with ultrasonic positioning function and capsule endoscopy thereof

Similar Documents

PublicationPublication DateTitle
US6719700B1 (en)Ultrasound ranging for localization of imaging transducer
US3936791A (en)Linear array ultrasonic transducer
JP3251682B2 (en) Ultrasound diagnostic equipment
US20250090137A1 (en)Ultrasonic periodontal probe
KR102607014B1 (en)Ultrasound probe and manufacturing method for the same
JPH03136636A (en)Position detecting device of medical capsule
JP2002253549A (en)Ultrasonic image pickup device and method, and probe
WO2018105366A1 (en)Ultrasonic diagnosis apparatus and method for controlling ultrasonic diagnosis apparatus
CN117643479A (en)Ultrasonic blood flow detection method, device, equipment and storage medium for inner cavity
JP4074100B2 (en) Ultrasound diagnostic imaging equipment
US11927703B2 (en)Ultrasound system and method for controlling ultrasound system
JPH11113913A5 (en)
JPS6332454B2 (en)
JPH01145043A (en)Ultrasonic diagnostic apparatus
JPH10127632A (en) Ultrasound diagnostic equipment
US20210038194A1 (en)Ultrasound diagnostic apparatus and method for controlling ultrasound diagnostic apparatus
JPH04200539A (en)Ultrasonic wave probe and blood flow measuring instrument
JPH069563B2 (en) Ultrasonic diagnostic equipment
JP2004261245A (en)Ultrasonograph
JP2004305236A (en) Ultrasound diagnostic equipment
JPS635695Y2 (en)
JP2023148439A (en)Ultrasonic diagnostic device and operation method thereof
JPH0325169B2 (en)
JP2024025865A (en) Control method for ultrasonic diagnostic equipment and ultrasonic diagnostic equipment
JPH0146147B2 (en)

[8]ページ先頭

©2009-2025 Movatter.jp