【発明の詳細な説明】(産業上の利用分野)本発明は外部変調電場により電送光を直接変調可能な位
相変調器用光ファイバに関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical fiber for a phase modulator that can directly modulate transmitted light using an external modulating electric field.
(従来の技術)光変調として半導体レーザの励起電流を直接変化させて
光波の強度を変調する場合は別として、光波の位相変調
にはポッケルス効果(1次の電気光学効果)がよく利用
される。K D P (Kll、JP04)やLINb
O,等のような結晶に電界を印加し、伝搬光の位相を電
界強度の変化に応じて変調する。(Prior art) Apart from the case where the intensity of light waves is modulated by directly changing the excitation current of a semiconductor laser for optical modulation, the Pockels effect (first-order electro-optic effect) is often used for phase modulation of light waves. . KDP (Kll, JP04) and LINb
An electric field is applied to a crystal such as O, etc., and the phase of propagating light is modulated according to changes in the electric field strength.
しかし、光ファイバ通信、ファイバセンサシステムにお
いては、光ファイバを伝搬する光波の位相を変調するこ
とがしばしば要求される。この光位相変調器を光ファイ
バ自身で構成すると、他の光ファイバとの接続が容易に
なり、そのために光システムが簡素化されて信頼性が増
すと考えられる。However, in optical fiber communications and fiber sensor systems, it is often required to modulate the phase of light waves propagating through the optical fiber. If this optical phase modulator is constructed from the optical fiber itself, it will be easier to connect it to other optical fibers, which is thought to simplify the optical system and increase its reliability.
光ファイバ型位相変調器は、これまで種々報告されてい
るが、光ファイバの外周上に圧電性高分子を直接被覆し
た構造は光ファイバと一体化した光部品として光ファイ
バシステムに容易に組込める利点がある。例えば圧電性
高分子としてフッ化ビニリデン/3フツ化エチレン共重
合体を光ファイバに被覆した後、分極処理して圧電性を
持たせ、光ファイバ位相変調器を作成した例が、電子情
報通信学会論文誌(’88/11.Vo1.J71−C
,P1559〜1567)に報告されている。Various optical fiber phase modulators have been reported so far, but a structure in which a piezoelectric polymer is directly coated on the outer circumference of an optical fiber can be easily incorporated into an optical fiber system as an optical component integrated with the optical fiber. There are advantages. For example, an optical fiber phase modulator was created by coating an optical fiber with vinylidene fluoride/ethylene trifluoride copolymer as a piezoelectric polymer and then polarizing it to make it piezoelectric. Journal ('88/11.Vo1.J71-C
, P1559-1567).
第1図はこのような光ファイバ位相変調器の構成図であ
る。図面に示すように、コア(1a)とその上のクラッ
ド(lb)からなる光ファイバ(1)の外周上には、導
電層からなる内側電極(2)、その外周上には圧電性高
分子被覆層(3)、さらにその外周上には導電層からな
る外側電極(4)を設けて構成されている。FIG. 1 is a block diagram of such an optical fiber phase modulator. As shown in the drawing, an inner electrode (2) made of a conductive layer is placed on the outer periphery of an optical fiber (1) consisting of a core (1a) and a cladding (lb) thereon, and a piezoelectric polymer is placed on the outer periphery of the optical fiber (1). The cover layer (3) is further provided with an outer electrode (4) made of a conductive layer on the outer periphery thereof.
(解決しようとする課題)上述した従来のこの種の位相変調用の光ファイバは、分
極処理時の電界と変調電界を印加するための内側電極と
しての導電層を、真空蒸着装置中で回転させながらAI
、ムu、1等の金属を蒸着させる等の方法で形成してい
た。(Problems to be Solved) In the conventional optical fiber for phase modulation of this type described above, the conductive layer, which serves as an inner electrode for applying an electric field during polarization processing and a modulation electric field, is rotated in a vacuum evaporation apparatus. While AI
, Mu, 1, etc. were formed by a method such as vapor deposition.
従って、光ファイバ線引後の電極形成において、光ファ
イバに傷がつき易く、得られる位相変調用光ファイバの
機械的強度が弱いこと、周方向と長手方向に電極を均一
に形成することが困難で、しかも長尺の光ファイバを作
ることが困難なため、製造コストが高く、又変調感度を
高める上で限界があった。Therefore, when forming the electrodes after drawing the optical fiber, the optical fiber is easily damaged, the mechanical strength of the obtained optical fiber for phase modulation is weak, and it is difficult to form the electrodes uniformly in the circumferential and longitudinal directions. Moreover, since it is difficult to make long optical fibers, manufacturing costs are high, and there are limits to increasing modulation sensitivity.
(課題を解決するための手段)本発明は上述の問題点を解消した位相変調用光ファイバ
を提供するもので、その特徴は、光ファイバ外周上の導
電層からなる内側電極は光ファイバを線引しながら線引
直後に形成されたものであることにある。(Means for Solving the Problems) The present invention provides an optical fiber for phase modulation that solves the above-mentioned problems. The reason is that it was formed immediately after the line was drawn.
上記内側電極を形成する導電層の材料としては、金属、
炭素、半導体等があり、その形成方法については、CV
D法、PvD法、溶射法等がある。それらの中でも、炭
素原子を含む気体を原料とした炭素膜及び溶融金属槽を
通して形成した金属膜がすぐれている。Materials for the conductive layer forming the inner electrode include metal,
There are carbon, semiconductors, etc., and for the formation method, CV
There are D method, PvD method, thermal spraying method, etc. Among them, carbon films made from a gas containing carbon atoms and metal films formed through a molten metal tank are excellent.
炭素膜の原料としては、メタン、エタン、プロパン、ブ
タン等の飽和炭化水素、エチレン、プロピレン、アセチ
レン等の不飽和炭化水素、ベンゼン、ナフタリン、キシ
レン等の芳香族炭化水素、上記炭化水素の塩化物、アル
コール等、及びこれらの混合ガスが用いられ、形成方法
は熱分解法が代表的で、第2図に基づいて後述する。又
金属膜としては、ム1.Pb、Sn等で代表する比較的
低融点の純金属及びそれらの合金が用いられ、その形成
方法は第3図に基づいて後述する。Raw materials for carbon membranes include saturated hydrocarbons such as methane, ethane, propane, and butane, unsaturated hydrocarbons such as ethylene, propylene, and acetylene, aromatic hydrocarbons such as benzene, naphthalene, and xylene, and chlorides of the above hydrocarbons. , alcohol, etc., and a mixed gas thereof are used, and the typical formation method is a thermal decomposition method, which will be described later based on FIG. 2. Also, as a metal film, M1. Pure metals with relatively low melting points, such as Pb and Sn, and alloys thereof are used, and the method for forming them will be described later with reference to FIG.
(作用)上述したように、本発明の位相変調器用光ファイバにお
いては、光ファイバ外周上の導電層からなる内側電極は
、光ファイバを線引しながら線引直後に形成されたもの
であるから、傷がつきにくく、機械的強度が強く、周方
向及び長手方向に均一であり、しかも長尺の光ファイバ
の製造が可能である。(Function) As described above, in the optical fiber for a phase modulator of the present invention, the inner electrode made of a conductive layer on the outer periphery of the optical fiber is formed immediately after drawing the optical fiber. The optical fiber is hard to be damaged, has strong mechanical strength, is uniform in the circumferential direction and the longitudinal direction, and can be manufactured into a long optical fiber.
(実施例)実施例1.第2図に示す装置を用いて光ファイバ外5周
上に炭素膜を形成した本発明の位相変調器用光ファイバ
を作成した。(Example) Example 1. Using the apparatus shown in FIG. 2, an optical fiber for a phase modulator of the present invention was prepared in which a carbon film was formed on the outer five circumferences of the optical fiber.
光ファイバ(13)は光ファイバ母材(11)を線引炉
(12)で線引したもので、コア径!Oμ■、外径12
5#−の石英系シングルモードファイバで、線引直後、
炭素膜被覆装置(lB)で熱分□解法で光ファイバ(1
3)上に約800ムの炭素膜を形成し、炭素膜被覆ファ
イバ(14)とした。原料ガスとしてはアセチレンガス
を用いた。なお、(lem)は原料ガスの供給口、(1
8b)は原料ガスの出口である。The optical fiber (13) is made by drawing the optical fiber base material (11) in a drawing furnace (12), and has a core diameter of ! Oμ■, outer diameter 12
Immediately after drawing with 5#- quartz single mode fiber,
Optical fiber (1
3) A carbon film of about 800 μm was formed on the fiber to obtain a carbon film-coated fiber (14). Acetylene gas was used as the raw material gas. In addition, (lem) is the supply port of raw material gas, (1
8b) is an outlet for raw material gas.
上記炭素膜の形成に続いて圧電性高分子被覆装置07)
によりフッ化ビニリデン/3フツ化エチレン共重体を被
覆して外径300jmの圧電性高分子被覆ファイバ(I
5)とし、引取装置(18)を経て巻取装置(19)に
巻取り、さらにその上に外部電極としてアルミニウムの
被覆層を設けて、一連長1に園の位相変調器用光ファイ
バを得た。Following the formation of the carbon film, piezoelectric polymer coating device 07)
A piezoelectric polymer coated fiber (I
5), the fiber was wound into the winding device (19) via the winding device (18), and an aluminum coating layer was provided thereon as an external electrode to obtain a Sono phase modulator optical fiber having a length of 1. .
得られた光ファイバは全長にわたって均一で、引張り強
度も全長にわたって強いものであった。The obtained optical fiber was uniform over its entire length and had high tensile strength over its entire length.
又この光ファイバ1mを切出し、内側電極と外側電極間
に20Kvの電圧を印加してポーリング処理を施したも
のをマツハツエンター干渉計によって位相変調感度は0
.7rad/Vであった。In addition, a 1 m length of this optical fiber was cut out, a voltage of 20 Kv was applied between the inner electrode and the outer electrode, and a poling process was performed.The phase modulation sensitivity was determined to be 0 using a Matsuhatsu Enter interferometer.
.. It was 7 rad/V.
実施例2.第3図に示すような装置を用いて、光ファイ
バ外周上の内側電極がアルミニウムであること以外は実
施例1同様の構造を有する一連長IKmの本発明の位相
変調器用光ファイバを作成した。Example 2. Using the apparatus shown in FIG. 3, an optical fiber for a phase modulator of the present invention having a structure similar to that of Example 1 except that the inner electrode on the outer periphery of the optical fiber was made of aluminum and having a length of IKm was produced.
アルミニウムの内側電極は線引された光ファイバ(13
)を、溶融金属(2I)を有する金属被覆装置(20)
を通すことによって金属層被覆ファイバ(14)を得た
。The aluminum inner electrode is connected to a drawn optical fiber (13
), a metal coating device (20) with molten metal (2I)
A metal layer coated fiber (14) was obtained by passing the fiber.
この光ファイバも全長にわたって均一で、引張り強さも
強いものであり、又実施例1同様に位相変調感度を調べ
たところ0.trad/Vであった。This optical fiber was also uniform over its entire length and had a strong tensile strength, and the phase modulation sensitivity was examined in the same manner as in Example 1 and found to be 0. trad/V.
比較例、内側電極をアルミニウムの真空蒸着で形成する
ために、樹脂被覆光ファイバの樹脂被覆を除去したもの
を用い、位相変調器用光ファイバを作製したが、光ファ
イバ強度が弱く、得られた長さは単長最大的50+eで
あった。この光ファイバを用いた位相変調感度は0.1
5rad/Vで、実施例1及び2に比してはるかに低い
ものであった。Comparative Example: In order to form the inner electrode by vacuum evaporation of aluminum, an optical fiber for a phase modulator was manufactured using a resin-coated optical fiber with the resin coating removed, but the strength of the optical fiber was weak and the length obtained was The maximum single length was 50+e. The phase modulation sensitivity using this optical fiber is 0.1
5 rad/V, which was much lower than in Examples 1 and 2.
(発明の効果)以上説明したように、本発明の位相変調器用光ファイバ
によれば、光ファイバ外周上の導電層からなる内側電極
を、光ファイバを線引しながら線引直後に形成すること
により、機械的強度が強く、全長にわたって均一な長尺
の光ファイバが形成される。従って、高感度、高品質、
高信頼性の位相変調器に利用するとき、極めて効果的で
ある。(Effects of the Invention) As explained above, according to the optical fiber for a phase modulator of the present invention, the inner electrode made of a conductive layer on the outer periphery of the optical fiber can be formed immediately after drawing the optical fiber. As a result, a long optical fiber with strong mechanical strength and uniformity over its entire length is formed. Therefore, high sensitivity, high quality,
It is extremely effective when used in highly reliable phase modulators.
第1図は光ファイバ位相変調器の構成図である。第2図及び第3図はいずれも本発明の位相変調器用光フ
ァイバにおける内側電極形成のための装置の線図的説明
図である。工・・・光ファイバ、2・・・内側電極、3・・・圧電
性高分子被覆層、4・・・外側電極、11・・・光ファイバ母材、!2・・・線引炉、13・
・・光ファイバ、!4・・・炭素膜被覆ファイバ、14
′・・・金属層被覆ファイバ、15・・・圧電性高分子
被覆ファイバ、16・・・炭素膜被覆装置、17・・・
圧電性高分子被覆装置、20・・・金属被覆装置、21
・・・溶融金属、弄■閾算図夷3囚+88FIG. 1 is a block diagram of an optical fiber phase modulator. 2 and 3 are both diagrammatic explanatory views of an apparatus for forming an inner electrode in an optical fiber for a phase modulator according to the present invention. Engineering... Optical fiber, 2... Inner electrode, 3... Piezoelectric polymer coating layer, 4... Outer electrode, 11... Optical fiber base material! 2... wire drawing furnace, 13.
...Optical fiber! 4...carbon film coated fiber, 14
'... Metal layer coated fiber, 15... Piezoelectric polymer coated fiber, 16... Carbon film coating device, 17...
Piezoelectric polymer coating device, 20...metal coating device, 21
... Molten metal, play■ Threshold calculation Zui 3 prisoners + 8 8
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1267471AJPH03127019A (en) | 1989-10-13 | 1989-10-13 | Optical fiber for phase modulator |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1267471AJPH03127019A (en) | 1989-10-13 | 1989-10-13 | Optical fiber for phase modulator |
| Publication Number | Publication Date |
|---|---|
| JPH03127019Atrue JPH03127019A (en) | 1991-05-30 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP1267471APendingJPH03127019A (en) | 1989-10-13 | 1989-10-13 | Optical fiber for phase modulator |
| Country | Link |
|---|---|
| JP (1) | JPH03127019A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006517466A (en)* | 2003-02-11 | 2006-07-27 | リエッキ オイ | Method for supplying liquid to a flame spraying apparatus |
| US20070258673A1 (en)* | 2006-05-08 | 2007-11-08 | El-Sherif Mahmoud A | On-fiber tunable bragg gratings for DWDM applications |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006517466A (en)* | 2003-02-11 | 2006-07-27 | リエッキ オイ | Method for supplying liquid to a flame spraying apparatus |
| US20070258673A1 (en)* | 2006-05-08 | 2007-11-08 | El-Sherif Mahmoud A | On-fiber tunable bragg gratings for DWDM applications |
| US8805136B2 (en)* | 2006-05-08 | 2014-08-12 | Photonics On-Fiber Devices, Inc. | On-fiber tunable Bragg gratings for DWDM applications |
| Publication | Publication Date | Title |
|---|---|---|
| US5179993A (en) | Method of fabricating anisometric metal needles and birefringent suspension thereof in dielectric fluid | |
| JP2797335B2 (en) | Splicing method of hermetic coated optical fiber | |
| US5895742A (en) | Velocity-matched traveling-wave electro-optical modulator using a benzocyclobutene buffer layer | |
| US4726651A (en) | Optical fibers having piezoelectric coatings | |
| DE60217282D1 (en) | Method and apparatus for the production of thin layers | |
| US4913934A (en) | Process for making laser Q-switch | |
| Corres et al. | Tunable electro-optic wavelength filter based on lossy-guided mode resonances | |
| Donalds et al. | Electric field sensitive optical fibre using piezoelectric polymer coating | |
| JPH03127019A (en) | Optical fiber for phase modulator | |
| JP2587507B2 (en) | Thin film manufacturing equipment | |
| EP0406368B1 (en) | Fiber optic canister adhesive and use thereof | |
| Imai et al. | Piezoelectric copolymer jacketed single‐mode fibers for electric‐field sensor application | |
| Imai et al. | 100 MHz-bandwidth response of a fiber phase modulator with thin piezoelectric jacket | |
| US20020136478A1 (en) | Optical waveguide device and method for forming optical waveguide device | |
| US6921552B1 (en) | Fabrication of Zinc Oxide films on non-planar substrates and the use thereof | |
| CN117510099B (en) | Manufacturing method of fiber core metal film of optical fiber sensor | |
| JP3073573B2 (en) | Connection method of carbon coated optical fiber | |
| RU2117070C1 (en) | Shf-plasma deposition of dielectric films on metal surfaces | |
| AU721820B2 (en) | Fabrication of zinc oxide films on non-planar substrates and the use thereof | |
| US5232738A (en) | Process for removably fixing optical fibers | |
| JPH04357141A (en) | Hermetic coating method for optical fiber | |
| JPS61132913A (en) | Thin film coated optical fiber and apparatus for producing said fiber | |
| JP2830207B2 (en) | Thin film manufacturing equipment | |
| JPH02141701A (en) | Production of optical member for infrared light | |
| JPH02226126A (en) | Oriented polydiacetylene layer |