Movatterモバイル変換


[0]ホーム

URL:


JPH03112838A - Wet-process for producing alpha-type calcium triphosphate cement - Google Patents

Wet-process for producing alpha-type calcium triphosphate cement

Info

Publication number
JPH03112838A
JPH03112838AJP1250864AJP25086489AJPH03112838AJP H03112838 AJPH03112838 AJP H03112838AJP 1250864 AJP1250864 AJP 1250864AJP 25086489 AJP25086489 AJP 25086489AJP H03112838 AJPH03112838 AJP H03112838A
Authority
JP
Japan
Prior art keywords
cement
calcium
powder
phosphoric acid
calcium phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1250864A
Other languages
Japanese (ja)
Other versions
JP2775644B2 (en
Inventor
Nobuyuki Matsuda
信之 松田
Minoru Wakana
若菜 穰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taihei Chemical Industrial Co Ltd
Original Assignee
Taihei Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taihei Chemical Industrial Co LtdfiledCriticalTaihei Chemical Industrial Co Ltd
Priority to JP1250864ApriorityCriticalpatent/JP2775644B2/en
Publication of JPH03112838ApublicationCriticalpatent/JPH03112838A/en
Application grantedgrantedCritical
Publication of JP2775644B2publicationCriticalpatent/JP2775644B2/en
Anticipated expirationlegal-statusCritical
Expired - Fee Relatedlegal-statusCriticalCurrent

Links

Landscapes

Abstract

PURPOSE:To obtain a cement easily curable by hydration, having high uniformity and giving a cured product having high compressive strength by reacting a suspension of calcium hydroxide with an aqueous solution of phosphoric acid at a specific temperature and a specific final concentration of the reaction product and calcining the product. CONSTITUTION:A calcium phosphate cement is produced by wet-process comprising the reaction of a suspension of calcium hydroxide and an aqueous solution of phosphoric acid and the calcination of the resultant precipitate of calcium phosphate. The process is carried out as follows. A suspension of calcium hydroxide is made to react with an aqueous solution of phosphoric acid at 50-100 deg.C under a condition to give a final reaction product concentration of 5-25%. The obtained mixture of hydroxyapatite and calcium diphosphate is calcined to obtain the objective alpha-type calcium triphosphate cement. The cement gives a hydrated and cured product having extremely high compressive strength exceeding that of a dry-process cement obtained by the re-calcination under pressure.

Description

Translated fromJapanese

【発明の詳細な説明】〔産業上の利用分野〕本発明は、骨補填材等の医科用及び歯科用セメントの製
造法、より詳しくは、α型第三リン酸カルシウムセメン
トの湿式製造法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing medical and dental cement such as bone grafting materials, and more specifically, to an improvement in a wet production method for α-type tricalcium phosphate cement. It is something.

〔従来の技術〕[Conventional technology]

第三リン酸カル/ウムは、水と反応して水和し硬化する
ことはよく知られており、この水和反応により生成され
るヒト、ロキシアバタイトは生体内の骨とほぼ同一の構
造をもつと考えられるところから、骨補填材等の医科用
及び歯科用セメントとして極めて重要なものである。
It is well known that tricalcium phosphate hydrates and hardens when it reacts with water, and the human roxyabatite produced by this hydration reaction has a structure that is almost the same as that of bone in the living body. Because it is thought to have a certain amount of carbon, it is extremely important as a cement for medical and dental applications such as bone grafting materials.

一方、第三リン酸カルシウムには、1180℃ないし1
430℃で安定なα型と、1180℃以下で安定なβ型
があり、この中ではα型の方が水和活性が高いので、第
三リン酸カルシウムセメントには、α型が専ら用いられ
る。
On the other hand, for tricalcium phosphate, 1180℃ to 1
There is an α type that is stable at 430°C and a β type that is stable below 1180°C. Among these, the α type has higher hydration activity, so the α type is exclusively used for tricalcium phosphate cement.

α型第三リン酸カルシウムセメントの製造法には、乾式
法と湿式法がある。
There are two methods for producing α-type tricalcium phosphate cement: a dry method and a wet method.

乾式法は、第二リン酸カルシウムを550℃で2時間程
度加熱し、γ−ピロリン酸カルシウムに転化させ、これ
に炭酸カルシウムを均質に混合し、1200℃〜130
0℃で1時間以上焼成し、外気中に取り出し急冷する方
法である。従来、湿式法による第三リン酸カルシウムセ
メントの水和硬化物の強度が低いと考えられていたため
、主として乾式法が採用されてきた。
In the dry method, dibasic calcium phosphate is heated at 550°C for about 2 hours to convert it into γ-calcium pyrophosphate, which is homogeneously mixed with calcium carbonate and heated at 1200°C to 130°C.
This method involves baking at 0°C for over 1 hour, then taking it out into the open air and cooling it rapidly. Conventionally, it has been thought that the strength of the hydrated hardened product of tricalcium phosphate cement produced by the wet method is low, so the dry method has mainly been adopted.

湿式法は、水溶液中で、カルンウムイオンとリン酸イオ
ンとを直接反応させ、鼻品質リン酸カルシウムを沈澱さ
せて、これを濾過、洗浄、乾燥して、高温で熱処理する
方法である。そして、湿式法による第三リン酸カルシウ
ムセメントの水和硬化物の強度が低いという欠点を改善
するために次のような種々の改良が試みられている。
The wet method is a method in which carunium ions and phosphate ions are directly reacted in an aqueous solution to precipitate nasal grade calcium phosphate, which is then filtered, washed, dried, and heat-treated at high temperatures. In order to improve the drawback that the strength of the hydrated cured product of tricalcium phosphate cement produced by the wet method is low, various improvements have been attempted as described below.

特開昭63−100008には、縮合リン酸又はその塩
を100℃以下で反応させ、700℃以下で熱処理(従
ってβ型)する方法が開示されておる。
JP-A No. 63-100008 discloses a method in which condensed phosphoric acid or its salt is reacted at a temperature of 100° C. or lower, and then heat-treated at a temperature of 700° C. or lower (therefore, β-type).

特開平1−IQG048には、ヒドロキシアパタイトを
!150℃〜1450℃で減圧下で焼成して、α型筒ニ
リン酸カルシウムとリン酸四カルシウムとからなるセメ
ントの製造法が開示されている。
JP-A-1-IQG048 has hydroxyapatite! A method for producing cement consisting of α-type calcium diphosphate and tetracalcium phosphate is disclosed by firing at 150° C. to 1450° C. under reduced pressure.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来から採用されてきた乾式法は、原料を粉体で混合す
るため均質な混合が難しく、生成物の均一性に問題があ
り、水和硬化にあたってヒドロキシアパタイトへの転化
も充分でなかった。また、1180℃以上で焼成後、急
冷(10℃/分以上)しないと、全部をα型第三すン酸
カルシウムに留めておくことができなかった。そのため
、ラバープレス法等により1000kg/cm”程度に
加圧圧縮後、再度1200℃〜1300℃で1時間以上
焼成することが必要であった。
The conventional dry method mixes the raw materials in the form of powder, making it difficult to achieve homogeneous mixing, resulting in problems with the uniformity of the product, and insufficient conversion to hydroxyapatite during hydration curing. Further, after firing at 1180° C. or higher, it was not possible to keep all the α-type tertiary calcium sulfate unless it was rapidly cooled (at 10° C./min or higher). Therefore, it was necessary to pressurize the material to about 1000 kg/cm'' using a rubber press method or the like and then bake it again at 1200° C. to 1300° C. for 1 hour or more.

一方、従来の湿式法により製造された第三リン酸カルシ
ウムセメントの水和硬化物の圧縮強度が低いという欠点
は、上述の特開昭63−100008及び特開平1−1
00048に開示された発明によっても充分に解決され
ていない。
On the other hand, the drawback that the compressive strength of the hydrated hardened product of tricalcium phosphate cement manufactured by the conventional wet method is low is that
The problem has not been sufficiently solved by the invention disclosed in No. 00048.

特開昭63−100008に開示された発明は、β型の
第三リン酸カル/ウノ、を製造するものであり、水和活
性の点で必ずしも充分ではない。
The invention disclosed in JP-A-63-100008 is for producing β-type tertiary phosphate Cal/Uno, and is not necessarily sufficient in terms of hydration activity.

また、特開平1−100048に開示された発明は、α
型第三すン酸カルシウムとリン酸四カルンウムとの混合
物からなるセメントの製造法に関するものであるが、ど
の程度圧縮強度が上がるか明確には開示されていない。
Furthermore, the invention disclosed in JP-A-1-100048 is
This article relates to a method for producing cement made of a mixture of type tertiary calcium phosphate and tetracarium phosphate, but it does not clearly disclose how much the compressive strength is increased.

本発明の解決しようとする課題は、上述のような問題点
を解決するため、製品の品質が均質で、水和硬化が容易
で、かつ硬化物の圧縮強度の高い新規なリン酸カル/ウ
ム系セメントの製造法を開発することにある。
The problem to be solved by the present invention is to solve the above-mentioned problems by developing a new calcium/umium phosphate product that has uniform product quality, is easy to cure by hydration, and has a high compressive strength of the cured product. The objective is to develop a method for producing cement.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記課題を解決するため、水酸化カルシ
ウム懸濁液とリン酸水溶液とを反応させて、得られたリ
ン酸カル/ウムの沈澱を焼成することによって製品を得
るリン酸カルシウム系セメントの湿式製造法において、
水酸化カルシウム懸濁液とリン酸水溶液とを、50℃以
上100℃以下で、かつ、最終反応生成物濃度が5%以
上25%以下になるように反応させて、ヒドロキシアパ
タイトと第二リン酸カルシウムとの混合物を生成させ、
それを焼成することを特徴とするα全第三リン酸カルシ
ウムセメントの湿式製造法を提案する。
In order to solve the above problems, the present inventors have developed a calcium phosphate cement product by reacting a calcium hydroxide suspension with an aqueous phosphoric acid solution and calcining the resulting calcium/ium phosphate precipitate. In the wet manufacturing method of
A calcium hydroxide suspension and a phosphoric acid aqueous solution are reacted at a temperature of 50°C to 100°C and the final reaction product concentration is 5% to 25% to form hydroxyapatite and dibasic calcium phosphate. producing a mixture of
We propose a wet manufacturing method for α-all tricalcium phosphate cement, which is characterized by firing it.

本発明において、反応温度を50℃以上とするのは、ヒ
トワキ/アパタイト自体の結晶性が高くなるのを防ぐと
同時に、第二リン酸カルシウムの結晶が大きくなり過ぎ
るのを抑え、微結晶のヒドロキシアパタイトと第二リン
酸カルシウムの混合物を得るためである。
In the present invention, the reason why the reaction temperature is set to 50°C or higher is to prevent the crystallinity of human wax/apatite itself from becoming high, and at the same time to suppress the crystals of dicalcium phosphate from becoming too large, and to prevent the formation of microcrystalline hydroxyapatite. This is to obtain a mixture of dibasic calcium phosphate.

また、反応温度を100℃以上にするのは、加圧容器等
を必要とするだけでなく、それに伴い操作も複雑になり
、経済上からも好ましくない。
Furthermore, setting the reaction temperature to 100° C. or higher not only requires a pressurized container, but also complicates the operation, which is not preferable from an economical point of view.

最終反応生成物濃度を5%以上にするのも、ヒドロキシ
アパタイト自体の結晶性が高くなるのを防ぐと同時に、
第二リン酸カル/ウムの結晶が大きくなり過ぎるのを抑
えるためである。
Setting the final reaction product concentration to 5% or more also prevents the crystallinity of hydroxyapatite itself from increasing;
This is to prevent the crystals of dibasic calcium/ium phosphate from becoming too large.

また、最終反応生成物濃度を25%以下にするのは、2
5%を超えると攪拌が困難になり湿式反応が不可能にな
るからである。
In addition, reducing the final reaction product concentration to 25% or less requires 2
This is because if it exceeds 5%, stirring becomes difficult and wet reaction becomes impossible.

〔作用]本発明において、反応温度を50℃以上にすると、どの
ような作用によって、ヒドロキシアパタイトと第二リン
酸カルシウムとの混合物が生成するか詳細は不明である
が、一応、次のように考えられる。
[Function] In the present invention, the details of how a mixture of hydroxyapatite and dicalcium phosphate is produced when the reaction temperature is set to 50°C or higher are unknown, but it is thought to be as follows. .

ヒドロキシアパタイトは、非常に安定な化合物であって
、pHの高いほど、また、温度の高いほど生成し易いこ
とが知られており、第二リン酸カルシウムは、pHの低
いほど、また、温度の低いほど生成し易く、また、安定
であることが知られている。
Hydroxyapatite is a very stable compound, and it is known that the higher the pH and the higher the temperature, the easier it is to form, and the lower the pH and the lower the temperature, the easier it is to form dicalcium phosphate. It is known to be easy to produce and stable.

従って、50℃以上の高い温度の水酸化カルシウム懸濁
液にリン酸を滴下した場合、先ず最初にヒドロキシアパ
タイトが生成し、その後、pHの低下にともなって、他
のリン酸カルシウム化合物が生じるが、これも、既に生
成したヒドロキシアパタイトを核として、安定なヒドロ
キシアパタイトに変化するものと考えられる。そして、
更にリン酸の添加を続けて溶液が酸性になると、酸性で
安定な第二リン酸カルシウムが生成するものと考えられ
る。
Therefore, when phosphoric acid is dropped into a calcium hydroxide suspension at a high temperature of 50°C or higher, hydroxyapatite is first produced, and then as the pH decreases, other calcium phosphate compounds are produced. It is also thought that the already produced hydroxyapatite is used as a core to transform into stable hydroxyapatite. and,
It is believed that if the solution becomes acidic by continuing to add phosphoric acid, dibasic calcium phosphate, which is acidic and stable, is generated.

また、ヒドロキシアパタイトと第二リン酸カルシウムの
混合物を焼成して得られたα型第三リン酸カルシウムセ
メントが、何故高い水和活性を有するか詳細は不明であ
゛るが、微結晶のヒドロキシアパタイトと第二リン酸カ
ルシウムとの混合結晶を焼成すると、ヒドロキシアパタ
イトの表面に第二リン酸カルシウムのリンとカルシウム
が拡散して行き、純度の高いα型第三リン酸カルシウム
を生成するためと考えられる。
Furthermore, although it is unclear why alpha-type tricalcium phosphate cement obtained by firing a mixture of hydroxyapatite and dibasic calcium phosphate has high hydration activity, it is This is thought to be because when the mixed crystal with calcium phosphate is fired, the phosphorus and calcium of dibasic calcium phosphate diffuse to the surface of hydroxyapatite, producing highly pure α-type tribasic calcium phosphate.

このようにして得られたα型第三リン酸カルシウムセメ
ントが、どのような作用で圧縮強度の高い水和硬化物を
生成するか詳細は不明であるが、一応、次のように推定
される。
Although the details of how the α-type tricalcium phosphate cement thus obtained produces a hydrated hardened product with high compressive strength are unknown, it is presumed as follows.

第三リン酸カルシウムの水和硬化反応は、次式により、
鼻化学量論性ヒドロキシアパタイトを形成するためとい
われている。
The hydration hardening reaction of tricalcium phosphate is expressed by the following formula:
This is said to be due to the formation of nasal stoichiometric hydroxyapatite.

(10−z)Cat(Po4)a+ 3(2+n−z)
H*0=  3Ca+o−g(HPO4)ll (PU
+)s−g  (0旧2−g HnHa。
(10-z)Cat(Po4)a+ 3(2+nz)
H*0= 3Ca+o-g(HPO4)ll (PU
+) s-g (0 old 2-g HnHa.

+ 2(1−z)HiPOaそして、このようにして生成された鼻化学量論性ヒドロ
キシアパタイト粒子の周囲に突出した微結晶の絡み合い
結合により強度が出現するといわれている。
+ 2(1-z)HiPOa It is said that strength appears due to the intertwined bonds of microcrystals protruding around the nasal stoichiometric hydroxyapatite particles thus generated.

このようなことから−本発明におけるα型第三リン酸カ
ルシウムセメントにおいて、第二リン酸カルシウム由来
の第三リン酸カル/ウムが、この絡み合い結合に何らか
の有効な接着剤的な働きをいているものと推定される。
Based on these facts, it is presumed that in the α-type tribasic calcium phosphate cement of the present invention, tribasic calcium phosphate derived from dibasic calcium phosphate has some kind of effective adhesive function in this entangled bond. Ru.

〔実施例〕〔Example〕

実施例131のイオン交換水を入れたステンレスビーカーを80
℃に設定した恒温槽に設置し、そのイオン交換水に酸化
カルシウム(Cab) 215gを投入し、30分間攪
拌し乳化した。
Example 1 A stainless steel beaker containing 31 ion-exchanged water was heated to 80
It was placed in a constant temperature bath set at 0.degree. C., and 215 g of calcium oxide (Cab) was added to the ion-exchanged water and stirred for 30 minutes to emulsify.

液温を50℃に調整後、25%リン酸溶液 1002g
をマイクロチューブポンプを用い2時間かけて滴下し反
応させた。最終反応液の濃度は9.4%であった。
After adjusting the liquid temperature to 50℃, 1002g of 25% phosphoric acid solution
was added dropwise over 2 hours using a microtube pump to react. The concentration of the final reaction solution was 9.4%.

更に50℃で1時間静置後、濾過し、150℃で2時間
乾燥した。得られた結晶(以下「結晶1」という)のX
線回折図は第1図の通りであった。
After further standing at 50°C for 1 hour, it was filtered and dried at 150°C for 2 hours. X of the obtained crystal (hereinafter referred to as "crystal 1")
The line diffraction pattern was as shown in FIG.

なお、この図において、Oはヒドロキシアパタイト特有
ののピークを示し、は第二リン酸カルンウム特有のピー
クを示す。
In this figure, O indicates a peak specific to hydroxyapatite, and O indicates a peak specific to calunium diphosphate.

この結晶Iを1300℃で1時間焼成後、炉内で静置し
8時間で室温まで下げた。これを粉砕して平均粒径5μ
mの粉末(以下「粉末■」という)を得た。
After firing this crystal I at 1300° C. for 1 hour, it was left standing in a furnace and cooled to room temperature over 8 hours. This is crushed to have an average particle size of 5 μm.
A powder of m (hereinafter referred to as "powder ■") was obtained.

この粉末Iを、CuKα線により、Nlフィルターを用
い、35KV% 1511A、 Xリフト幅(1,0,
15,+1の条件でX線回折分析をした結果、回折角度
は、30.8’ 34.2°24.ビに主ピークを有し
、JCPDカード9−348に記載されたα型第三リン
酸カルシウムの特性回折図と一致した。
This powder I was heated to 35KV% 1511A, X lift width (1,0,
As a result of X-ray diffraction analysis under the conditions of 15.+1, the diffraction angle was 30.8' 34.2°24. It had a main peak at B, which matched the characteristic diffraction pattern of α-type tribasic calcium phosphate described in JCPD Card 9-348.

粉末■を化学分析し、たところ、Ca/P比は1.51
となり、理論Ca/P比1.50にほぼ一致した。
Chemical analysis of powder ■ revealed that the Ca/P ratio was 1.51.
This almost coincided with the theoretical Ca/P ratio of 1.50.

実施例2反応温度を70℃とした他は実施例1と同一条件で反応
させた。最終反応液の濃度は9.4%であった。これか
ら実施例1と同一条件で結晶(以下「結晶■」という)
を得た。この結晶■のX線回折図は第2図のとおりであ
った。
Example 2 A reaction was carried out under the same conditions as in Example 1, except that the reaction temperature was 70°C. The concentration of the final reaction solution was 9.4%. From now on, crystals (hereinafter referred to as "crystal ■") were prepared under the same conditions as in Example 1.
I got it. The X-ray diffraction pattern of this crystal (1) was as shown in FIG.

結晶■から実施例Iと同一条件で平均粒径5μmの粉末
(以下「粉末「」という)を得た。
A powder (hereinafter referred to as "powder") having an average particle size of 5 .mu.m was obtained from crystal (1) under the same conditions as in Example I.

粉末■をX線回折分析した結果、α型第三リン酸カルシ
ウムの特性回折図と一致した。
The result of X-ray diffraction analysis of the powder (■) matched the characteristic diffraction pattern of α-type tribasic calcium phosphate.

また、粉末■の化学分析した結果、Ca/P比は1.5
0であった。
In addition, as a result of chemical analysis of powder ■, the Ca/P ratio was 1.5.
It was 0.

実施例3反応温度を98℃以上の煮沸条件とした他は実施例1と
同一条件で反応させた。最終反応液の濃度は9.3%で
あった。これから実施例1と同一条件で結晶(以下[結
晶[IIJという)を得た。この結晶■のX線回折図は
第3図のとおりであった。
Example 3 The reaction was carried out under the same conditions as in Example 1, except that the reaction temperature was boiled at 98° C. or higher. The concentration of the final reaction solution was 9.3%. From this, a crystal (hereinafter referred to as [crystal [IIJ]) was obtained under the same conditions as in Example 1. The X-ray diffraction pattern of this crystal (1) was as shown in FIG.

結晶■から実施例1と同一条件で平均粒径5μmの粉末
(以下「粉末■」という)を得た。
A powder with an average particle size of 5 μm (hereinafter referred to as "powder ■") was obtained from crystal (■) under the same conditions as in Example 1.

粉末■をX線回折分析した結果、α型第三リン酸カルシ
ウムの特性回折図と一致した。
The result of X-ray diffraction analysis of the powder (■) matched the characteristic diffraction pattern of α-type tribasic calcium phosphate.

また、粉末■の化学分析した結果、Ca/P比は1、5
1であった。
In addition, as a result of chemical analysis of powder (■), the Ca/P ratio was 1.5.
It was 1.

比較例!反応温度を40℃とした他は実施例1と同一条件で反応
させた。最終反応液の濃度は9.4%であった。これか
ら実施例Iと同一条件で結晶(以下「結晶IVJという
)を得た。この結晶■のX線回折図は第4図のとおりで
あった。
Comparative example! The reaction was carried out under the same conditions as in Example 1 except that the reaction temperature was 40°C. The concentration of the final reaction solution was 9.4%. A crystal (hereinafter referred to as "crystal IVJ") was obtained under the same conditions as in Example I. The X-ray diffraction pattern of this crystal (2) was as shown in FIG.

結晶■から実施例1と同一条件で平均粒径5μmの粉末
(以下「粉末■」という)を得た。
A powder with an average particle size of 5 μm (hereinafter referred to as "powder ■") was obtained from crystal (■) under the same conditions as in Example 1.

粉末■をX線回折分析した結果、α型第三リン酸カルシ
ウムの特性回折図と一致した。
The result of X-ray diffraction analysis of the powder (■) matched the characteristic diffraction pattern of α-type tribasic calcium phosphate.

また、粉末■の化学分析した結果、Ca/P比は1.5
0であった。
In addition, as a result of chemical analysis of powder ■, the Ca/P ratio was 1.5.
It was 0.

比較例2+21のイオン交換水を入れたステンレスビーカーを8
0℃に設定した恒温槽に設置し、そのイオン交換水に酸
化カルシウム(Cab) 215gを投入し、30分間
攪拌し乳化した。
Comparative Example 2 A stainless steel beaker containing +21 ion-exchanged water was
The mixture was placed in a constant temperature bath set at 0° C., and 215 g of calcium oxide (Cab) was added to the ion-exchanged water and stirred for 30 minutes to emulsify.

液温を70℃に調整後、25%リン酸溶液1002gを
マイクロチューブポンプを用い2時間かけて滴下し反応
させた。最終反応液の濃度は3.0%であった。
After adjusting the liquid temperature to 70° C., 1002 g of a 25% phosphoric acid solution was added dropwise over 2 hours using a microtube pump to cause a reaction. The concentration of the final reaction solution was 3.0%.

その後、実施例1と同一操作を行い結晶(以下「結晶■
」という)を得た。この結晶VのX線回折図は第5図の
とおりであった・結晶Vから実施例1と同一条件で平均粒径5μmの粉末
(以下[粉末VJという)を得た。
Thereafter, the same operation as in Example 1 was performed to obtain a crystal (hereinafter referred to as "crystal").
) was obtained. The X-ray diffraction diagram of this crystal V was as shown in FIG. 5. A powder (hereinafter referred to as powder VJ) with an average particle size of 5 μm was obtained from crystal V under the same conditions as in Example 1.

粉末■をX線回折分析した結果、α型第三リン酸カルシ
ウムの特性回折図と一致し、少量のヒドロキシアパタイ
トを含んでいた。
As a result of X-ray diffraction analysis of the powder (■), it matched the characteristic diffraction pattern of α-type tricalcium phosphate and contained a small amount of hydroxyapatite.

また、粉末■の化学分析した結果、Ca/P比は1、5
0であった。
In addition, as a result of chemical analysis of powder (■), the Ca/P ratio was 1.5.
It was 0.

比較例3−従来の湿式法21ビーカー中のイオン交換水500*lに硝酸カルシ
ウムCa(NOx)t4H*o 354gを溶解し、こ
れに、攪拌しながら、イオン交換水5001に第二リン
酸アンモニウム (N)I3)JPOn 132gを溶
解した溶液をマイクロチューブポンプを用いて2時間か
けて滴下し反応させた後、更に24時間攪拌した。最終
反応液の濃度はl014%であった。
Comparative Example 3 - Conventional Wet Method 21 354 g of calcium nitrate Ca(NOx) t4H*o was dissolved in 500*l of ion-exchanged water in a beaker, and while stirring, diammonium phosphate dibasic was added to 50011 of ion-exchanged water. A solution in which 132 g of (N)I3)JPOn was dissolved was added dropwise using a microtube pump over 2 hours to react, and then stirred for an additional 24 hours. The concentration of the final reaction solution was 1014%.

これを濾過した後、約1500mlのイオン交換水で分
散攪拌し1時間静置後濾過した。このような洗浄操作を
5回行い、 150℃で2時間乾燥し結晶(以下「結晶
■」という)を得た。この結晶■のX線回折図は第6図
のとおりであった。
After filtering this, it was dispersed and stirred in about 1500 ml of ion-exchanged water, allowed to stand for 1 hour, and then filtered. This washing operation was performed five times, and the crystals were dried at 150°C for 2 hours to obtain crystals (hereinafter referred to as "crystals"). The X-ray diffraction pattern of this crystal (1) was as shown in FIG.

この結晶■を1300℃で1時間焼成後、外気中に取り
出して急冷し、粉砕して平均粒径5μmの粉末(以下「
粉末■」という)を得た。
After firing the crystals at 1,300°C for 1 hour, they were taken out into the open air, rapidly cooled, and ground into powder with an average particle size of 5 μm (hereinafter referred to as
A powder (referred to as "■") was obtained.

粉末■をX線回折分析した結果、α型第三リン酸カルシ
ウムの特性回折図と一致した。
The result of X-ray diffraction analysis of the powder (■) matched the characteristic diffraction pattern of α-type tribasic calcium phosphate.

また、粉末■の化学分析した結果、Ca/P比は1.5
0であった。
In addition, as a result of chemical analysis of powder ■, the Ca/P ratio was 1.5.
It was 0.

比較例4−乾式法第二リン酸カルシウムCaHPO*2HtO344gを
 500℃で5時間焼成し、γ−ビロリン酸カルシウム
T−Ca*P*Otとし、これにCaC01loogを
混合し、自動乳鉢を用いて5時間混合して均質化し、1
200℃で2時間焼成した後、外気中に取り出して急冷
し、粉砕して350メフシユ篩を通過させた。
Comparative Example 4 - Dry process 344 g of dicalcium phosphate CaHPO*2HtO was calcined at 500°C for 5 hours to obtain γ-calcium birophosphate T-Ca*P*Ot, which was mixed with CaC01loog and mixed for 5 hours using an automatic mortar. homogenize, 1
After baking at 200° C. for 2 hours, the product was taken out into the open air, rapidly cooled, pulverized, and passed through a 350 mesh sieve.

更に、この粉末を1000kg/ca”にラバープレス
を用いて加圧し、1300℃で1時間焼成した後、粉砕
して平均粒径5μmの粉末(以下「粉末■Jという)を
得た。
Further, this powder was pressurized to 1,000 kg/ca'' using a rubber press, fired at 1,300°C for 1 hour, and then ground to obtain a powder (hereinafter referred to as ``Powder ■J'') with an average particle size of 5 μm.

粉末■をX線回折分析した結果、α型第三リン酸カルシ
ウムの特性回折図と一致した。
The result of X-ray diffraction analysis of the powder (■) matched the characteristic diffraction pattern of α-type tribasic calcium phosphate.

また、粉末■の化学分析した結果、Ca/ P比は1.
51であった。
In addition, as a result of chemical analysis of the powder (■), the Ca/P ratio was 1.
It was 51.

上述のようにして得られた粉末Iないし粉末■を、JI
S−6602の方法に準拠して、溶液として生理食塩水
を用いて、粉液比(P/L)2.0になるように煉和し
、硬化時間、及び、24時後の圧縮強度を測定した。
Powder I to Powder ■ obtained as described above is
In accordance with the method of S-6602, saline was used as a solution and the mixture was mixed to a powder-liquid ratio (P/L) of 2.0, and the curing time and compressive strength after 24 hours were determined. It was measured.

また、結晶Iないし結晶■のX線回折図(第1図〜第6
図)から結晶種を同定した。
In addition, the X-ray diffraction diagrams of Crystals I to Crystal II (Figures 1 to 6)
The crystal species were identified from the figure.

これらの結果を第1表に示した。These results are shown in Table 1.

第1表は、本発明に係わる方法により製造したα型第三
リン酸カルシウムセメントを使用した硬化物(粉末I〜
■)の圧縮強度が、従来のセメントを使用した硬化物に
比べて牢常に高いことを示している。
Table 1 shows the cured products (powder I to
The results show that the compressive strength of (ii) is consistently higher than that of conventional cured products using cement.

(以下余白)第表HAP : ヒドロキシアパタイト Ca+o(POa
)s(OH)宜DCP^:第二リン酸カルシウム Ca
HPO4ACP : 奔晶質すン酸カル/ウムCas 
(PO4)tnHmOまた、水和活性を、X線回折図の
α型第三リン酸カルシウムの特性回折線の主ピークであ
る30.8゜のピーク高(■α−TCP)とヒドロキシ
アパタイトの特性回折線の主ピークである25.9°の
ピーク高(I−HAP)とから次式・で転化率を求め、
第7図に示した。
(Left below) Table HAP: Hydroxyapatite Ca+o (POa
)s(OH)DCP^: dibasic calcium phosphate Ca
HPO4ACP: Crystalline calcium/umum sulfate Cas
(PO4)tnHmO In addition, the hydration activity was determined by the peak height of 30.8° (■ α-TCP), which is the main peak of the characteristic diffraction line of α-type tricalcium phosphate in the X-ray diffraction diagram, and the characteristic diffraction line of hydroxyapatite. From the peak height (I-HAP) of 25.9° which is the main peak of
It is shown in Figure 7.

I α−TCP   +   r−HAP第7図から、
本発明に係わる方法で製造したα型第三リン酸カルシウ
ムセメントの水和活性を示すα型第三リン酸カルシウム
からヒドロキシアパタイトへの転化率が、従来のセメン
トに比べて速いことがわかった。
I α-TCP + r-HAP From Figure 7,
It was found that the conversion rate of α-type tribasic calcium phosphate, which indicates hydration activity, to hydroxyapatite in the α-type tribasic calcium phosphate cement produced by the method according to the present invention was faster than that of conventional cement.

〔発明の効果〕〔Effect of the invention〕

本発明に係わるα型第三すン酸カル/ウムセメントの製
造法は、上述のような構成と作用を有するので、次のよ
うな効果をもたらす。
The method for producing α-type tertiary sulfate calcium/umum cement according to the present invention has the above-described structure and operation, and therefore brings about the following effects.

乾式法では、均質な混合が難しく生成物の均一性に問題
があって、1180℃以上で焼成機急冷する必要があり
、また、ラバープレス法等により1000kg/am”
程度に加圧圧縮後再度1200℃〜1300℃で1時間
以上焼成することが必要であったが、本発明に係わる方
法では、均質な製品が得られるため、特に急冷する必要
もなく、また、加圧再焼成する必要もない。
In the dry method, it is difficult to mix homogeneously and there is a problem with the uniformity of the product, and it is necessary to rapidly cool the baking machine at 1180°C or higher, and the rubber press method etc.
However, with the method of the present invention, a homogeneous product is obtained, so there is no need for rapid cooling, and There is no need for pressure refiring.

また、従来の湿式法で製造されたセメントは、水和硬化
物の圧縮強度が低いという欠点があったが、本発明に係
わる方法により製造されたセメントは、水和硬化物の圧
縮強度が寥常に高く、本発明に係わる方法により、加圧
再焼成した乾式法の製品をも凌ぐ圧縮強度を有する製品
を得ることができる。
In addition, cement produced by the conventional wet method had the disadvantage of low compressive strength of the hydrated product, but the cement produced by the method of the present invention has the highest compressive strength of the hydrated product. The method according to the invention makes it possible to obtain products with a compressive strength that is always high and even exceeds pressure recalcined dry process products.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第6図は、それぞれ、実施例1〜3、比較例1
〜3において、α型第三リン酸カルシウムセメント製造
の際に得られた結晶1〜■のX線回折図であり、第7図
は、α型第三リン酸カルシウムからヒドロキノアパタイ
トへの転化率の経時変化を示す図である。なお、第1図
〜第5図において、○はヒドロキシアパタイト特有のピ
ークを示し、は第二リン酸カルシウム特有のピークを示
す。
Figures 1 to 6 are Examples 1 to 3 and Comparative Example 1, respectively.
-3 are the X-ray diffraction patterns of crystals 1 to 3 obtained during the production of α-type tricalcium phosphate cement, and Figure 7 shows the change over time in the conversion rate from α-type tricalcium phosphate to hydroquinoapatite. FIG. In FIGS. 1 to 5, ◯ indicates a peak specific to hydroxyapatite, and ◯ indicates a peak specific to dicalcium phosphate.

Claims (1)

Translated fromJapanese
【特許請求の範囲】[Claims]水酸化カルシウム懸濁液とリン酸水溶液とを反応させ、
得られたリン酸カルシウムの沈澱を焼成することによっ
て製品を得るリン酸カルシウム系セメントの湿式製造法
において、水酸化カルシウム懸濁液とリン酸水溶液とを
、50℃以上100℃以下で、かつ、最終反応生成物濃
度が5%以上25%以下になるように反応させて、ヒド
ロキシアパタイトと第二リン酸カルシウムとの混合物を
生成させ、それを焼成することを特徴とするα型第三リ
ン酸カルシウムセメントの湿式製造法。
Reacting a calcium hydroxide suspension with a phosphoric acid aqueous solution,
In the wet manufacturing method of calcium phosphate cement, in which the product is obtained by calcining the obtained calcium phosphate precipitate, a calcium hydroxide suspension and a phosphoric acid aqueous solution are heated at a temperature of 50°C or more and 100°C or less, and the final reaction product is A wet method for producing α-type tricalcium phosphate cement, which comprises reacting to have a concentration of 5% to 25% to produce a mixture of hydroxyapatite and dibasic calcium phosphate, and firing the mixture.
JP1250864A1989-09-261989-09-26 Wet production of α-type tricalcium phosphate cementExpired - Fee RelatedJP2775644B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP1250864AJP2775644B2 (en)1989-09-261989-09-26 Wet production of α-type tricalcium phosphate cement

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP1250864AJP2775644B2 (en)1989-09-261989-09-26 Wet production of α-type tricalcium phosphate cement

Publications (2)

Publication NumberPublication Date
JPH03112838Atrue JPH03112838A (en)1991-05-14
JP2775644B2 JP2775644B2 (en)1998-07-16

Family

ID=17214147

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP1250864AExpired - Fee RelatedJP2775644B2 (en)1989-09-261989-09-26 Wet production of α-type tricalcium phosphate cement

Country Status (1)

CountryLink
JP (1)JP2775644B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5268032A (en)*1992-10-161993-12-07The United States Of America As Represented By The Secretary Of The ArmyMethod for the controlled hardening of acid-setting binders and cements
EP0705802A4 (en)*1994-03-021996-08-28Advance KkTYPE -g(a) TRICALCIUM PHOSPHATE CERAMIC AND PROCESS FOR PRODUCING THE SAME
EP0749400A4 (en)*1994-11-041997-01-02

Cited By (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5268032A (en)*1992-10-161993-12-07The United States Of America As Represented By The Secretary Of The ArmyMethod for the controlled hardening of acid-setting binders and cements
EP0705802A4 (en)*1994-03-021996-08-28Advance KkTYPE -g(a) TRICALCIUM PHOSPHATE CERAMIC AND PROCESS FOR PRODUCING THE SAME
EP0749400A4 (en)*1994-11-041997-01-02
US5683667A (en)*1994-11-041997-11-04Norian CorporationReactive tricalcium phosphate compositions
US5709742A (en)*1994-11-041998-01-20Norian CorporationReactive tricalcium phosphate compositions
US5885540A (en)*1994-11-041999-03-23Norian CorporationReactive tricalcium phosphate compositions

Also Published As

Publication numberPublication date
JP2775644B2 (en)1998-07-16

Similar Documents

PublicationPublication DateTitle
CN107141022B (en)Whitlockite coating constructed on surface of calcium phosphate biological ceramic matrix and preparation method thereof
JPH04135562A (en)Hydraulic calcium phosphate cement
JPS6287406A (en)Production of beta-tricalcium phosphate
CA2432583A1 (en)Method of preparing alpha- and beta-tricalcium phosphate powders
JPH0333670B2 (en)
JPH03112838A (en)Wet-process for producing alpha-type calcium triphosphate cement
CN101401951A (en)Calcium phosphate biological active ceramic material containing silicon dioxide and preparation method thereof
JP3668530B2 (en) Method for producing tetracalcium phosphate
JPS5913443B2 (en) Production method of CaO-P↓2O↓5-based apatite
JPS63159207A (en)Production of hydroxyapatite
JP3215892B2 (en) Method for producing hydroxyapatite whiskers
JPH01100048A (en) Method for producing calcium phosphate cured product
DE2551308A1 (en) PROCESS FOR THE MANUFACTURING OF CALCIUM ALUMINATE TRISULPHATE HYDRATE
JPH07106887B2 (en) Method for producing strontium hydroxyapatite powder
JPH02311340A (en)Hydraulic cement composition
JPS6212705A (en) Medical or dental cement composition
JPS59223206A (en)Manufacture of spherical anhydrous calcium secondary phosphate
JPH0460069B2 (en)
JP3216324B2 (en) Method for producing quaternary calcium phosphate
JPH04321507A (en)Production of calcium tertiary phosphate and hydraulic calcium phosphate cement
EP1473273A1 (en)Method of preparing alpha-and beta-tricalcium phosphate powders
JPH0244054A (en)Self-curing composite bio-material having high strength and its preparation
JPS61151010A (en)Production of hydroxy apatite
JPS61151011A (en)Production of carbonic acid-containing hydroxy apatite
JPS63176347A (en) Manufacturing method of apatite porous body

Legal Events

DateCodeTitleDescription
R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20090501

Year of fee payment:11

LAPSCancellation because of no payment of annual fees

[8]ページ先頭

©2009-2025 Movatter.jp